1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
# Copyright 2012 by Wibowo Arindrarto. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Bio.SearchIO parser for BLAT output formats.
This module adds support for parsing BLAT outputs. BLAT (BLAST-Like Alignment
Tool) is a sequence similarity search program initially built for annotating
the human genome.
Bio.SearchIO.BlastIO was tested using standalone BLAT version 34, psLayout
version 3. It should be able to parse psLayout version 4 without problems.
More information on BLAT is available from these sites:
- Publication: http://genome.cshlp.org/content/12/4/656
- User guide: http://genome.ucsc.edu/goldenPath/help/blatSpec.html
- Source download: http://www.soe.ucsc.edu/~kent/src
- Executable download: http://hgdownload.cse.ucsc.edu/admin/exe/
- Blat score calculation: http://genome.ucsc.edu/FAQ/FAQblat.html#blat4
Supported Formats
=================
BlatIO supports parsing, indexing, and writing for both PSL and PSLX output
formats, with or without header. To parse, index, or write PSLX files, use the
'pslx' keyword argument and set it to True.
# blat-psl defaults to PSL files
>>> from Bio import SearchIO
>>> psl = 'Blat/psl_34_004.psl'
>>> qresult = SearchIO.read(psl, 'blat-psl')
>>> qresult
QueryResult(id='hg19_dna', 10 hits)
# set the pslx flag to parse PSLX files
>>> pslx = 'Blat/pslx_34_004.pslx'
>>> qresult = SearchIO.read(pslx, 'blat-psl', pslx=True)
>>> qresult
QueryResult(id='hg19_dna', 10 hits)
For parsing and indexing, you do not need to specify whether the file has a
header or not. For writing, if you want to write a header, you can set the
'header' keyword argument to True. This will write a 'psLayout version 3' header
to your output file.
from Bio import SearchIO
qresult = SearchIO.read(psl, 'blat-psl')
SearchIO.write(qresult, 'header.psl', header=True)
<stdout> (1, 10, 19, 23)
Note that the number of HSPFragments written may exceed the number of HSP
objects. This is because in PSL files, it is possible to have single matches
consisting of noncontiguous sequence fragments. This is where the HSPFragment
object comes into play. These fragments are grouped into a single HSP because
they share the same statistics (e.g. match numbers, BLAT score, etc.). However,
they do not share the same sequence attributes, such as the start and end
coordinates, making them distinct objects.
In addition to parsing PSL(X) files, BlatIO also computes the percent identities
and scores of your search results. This is done using the calculation formula
posted here: http://genome.ucsc.edu/FAQ/FAQblat.html#blat4. It mimics the score
and percent identity calculation done by UCSC's web BLAT service.
Since BlatIO parses the file in a single pass, it expects all results from
the same query to be in consecutive rows. If the results from one query are
spread in nonconsecutive rows, BlatIO will consider them to be separate
QueryResult objects.
In most cases, the PSL(X) format uses the same coordinate system as Python
(zero-based, half open). These coordinates are anchored on the plus strand.
However, if the query aligns on the minus strand, BLAT will anchor the qStarts
coordinates on the minus strand instead. BlatIO is aware of this, and will
re-anchor the qStarts coordinates to the plus strand whenever it sees a minus
strand query match. Conversely, when you write out to a PSL(X) file, BlatIO will
reanchor qStarts to the minus strand again.
BlatIO provides the following attribute-column mapping:
+----------------+-------------------------+-----------------------------------+
| Object | Attribute | Column Name, Value |
+================+=========================+===================================+
| QueryResutl | id | Q name, query sequence ID |
| +-------------------------+-----------------------------------+
| | seq_len | Q size, query sequence full |
| | | length |
+----------------+-------------------------+-----------------------------------+
| Hit | id | T name, hit sequence ID |
| +-------------------------+-----------------------------------+
| | seq_len | T size, hit sequence full length |
+----------------+-------------------------+-----------------------------------+
| HSP | hit_end | T end, end coordinate of the last |
| | | hit fragment |
| +-------------------------+-----------------------------------+
| | hit_gap_num | T gap bases, number of bases |
| | | inserted in hit |
| +-------------------------+-----------------------------------+
| | hit_gapopen_num | T gap count, number of hit gap |
| | | inserts |
| +-------------------------+-----------------------------------+
| | hit_span_all | blockSizes, sizes of each |
| | | fragment |
| +-------------------------+-----------------------------------+
| | hit_start | T start, start coordinate of the |
| | | first hit fragment |
| +-------------------------+-----------------------------------+
| | hit_start_all | tStarts, start coordinate of each |
| | | hit fragment |
| +-------------------------+-----------------------------------+
| | match_num | match, number of non-repeat |
| | | matches |
| +-------------------------+-----------------------------------+
| | mismatch_num | mismatch, number of mismatches |
| +-------------------------+-----------------------------------+
| | match_rep_num | rep. match, number of matches |
| | | that are part of repeats |
| +-------------------------+-----------------------------------+
| | n_num | N's, number of N bases |
| +-------------------------+-----------------------------------+
| | query_end | Q end, end coordinate of the last |
| +-------------------------+-----------------------------------+
| | | query fragment |
| | query_gap_num | Q gap bases, number of bases |
| | | inserted in query |
| +-------------------------+-----------------------------------+
| | query_gapopen_num | Q gap count, number of query gap |
| | | inserts |
| +-------------------------+-----------------------------------+
| | query_span_all | blockSizes, sizes of each |
| | | fragment |
| +-------------------------+-----------------------------------+
| | query_start | Q start, start coordinate of the |
| | | first query block |
| +-------------------------+-----------------------------------+
| | query_start_all | qStarts, start coordinate of each |
| | | query fragment |
| +-------------------------+-----------------------------------+
| | len [1] | block count, the number of blocks |
| | | in the alignment |
+----------------+-------------------------+-----------------------------------+
| HSPFragment | hit | hit sequence, if present |
| +-------------------------+-----------------------------------+
| | hit_strand | strand, hit sequence strand |
| +-------------------------+-----------------------------------+
| | query | query sequence, if present |
| +-------------------------+-----------------------------------+
| | query_strand | strand, query sequence strand |
+----------------+-------------------------+-----------------------------------+
In addition to the column mappings above, BlatIO also provides the following
object attributes:
+----------------+-------------------------+-----------------------------------+
| Object | Attribute | Value |
+================+=========================+===================================+
| HSP | gapopen_num | Q gap count + T gap count, total |
| | | number of gap openings |
| +-------------------------+-----------------------------------+
| | ident_num | matches + repmatches, total |
| | | number of identical residues |
| +-------------------------+-----------------------------------+
| | ident_pct | percent identity, calculated |
| | | using UCSC's formula |
| +-------------------------+-----------------------------------+
| | query_is_protein | boolean, whether the query |
| | | sequence is a protein |
| +-------------------------+-----------------------------------+
| | score | HSP score, calculated using |
| | | UCSC's formula |
+----------------+-------------------------+-----------------------------------+
Finally, the default HSP and HSPFragment properties are also provided. See the
HSP and HSPFragment documentation for more details on these properties.
.. [1] You can obtain the number of blocks / fragments in the HSP by invoking
``len`` on the HSP
"""
import re
from math import log
from Bio._py3k import _as_bytes, _bytes_to_string
from Bio._py3k import zip
from Bio.Alphabet import generic_dna
from Bio.SearchIO._index import SearchIndexer
from Bio.SearchIO._model import QueryResult, Hit, HSP, HSPFragment
__all__ = ['BlatPslParser', 'BlatPslIndexer', 'BlatPslWriter']
# precompile regex patterns
_PTR_ROW_CHECK = r'^\d+\s+\d+\s+\d+\s+\d+'
_RE_ROW_CHECK = re.compile(_PTR_ROW_CHECK)
_RE_ROW_CHECK_IDX = re.compile(_as_bytes(_PTR_ROW_CHECK))
def _list_from_csv(csv_string, caster=None):
"""Transforms the given comma-separated string into a list.
:param csv_string: comma-separated input string
:type csv_string: string
:param caster: function used to cast each item in the input string
to its intended type
:type caster: callable, accepts string, returns object
"""
if caster is None:
return [x for x in csv_string.split(',') if x]
else:
return [caster(x) for x in csv_string.split(',') if x]
def _reorient_starts(starts, blksizes, seqlen, strand):
"""Reorients block starts into the opposite strand's coordinates.
:param starts: start coordinates
:type starts: list [int]
:param blksizes: block sizes
:type blksizes: list [int]
:param seqlen: sequence length
:type seqlen: int
:param strand: sequence strand
:type strand: int, choice of -1, 0, or 1
"""
assert len(starts) == len(blksizes), \
"Unequal start coordinates and block sizes list (%r vs %r)" \
% (len(starts), len(blksizes))
# see: http://genome.ucsc.edu/goldenPath/help/blatSpec.html
# no need to reorient if it's already the positive strand
if strand >= 0:
return starts
else:
# the plus-oriented coordinate is calculated by this:
# plus_coord = length - minus_coord - block_size
return [seqlen - start - blksize for
start, blksize in zip(starts, blksizes)]
def _is_protein(psl):
# check if query is protein or not
# adapted from http://genome.ucsc.edu/FAQ/FAQblat.html#blat4
if len(psl['strand']) == 2:
if psl['strand'][1] == '+':
return psl['tend'] == psl['tstarts'][-1] + \
3 * psl['blocksizes'][-1]
elif psl['strand'][1] == '-':
return psl['tstart'] == psl['tsize'] - \
(psl['tstarts'][-1] + 3 * psl['blocksizes'][-1])
return False
def _calc_millibad(psl, is_protein):
# calculates millibad
# adapted from http://genome.ucsc.edu/FAQ/FAQblat.html#blat4
size_mul = 3 if is_protein else 1
millibad = 0
qali_size = size_mul * (psl['qend'] - psl['qstart'])
tali_size = psl['tend'] - psl['tstart']
ali_size = min(qali_size, tali_size)
if ali_size <= 0:
return 0
size_dif = qali_size - tali_size
size_dif = 0 if size_dif < 0 else size_dif
total = size_mul * (psl['matches'] + psl['repmatches'] + psl['mismatches'])
if total != 0:
millibad = (1000 * (psl['mismatches'] * size_mul + psl['qnuminsert'] +
round(3 * log(1 + size_dif)))) / total
return millibad
def _calc_score(psl, is_protein):
# calculates score
# adapted from http://genome.ucsc.edu/FAQ/FAQblat.html#blat4
size_mul = 3 if is_protein else 1
return size_mul * (psl['matches'] + (psl['repmatches'] >> 1)) - \
size_mul * psl['mismatches'] - psl['qnuminsert'] - psl['tnuminsert']
def _create_hsp(hid, qid, psl):
# protein flag
is_protein = _is_protein(psl)
# strand
# if query is protein, strand is 0
if is_protein:
qstrand = 0
else:
qstrand = 1 if psl['strand'][0] == '+' else -1
# try to get hit strand, if it exists
try:
hstrand = 1 if psl['strand'][1] == '+' else -1
except IndexError:
hstrand = 1 # hit strand defaults to plus
# query block starts
qstarts = _reorient_starts(psl['qstarts'],
psl['blocksizes'], psl['qsize'], qstrand)
# hit block starts
if len(psl['strand']) == 2:
hstarts = _reorient_starts(psl['tstarts'],
psl['blocksizes'], psl['tsize'], hstrand)
else:
hstarts = psl['tstarts']
# set query and hit coords
# this assumes each block has no gaps (which seems to be the case)
assert len(qstarts) == len(hstarts) == len(psl['blocksizes'])
query_range_all = list(zip(qstarts, [x + y for x, y in
zip(qstarts, psl['blocksizes'])]))
hit_range_all = list(zip(hstarts, [x + y for x, y in
zip(hstarts, psl['blocksizes'])]))
# check length of sequences and coordinates, all must match
if 'tseqs' in psl and 'qseqs' in psl:
assert len(psl['tseqs']) == len(psl['qseqs']) == \
len(query_range_all) == len(hit_range_all)
else:
assert len(query_range_all) == len(hit_range_all)
frags = []
# iterating over query_range_all, but hit_range_all works just as well
for idx, qcoords in enumerate(query_range_all):
hseqlist = psl.get('tseqs')
hseq = '' if not hseqlist else hseqlist[idx]
qseqlist = psl.get('qseqs')
qseq = '' if not qseqlist else qseqlist[idx]
frag = HSPFragment(hid, qid, hit=hseq, query=qseq)
# set alphabet
frag.alphabet = generic_dna
# set coordinates
frag.query_start = qcoords[0]
frag.query_end = qcoords[1]
frag.hit_start = hit_range_all[idx][0]
frag.hit_end = hit_range_all[idx][1]
# and strands
frag.query_strand = qstrand
frag.hit_strand = hstrand
frags.append(frag)
# create hsp object
hsp = HSP(frags)
# check if start and end are set correctly
assert hsp.query_start == psl['qstart']
assert hsp.query_end == psl['qend']
assert hsp.hit_start == psl['tstart']
assert hsp.hit_end == psl['tend']
# and check block spans as well
assert hsp.query_span_all == hsp.hit_span_all == psl['blocksizes']
# set its attributes
hsp.match_num = psl['matches']
hsp.mismatch_num = psl['mismatches']
hsp.match_rep_num = psl['repmatches']
hsp.n_num = psl['ncount']
hsp.query_gapopen_num = psl['qnuminsert']
hsp.query_gap_num = psl['qbaseinsert']
hsp.hit_gapopen_num = psl['tnuminsert']
hsp.hit_gap_num = psl['tbaseinsert']
hsp.ident_num = psl['matches'] + psl['repmatches']
hsp.gapopen_num = psl['qnuminsert'] + psl['tnuminsert']
hsp.gap_num = psl['qbaseinsert'] + psl['tbaseinsert']
hsp.query_is_protein = is_protein
hsp.ident_pct = 100.0 - _calc_millibad(psl, is_protein) * 0.1
hsp.score = _calc_score(psl, is_protein)
# helper flag, for writing
hsp._has_hit_strand = len(psl['strand']) == 2
return hsp
class BlatPslParser(object):
"""Parser for the BLAT PSL format."""
def __init__(self, handle, pslx=False):
self.handle = handle
self.line = self.handle.readline()
self.pslx = pslx
def __iter__(self):
# break out if it's an empty file
if not self.line:
raise StopIteration
# read through header
# this assumes that the result row match the regex
while not re.search(_RE_ROW_CHECK, self.line.strip()):
self.line = self.handle.readline()
if not self.line:
raise StopIteration
# parse into query results
for qresult in self._parse_qresult():
qresult.program = 'blat'
yield qresult
def _parse_row(self):
"""Returns a dictionary of parsed column values."""
assert self.line
cols = [x for x in self.line.strip().split('\t') if x]
self._validate_cols(cols)
psl = {}
psl['qname'] = cols[9] # qName
psl['qsize'] = int(cols[10]) # qSize
psl['tname'] = cols[13] # tName
psl['tsize'] = int(cols[14]) # tSize
psl['matches'] = int(cols[0]) # matches
psl['mismatches'] = int(cols[1]) # misMatches
psl['repmatches'] = int(cols[2]) # repMatches
psl['ncount'] = int(cols[3]) # nCount
psl['qnuminsert'] = int(cols[4]) # qNumInsert
psl['qbaseinsert'] = int(cols[5]) # qBaseInsert
psl['tnuminsert'] = int(cols[6]) # tNumInsert
psl['tbaseinsert'] = int(cols[7]) # tBaseInsert
psl['strand'] = cols[8] # strand
psl['qstart'] = int(cols[11]) # qStart
psl['qend'] = int(cols[12]) # qEnd
psl['tstart'] = int(cols[15]) # tStart
psl['tend'] = int(cols[16]) # tEnd
psl['blockcount'] = int(cols[17]) # blockCount
psl['blocksizes'] = _list_from_csv(cols[18], int) # blockSizes
psl['qstarts'] = _list_from_csv(cols[19], int) # qStarts
psl['tstarts'] = _list_from_csv(cols[20], int) # tStarts
if self.pslx:
psl['qseqs'] = _list_from_csv(cols[21]) # query sequence
psl['tseqs'] = _list_from_csv(cols[22]) # hit sequence
return psl
def _validate_cols(self, cols):
if not self.pslx:
assert len(cols) == 21, "Invalid PSL line: %r. " \
"Expected 21 tab-separated columns, found %i" % (self.line, len(cols))
else:
assert len(cols) == 23, "Invalid PSLX line: %r. " \
"Expected 23 tab-separated columns, found %i" % (self.line, len(cols))
def _parse_qresult(self):
"""Generator function that returns QueryResult objects."""
# state values, determines what to do for each line
state_EOF = 0
state_QRES_NEW = 1
state_QRES_SAME = 3
state_HIT_NEW = 2
state_HIT_SAME = 4
# initial dummy values
qres_state = None
file_state = None
cur_qid, cur_hid = None, None
prev_qid, prev_hid = None, None
cur, prev = None, None
hit_list, hsp_list = [], []
while True:
# store previous line's parsed values for all lines after the first
if cur is not None:
prev = cur
prev_qid = cur_qid
prev_hid = cur_hid
# only parse the result row if it's not EOF
if self.line:
cur = self._parse_row()
cur_qid = cur['qname']
cur_hid = cur['tname']
else:
file_state = state_EOF
# mock values, since we have nothing to parse
cur_qid, cur_hid = None, None
# get the state of hit and qresult
if prev_qid != cur_qid:
qres_state = state_QRES_NEW
else:
qres_state = state_QRES_SAME
# new hits are hits with different ids or hits in a new qresult
if prev_hid != cur_hid or qres_state == state_QRES_NEW:
hit_state = state_HIT_NEW
else:
hit_state = state_HIT_SAME
if prev is not None:
# create fragment and HSP and set their attributes
hsp = _create_hsp(prev_hid, prev_qid, prev)
hsp_list.append(hsp)
if hit_state == state_HIT_NEW:
# create Hit and set its attributes
hit = Hit(hsp_list)
hit.seq_len = prev['tsize']
hit_list.append(hit)
hsp_list = []
# create qresult and yield if we're at a new qresult or at EOF
if qres_state == state_QRES_NEW or file_state == state_EOF:
qresult = QueryResult(id=prev_qid)
for hit in hit_list:
qresult.absorb(hit)
qresult.seq_len = prev['qsize']
yield qresult
# if we're at EOF, break
if file_state == state_EOF:
break
hit_list = []
self.line = self.handle.readline()
class BlatPslIndexer(SearchIndexer):
"""Indexer class for BLAT PSL output."""
_parser = BlatPslParser
def __init__(self, filename, pslx=False):
SearchIndexer.__init__(self, filename, pslx=pslx)
def __iter__(self):
"""Iterates over the file handle; yields key, start offset, and length."""
handle = self._handle
handle.seek(0)
# denotes column location for query identifier
query_id_idx = 9
qresult_key = None
tab_char = _as_bytes('\t')
start_offset = handle.tell()
line = handle.readline()
# read through header
# this assumes that the result row match the regex
while not re.search(_RE_ROW_CHECK_IDX, line.strip()):
start_offset = handle.tell()
line = handle.readline()
if not line:
raise StopIteration
# and index the qresults
while True:
end_offset = handle.tell()
cols = [x for x in line.strip().split(tab_char) if x]
if qresult_key is None:
qresult_key = cols[query_id_idx]
else:
curr_key = cols[query_id_idx]
if curr_key != qresult_key:
yield _bytes_to_string(qresult_key), start_offset, \
end_offset - start_offset
qresult_key = curr_key
start_offset = end_offset - len(line)
line = handle.readline()
if not line:
yield _bytes_to_string(qresult_key), start_offset, \
end_offset - start_offset
break
def get_raw(self, offset):
"""Returns raw bytes string of a QueryResult object from the given offset."""
handle = self._handle
handle.seek(offset)
query_id_idx = 9
qresult_key = None
qresult_raw = _as_bytes('')
tab_char = _as_bytes('\t')
while True:
line = handle.readline()
if not line:
break
cols = [x for x in line.strip().split(tab_char) if x]
if qresult_key is None:
qresult_key = cols[query_id_idx]
else:
curr_key = cols[query_id_idx]
if curr_key != qresult_key:
break
qresult_raw += line
return qresult_raw
class BlatPslWriter(object):
"""Writer for the blat-psl format."""
def __init__(self, handle, header=False, pslx=False):
self.handle = handle
# flag for writing header or not
self.header = header
self.pslx = pslx
def write_file(self, qresults):
handle = self.handle
qresult_counter, hit_counter, hsp_counter, frag_counter = 0, 0, 0, 0
if self.header:
handle.write(self._build_header())
for qresult in qresults:
if qresult:
handle.write(self._build_row(qresult))
qresult_counter += 1
hit_counter += len(qresult)
hsp_counter += sum(len(hit) for hit in qresult)
frag_counter += sum(len(hit.fragments) for hit in qresult)
return qresult_counter, hit_counter, hsp_counter, frag_counter
def _build_header(self):
# for now, always use the psLayout version 3
header = 'psLayout version 3\n'
# adapted from BLAT's source: lib/psl.c#L496
header += "\nmatch\tmis- \trep. \tN's\tQ gap\tQ gap\tT gap\tT "
"gap\tstrand\tQ \tQ \tQ \tQ \tT \tT \tT "
"\tT \tblock\tblockSizes \tqStarts\t tStarts\n " \
"\tmatch\tmatch\t \tcount\tbases\tcount\tbases\t \tname "
"\tsize\tstart\tend\tname \tsize\tstart\tend\tcount"
"\n%s\n" % ('-' * 159)
return header
def _build_row(self, qresult):
"""Returns a string or one row or more of the QueryResult object."""
# For now, our writer writes the row according to the order in
# the QueryResult and Hit objects.
# This is different from BLAT's native output, where the rows are
# grouped by strand.
# Should we tweak the behavior to better mimic the native output?
qresult_lines = []
for hit in qresult:
for hsp in hit.hsps:
line = []
line.append(hsp.match_num)
line.append(hsp.mismatch_num)
line.append(hsp.match_rep_num)
line.append(hsp.n_num)
line.append(hsp.query_gapopen_num)
line.append(hsp.query_gap_num)
line.append(hsp.hit_gapopen_num)
line.append(hsp.hit_gap_num)
# check spans
assert hsp.query_span_all == hsp.hit_span_all
block_sizes = hsp.query_span_all
# set strand and starts
if hsp[0].query_strand >= 0: # since it may be a protein seq
strand = '+'
else:
strand = '-'
qstarts = _reorient_starts([x[0] for x in hsp.query_range_all],
hsp.query_span_all, qresult.seq_len, hsp[0].query_strand)
if hsp[0].hit_strand == 1:
hstrand = 1
# only write hit strand if it was present in the source file
if hsp._has_hit_strand:
strand += '+'
else:
hstrand = -1
strand += '-'
hstarts = _reorient_starts([x[0] for x in hsp.hit_range_all],
hsp.hit_span_all, hit.seq_len, hstrand)
line.append(strand)
line.append(qresult.id)
line.append(qresult.seq_len)
line.append(hsp.query_start)
line.append(hsp.query_end)
line.append(hit.id)
line.append(hit.seq_len)
line.append(hsp.hit_start)
line.append(hsp.hit_end)
line.append(len(hsp))
line.append(','.join((str(x) for x in block_sizes)) + ',')
line.append(','.join((str(x) for x in qstarts)) + ',')
line.append(','.join((str(x) for x in hstarts)) + ',')
if self.pslx:
line.append(','.join((str(x.seq) for x in hsp.query_all)) + ',')
line.append(','.join((str(x.seq) for x in hsp.hit_all)) + ',')
qresult_lines.append('\t'.join((str(x) for x in line)))
return '\n'.join(qresult_lines) + '\n'
# if not used as a module, run the doctest
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|