File: SeqRecord.py

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 46,856 kB
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (1159 lines) | stat: -rw-r--r-- 48,092 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
# Copyright 2000-2002 Andrew Dalke.
# Copyright 2002-2004 Brad Chapman.
# Copyright 2006-2010 by Peter Cock.
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
"""Represent a Sequence Record, a sequence with annotation."""


from Bio._py3k import basestring

# NEEDS TO BE SYNCH WITH THE REST OF BIOPYTHON AND BIOPERL
# In particular, the SeqRecord and BioSQL.BioSeq.DBSeqRecord classes
# need to be in sync (this is the BioSQL "Database SeqRecord", see
# also BioSQL.BioSeq.DBSeq which is the "Database Seq" class)

_NO_SEQRECORD_COMPARISON = "SeqRecord comparison is deliberately not implemented. Explicitly compare the attributes of interest."


class _RestrictedDict(dict):
    """Dict which only allows sequences of given length as values (PRIVATE).

    This simple subclass of the Python dictionary is used in the SeqRecord
    object for holding per-letter-annotations.  This class is intended to
    prevent simple errors by only allowing python sequences (e.g. lists,
    strings and tuples) to be stored, and only if their length matches that
    expected (the length of the SeqRecord's seq object).  It cannot however
    prevent the entries being edited in situ (for example appending entries
    to a list).

    >>> x = _RestrictedDict(5)
    >>> x["test"] = "hello"
    >>> x
    {'test': 'hello'}

    Adding entries which don't have the expected length are blocked:

    >>> x["test"] = "hello world"
    Traceback (most recent call last):
    ...
    TypeError: We only allow python sequences (lists, tuples or strings) of length 5.

    The expected length is stored as a private attribute,

    >>> x._length
    5

    In order that the SeqRecord (and other objects using this class) can be
    pickled, for example for use in the multiprocessing library, we need to
    be able to pickle the restricted dictionary objects.

    Using the default protocol, which is 0 on Python 2.x,

    >>> import pickle
    >>> y = pickle.loads(pickle.dumps(x))
    >>> y
    {'test': 'hello'}
    >>> y._length
    5

    Using the highest protocol, which is 2 on Python 2.x,

    >>> import pickle
    >>> z = pickle.loads(pickle.dumps(x, pickle.HIGHEST_PROTOCOL))
    >>> z
    {'test': 'hello'}
    >>> z._length
    5
    """

    def __init__(self, length):
        """Create an EMPTY restricted dictionary."""
        dict.__init__(self)
        self._length = int(length)

    def __setitem__(self, key, value):
        # The check hasattr(self, "_length") is to cope with pickle protocol 2
        # I couldn't seem to avoid this with __getstate__ and __setstate__
        if not hasattr(value, "__len__") or not hasattr(value, "__getitem__") \
                or (hasattr(self, "_length") and len(value) != self._length):
            raise TypeError("We only allow python sequences (lists, tuples or "
                            "strings) of length {0}.".format(self._length))
        dict.__setitem__(self, key, value)

    def update(self, new_dict):
        # Force this to go via our strict __setitem__ method
        for (key, value) in new_dict.items():
            self[key] = value


class SeqRecord(object):
    """A SeqRecord object holds a sequence and information about it.

    Main attributes:
        - id          - Identifier such as a locus tag (string)
        - seq         - The sequence itself (Seq object or similar)

    Additional attributes:
        - name        - Sequence name, e.g. gene name (string)
        - description - Additional text (string)
        - dbxrefs     - List of database cross references (list of strings)
        - features    - Any (sub)features defined (list of SeqFeature objects)
        - annotations - Further information about the whole sequence (dictionary).
          Most entries are strings, or lists of strings.
        - letter_annotations - Per letter/symbol annotation (restricted
          dictionary). This holds Python sequences (lists, strings
          or tuples) whose length matches that of the sequence.
          A typical use would be to hold a list of integers
          representing sequencing quality scores, or a string
          representing the secondary structure.

    You will typically use Bio.SeqIO to read in sequences from files as
    SeqRecord objects.  However, you may want to create your own SeqRecord
    objects directly (see the __init__ method for further details):

    >>> from Bio.Seq import Seq
    >>> from Bio.SeqRecord import SeqRecord
    >>> from Bio.Alphabet import IUPAC
    >>> record = SeqRecord(Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF",
    ...                         IUPAC.protein),
    ...                    id="YP_025292.1", name="HokC",
    ...                    description="toxic membrane protein")
    >>> print(record)
    ID: YP_025292.1
    Name: HokC
    Description: toxic membrane protein
    Number of features: 0
    Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())

    If you want to save SeqRecord objects to a sequence file, use Bio.SeqIO
    for this.  For the special case where you want the SeqRecord turned into
    a string in a particular file format there is a format method which uses
    Bio.SeqIO internally:

    >>> print(record.format("fasta"))
    >YP_025292.1 toxic membrane protein
    MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF
    <BLANKLINE>

    You can also do things like slicing a SeqRecord, checking its length, etc

    >>> len(record)
    44
    >>> edited = record[:10] + record[11:]
    >>> print(edited.seq)
    MKQHKAMIVAIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF
    >>> print(record.seq)
    MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF

    """

    def __init__(self, seq, id="<unknown id>", name="<unknown name>",
                 description="<unknown description>", dbxrefs=None,
                 features=None, annotations=None,
                 letter_annotations=None):
        """Create a SeqRecord.

        Arguments:
            - seq         - Sequence, required (Seq, MutableSeq or UnknownSeq)
            - id          - Sequence identifier, recommended (string)
            - name        - Sequence name, optional (string)
            - description - Sequence description, optional (string)
            - dbxrefs     - Database cross references, optional (list of strings)
            - features    - Any (sub)features, optional (list of SeqFeature objects)
            - annotations - Dictionary of annotations for the whole sequence
            - letter_annotations - Dictionary of per-letter-annotations, values
              should be strings, list or tuples of the same
              length as the full sequence.

        You will typically use Bio.SeqIO to read in sequences from files as
        SeqRecord objects.  However, you may want to create your own SeqRecord
        objects directly.

        Note that while an id is optional, we strongly recommend you supply a
        unique id string for each record.  This is especially important
        if you wish to write your sequences to a file.

        If you don't have the actual sequence, but you do know its length,
        then using the UnknownSeq object from Bio.Seq is appropriate.

        You can create a 'blank' SeqRecord object, and then populate the
        attributes later.
        """
        if id is not None and not isinstance(id, basestring):
            # Lots of existing code uses id=None... this may be a bad idea.
            raise TypeError("id argument should be a string")
        if not isinstance(name, basestring):
            raise TypeError("name argument should be a string")
        if not isinstance(description, basestring):
            raise TypeError("description argument should be a string")
        self._seq = seq
        self.id = id
        self.name = name
        self.description = description

        # database cross references (for the whole sequence)
        if dbxrefs is None:
            dbxrefs = []
        elif not isinstance(dbxrefs, list):
            raise TypeError("dbxrefs argument should be a list (of strings)")
        self.dbxrefs = dbxrefs

        # annotations about the whole sequence
        if annotations is None:
            annotations = {}
        elif not isinstance(annotations, dict):
            raise TypeError("annotations argument should be a dict")
        self.annotations = annotations

        if letter_annotations is None:
            # annotations about each letter in the sequence
            if seq is None:
                # Should we allow this and use a normal unrestricted dict?
                self._per_letter_annotations = _RestrictedDict(length=0)
            else:
                try:
                    self._per_letter_annotations = \
                        _RestrictedDict(length=len(seq))
                except:
                    raise TypeError("seq argument should be a Seq object or similar")
        else:
            # This will be handled via the property set function, which will
            # turn this into a _RestrictedDict and thus ensure all the values
            # in the dict are the right length
            self.letter_annotations = letter_annotations

        # annotations about parts of the sequence
        if features is None:
            features = []
        elif not isinstance(features, list):
            raise TypeError("features argument should be a list (of SeqFeature objects)")
        self.features = features

    # TODO - Just make this a read only property?
    def _set_per_letter_annotations(self, value):
        if not isinstance(value, dict):
            raise TypeError("The per-letter-annotations should be a "
                            "(restricted) dictionary.")
        # Turn this into a restricted-dictionary (and check the entries)
        try:
            self._per_letter_annotations = _RestrictedDict(length=len(self.seq))
        except AttributeError:
            # e.g. seq is None
            self._per_letter_annotations = _RestrictedDict(length=0)
        self._per_letter_annotations.update(value)
    letter_annotations = property(
        fget=lambda self: self._per_letter_annotations,
        fset=_set_per_letter_annotations,
        doc="""Dictionary of per-letter-annotation for the sequence.

        For example, this can hold quality scores used in FASTQ or QUAL files.
        Consider this example using Bio.SeqIO to read in an example Solexa
        variant FASTQ file as a SeqRecord:

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Quality/solexa_faked.fastq", "fastq-solexa")
        >>> print("%s %s" % (record.id, record.seq))
        slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
        >>> print(list(record.letter_annotations))
        ['solexa_quality']
        >>> print(record.letter_annotations["solexa_quality"])
        [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]

        The letter_annotations get sliced automatically if you slice the
        parent SeqRecord, for example taking the last ten bases:

        >>> sub_record = record[-10:]
        >>> print("%s %s" % (sub_record.id, sub_record.seq))
        slxa_0001_1_0001_01 ACGTNNNNNN
        >>> print(sub_record.letter_annotations["solexa_quality"])
        [4, 3, 2, 1, 0, -1, -2, -3, -4, -5]

        Any python sequence (i.e. list, tuple or string) can be recorded in
        the SeqRecord's letter_annotations dictionary as long as the length
        matches that of the SeqRecord's sequence.  e.g.

        >>> len(sub_record.letter_annotations)
        1
        >>> sub_record.letter_annotations["dummy"] = "abcdefghij"
        >>> len(sub_record.letter_annotations)
        2

        You can delete entries from the letter_annotations dictionary as usual:

        >>> del sub_record.letter_annotations["solexa_quality"]
        >>> sub_record.letter_annotations
        {'dummy': 'abcdefghij'}

        You can completely clear the dictionary easily as follows:

        >>> sub_record.letter_annotations = {}
        >>> sub_record.letter_annotations
        {}

        Note that if replacing the record's sequence with a sequence of a
        different length you must first clear the letter_annotations dict.
        """)

    def _set_seq(self, value):
        # TODO - Add a deprecation warning that the seq should be write only?
        if self._per_letter_annotations:
            if len(self) != len(value):
                # TODO - Make this a warning? Silently empty the dictionary?
                raise ValueError("You must empty the letter annotations first!")
            else:
                # Leave the existing per letter annotations unchanged:
                self._seq = value
        else:
            self._seq = value
            # Reset the (empty) letter annotations dict with new length:
            try:
                self._per_letter_annotations = _RestrictedDict(length=len(self.seq))
            except AttributeError:
                # e.g. seq is None
                self._per_letter_annotations = _RestrictedDict(length=0)

    seq = property(fget=lambda self: self._seq,
                   fset=_set_seq,
                   doc="The sequence itself, as a Seq or MutableSeq object.")

    def __getitem__(self, index):
        """Returns a sub-sequence or an individual letter.

        Slicing, e.g. my_record[5:10], returns a new SeqRecord for
        that sub-sequence with appropriate annotation preserved.  The
        name, id and description are kept.

        Any per-letter-annotations are sliced to match the requested
        sub-sequence.  Unless a stride is used, all those features
        which fall fully within the subsequence are included (with
        their locations adjusted accordingly).

        However, the annotations dictionary and the dbxrefs list are
        not used for the new SeqRecord, as in general they may not
        apply to the subsequence.  If you want to preserve them, you
        must explicitly copy them to the new SeqRecord yourself.

        Using an integer index, e.g. my_record[5] is shorthand for
        extracting that letter from the sequence, my_record.seq[5].

        For example, consider this short protein and its secondary
        structure as encoded by the PDB (e.g. H for alpha helices),
        plus a simple feature for its histidine self phosphorylation
        site:

        >>> from Bio.Seq import Seq
        >>> from Bio.SeqRecord import SeqRecord
        >>> from Bio.SeqFeature import SeqFeature, FeatureLocation
        >>> from Bio.Alphabet import IUPAC
        >>> rec = SeqRecord(Seq("MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLAT"
        ...                     "EMMSEQDGYLAESINKDIEECNAIIEQFIDYLR",
        ...                     IUPAC.protein),
        ...                 id="1JOY", name="EnvZ",
        ...                 description="Homodimeric domain of EnvZ from E. coli")
        >>> rec.letter_annotations["secondary_structure"] = "  S  SSSSSSHHHHHTTTHHHHHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHHHHHHHTT  "
        >>> rec.features.append(SeqFeature(FeatureLocation(20, 21),
        ...                     type = "Site"))

        Now let's have a quick look at the full record,

        >>> print(rec)
        ID: 1JOY
        Name: EnvZ
        Description: Homodimeric domain of EnvZ from E. coli
        Number of features: 1
        Per letter annotation for: secondary_structure
        Seq('MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE...YLR', IUPACProtein())
        >>> rec.letter_annotations["secondary_structure"]
        '  S  SSSSSSHHHHHTTTHHHHHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHHHHHHHTT  '
        >>> print(rec.features[0].location)
        [20:21]

        Now let's take a sub sequence, here chosen as the first (fractured)
        alpha helix which includes the histidine phosphorylation site:

        >>> sub = rec[11:41]
        >>> print(sub)
        ID: 1JOY
        Name: EnvZ
        Description: Homodimeric domain of EnvZ from E. coli
        Number of features: 1
        Per letter annotation for: secondary_structure
        Seq('RTLLMAGVSHDLRTPLTRIRLATEMMSEQD', IUPACProtein())
        >>> sub.letter_annotations["secondary_structure"]
        'HHHHHTTTHHHHHHHHHHHHHHHHHHHHHH'
        >>> print(sub.features[0].location)
        [9:10]

        You can also of course omit the start or end values, for
        example to get the first ten letters only:

        >>> print(rec[:10])
        ID: 1JOY
        Name: EnvZ
        Description: Homodimeric domain of EnvZ from E. coli
        Number of features: 0
        Per letter annotation for: secondary_structure
        Seq('MAAGVKQLAD', IUPACProtein())

        Or for the last ten letters:

        >>> print(rec[-10:])
        ID: 1JOY
        Name: EnvZ
        Description: Homodimeric domain of EnvZ from E. coli
        Number of features: 0
        Per letter annotation for: secondary_structure
        Seq('IIEQFIDYLR', IUPACProtein())

        If you omit both, then you get a copy of the original record (although
        lacking the annotations and dbxrefs):

        >>> print(rec[:])
        ID: 1JOY
        Name: EnvZ
        Description: Homodimeric domain of EnvZ from E. coli
        Number of features: 1
        Per letter annotation for: secondary_structure
        Seq('MAAGVKQLADDRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEE...YLR', IUPACProtein())

        Finally, indexing with a simple integer is shorthand for pulling out
        that letter from the sequence directly:

        >>> rec[5]
        'K'
        >>> rec.seq[5]
        'K'
        """
        if isinstance(index, int):
            # NOTE - The sequence level annotation like the id, name, etc
            # do not really apply to a single character.  However, should
            # we try and expose any per-letter-annotation here?  If so how?
            return self.seq[index]
        elif isinstance(index, slice):
            if self.seq is None:
                raise ValueError("If the sequence is None, we cannot slice it.")
            parent_length = len(self)
            from BioSQL.BioSeq import DBSeqRecord
            if isinstance(self, DBSeqRecord):
                answer = SeqRecord(self.seq[index],
                                        id=self.id,
                                        name=self.name,
                                        description=self.description)
            else:
                answer = self.__class__(self.seq[index],
                                        id=self.id,
                                        name=self.name,
                                        description=self.description)
            # TODO - The description may no longer apply.
            # It would be safer to change it to something
            # generic like "edited" or the default value.

            # Don't copy the annotation dict and dbxefs list,
            # they may not apply to a subsequence.
            # answer.annotations = dict(self.annotations.items())
            # answer.dbxrefs = self.dbxrefs[:]
            # TODO - Review this in light of adding SeqRecord objects?

            # TODO - Cope with strides by generating ambiguous locations?
            start, stop, step = index.indices(parent_length)
            if step == 1:
                # Select relevant features, add them with shifted locations
                # assert str(self.seq)[index] == str(self.seq)[start:stop]
                for f in self.features:
                    if f.ref or f.ref_db:
                        # TODO - Implement this (with lots of tests)?
                        import warnings
                        warnings.warn("When slicing SeqRecord objects, any "
                                      "SeqFeature referencing other sequences (e.g. "
                                      "from segmented GenBank records) are ignored.")
                        continue
                    if start <= f.location.nofuzzy_start \
                            and f.location.nofuzzy_end <= stop:
                        answer.features.append(f._shift(-start))

            # Slice all the values to match the sliced sequence
            # (this should also work with strides, even negative strides):
            for key, value in self.letter_annotations.items():
                answer._per_letter_annotations[key] = value[index]

            return answer
        raise ValueError("Invalid index")

    def __iter__(self):
        """Iterate over the letters in the sequence.

        For example, using Bio.SeqIO to read in a protein FASTA file:

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Fasta/loveliesbleeding.pro", "fasta")
        >>> for amino in record:
        ...     print(amino)
        ...     if amino == "L": break
        X
        A
        G
        L
        >>> print(record.seq[3])
        L

        This is just a shortcut for iterating over the sequence directly:

        >>> for amino in record.seq:
        ...     print(amino)
        ...     if amino == "L": break
        X
        A
        G
        L
        >>> print(record.seq[3])
        L

        Note that this does not facilitate iteration together with any
        per-letter-annotation.  However, you can achieve that using the
        python zip function on the record (or its sequence) and the relevant
        per-letter-annotation:

        >>> from Bio import SeqIO
        >>> rec = SeqIO.read("Quality/solexa_faked.fastq", "fastq-solexa")
        >>> print("%s %s" % (rec.id, rec.seq))
        slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
        >>> print(list(rec.letter_annotations))
        ['solexa_quality']
        >>> for nuc, qual in zip(rec, rec.letter_annotations["solexa_quality"]):
        ...     if qual > 35:
        ...         print("%s %i" % (nuc, qual))
        A 40
        C 39
        G 38
        T 37
        A 36

        You may agree that using zip(rec.seq, ...) is more explicit than using
        zip(rec, ...) as shown above.
        """
        return iter(self.seq)

    def __contains__(self, char):
        """Implements the 'in' keyword, searches the sequence.

        e.g.

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Fasta/sweetpea.nu", "fasta")
        >>> "GAATTC" in record
        False
        >>> "AAA" in record
        True

        This essentially acts as a proxy for using "in" on the sequence:

        >>> "GAATTC" in record.seq
        False
        >>> "AAA" in record.seq
        True

        Note that you can also use Seq objects as the query,

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_dna
        >>> Seq("AAA") in record
        True
        >>> Seq("AAA", generic_dna) in record
        True

        See also the Seq object's __contains__ method.
        """
        return char in self.seq

    def __str__(self):
        """A human readable summary of the record and its annotation (string).

        The python built in function str works by calling the object's ___str__
        method.  e.g.

        >>> from Bio.Seq import Seq
        >>> from Bio.SeqRecord import SeqRecord
        >>> from Bio.Alphabet import IUPAC
        >>> record = SeqRecord(Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF",
        ...                         IUPAC.protein),
        ...                    id="YP_025292.1", name="HokC",
        ...                    description="toxic membrane protein, small")
        >>> print(str(record))
        ID: YP_025292.1
        Name: HokC
        Description: toxic membrane protein, small
        Number of features: 0
        Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())

        In this example you don't actually need to call str explicity, as the
        print command does this automatically:

        >>> print(record)
        ID: YP_025292.1
        Name: HokC
        Description: toxic membrane protein, small
        Number of features: 0
        Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())

        Note that long sequences are shown truncated.
        """
        lines = []
        if self.id:
            lines.append("ID: {0}".format(self.id))
        if self.name:
            lines.append("Name: {0}".format(self.name))
        if self.description:
            lines.append("Description: {0}".format(self.description))
        if self.dbxrefs:
            lines.append("Database cross-references: " + ", ".join(self.dbxrefs))
        lines.append("Number of features: {0}".format(len(self.features)))
        for a in self.annotations:
            lines.append("/{0}={1}".format(a, str(self.annotations[a])))
        if self.letter_annotations:
            lines.append("Per letter annotation for: " + ", ".join(self.letter_annotations))
        # Don't want to include the entire sequence,
        # and showing the alphabet is useful:
        lines.append(repr(self.seq))
        return "\n".join(lines)

    def __repr__(self):
        """A concise summary of the record for debugging (string).

        The python built in function repr works by calling the object's ___repr__
        method.  e.g.

        >>> from Bio.Seq import Seq
        >>> from Bio.SeqRecord import SeqRecord
        >>> from Bio.Alphabet import generic_protein
        >>> rec = SeqRecord(Seq("MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKAT"
        ...                    +"GEMKEQTEWHRVVLFGKLAEVASEYLRKGSQVYIEGQLRTRKWTDQ"
        ...                    +"SGQDRYTTEVVVNVGGTMQMLGGRQGGGAPAGGNIGGGQPQGGWGQ"
        ...                    +"PQQPQGGNQFSGGAQSRPQQSAPAAPSNEPPMDFDDDIPF",
        ...                    generic_protein),
        ...                 id="NP_418483.1", name="b4059",
        ...                 description="ssDNA-binding protein",
        ...                 dbxrefs=["ASAP:13298", "GI:16131885", "GeneID:948570"])
        >>> print(repr(rec))
        SeqRecord(seq=Seq('MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEMKEQTE...IPF', ProteinAlphabet()), id='NP_418483.1', name='b4059', description='ssDNA-binding protein', dbxrefs=['ASAP:13298', 'GI:16131885', 'GeneID:948570'])

        At the python prompt you can also use this shorthand:

        >>> rec
        SeqRecord(seq=Seq('MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKATGEMKEQTE...IPF', ProteinAlphabet()), id='NP_418483.1', name='b4059', description='ssDNA-binding protein', dbxrefs=['ASAP:13298', 'GI:16131885', 'GeneID:948570'])

        Note that long sequences are shown truncated. Also note that any
        annotations, letter_annotations and features are not shown (as they
        would lead to a very long string).
        """
        return "{0}(seq={1!r}, id={2!r}, name={3!r}, description={4!r}, dbxrefs={5!r})".format(
               self.__class__.__name__,
               self.seq, self.id, self.name,
               self.description, self.dbxrefs)

    def format(self, format):
        r"""Returns the record as a string in the specified file format.

        The format should be a lower case string supported as an output
        format by Bio.SeqIO, which is used to turn the SeqRecord into a
        string.  e.g.

        >>> from Bio.Seq import Seq
        >>> from Bio.SeqRecord import SeqRecord
        >>> from Bio.Alphabet import IUPAC
        >>> record = SeqRecord(Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF",
        ...                         IUPAC.protein),
        ...                    id="YP_025292.1", name="HokC",
        ...                    description="toxic membrane protein")
        >>> record.format("fasta")
        '>YP_025292.1 toxic membrane protein\nMKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF\n'
        >>> print(record.format("fasta"))
        >YP_025292.1 toxic membrane protein
        MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF
        <BLANKLINE>

        The python print command automatically appends a new line, meaning
        in this example a blank line is shown.  If you look at the string
        representation you can see there is a trailing new line (shown as
        slash n) which is important when writing to a file or if
        concatenating multiple sequence strings together.

        Note that this method will NOT work on every possible file format
        supported by Bio.SeqIO (e.g. some are for multiple sequences only).
        """
        # See also the __format__ added for Python 2.6 / 3.0, PEP 3101
        # See also the Bio.Align.Generic.Alignment class and its format()
        return self.__format__(format)

    def __format__(self, format_spec):
        """Returns the record as a string in the specified file format.

        This method supports the python format() function added in
        Python 2.6/3.0.  The format_spec should be a lower case string
        supported by Bio.SeqIO as an output file format. See also the
        SeqRecord's format() method.

        Under Python 3 please note that for binary formats a bytes
        string is returned, otherwise a (unicode) string is returned.
        """
        if not format_spec:
            # Follow python convention and default to using __str__
            return str(self)
        from Bio import SeqIO
        if format_spec in SeqIO._BinaryFormats:
            # Return bytes on Python 3
            from io import BytesIO
            handle = BytesIO()
        else:
            from Bio._py3k import StringIO
            handle = StringIO()
        SeqIO.write(self, handle, format_spec)
        return handle.getvalue()

    def __len__(self):
        """Returns the length of the sequence.

        For example, using Bio.SeqIO to read in a FASTA nucleotide file:

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Fasta/sweetpea.nu", "fasta")
        >>> len(record)
        309
        >>> len(record.seq)
        309
        """
        return len(self.seq)

    def __lt__(self, other):
        raise NotImplementedError(_NO_SEQRECORD_COMPARISON)

    def __le___(self, other):
        raise NotImplementedError(_NO_SEQRECORD_COMPARISON)

    def __eq__(self, other):
        raise NotImplementedError(_NO_SEQRECORD_COMPARISON)

    def __ne__(self, other):
        raise NotImplementedError(_NO_SEQRECORD_COMPARISON)

    def __gt__(self, other):
        raise NotImplementedError(_NO_SEQRECORD_COMPARISON)

    def __ge__(self, other):
        raise NotImplementedError(_NO_SEQRECORD_COMPARISON)

    # Note Python 3 does not use __cmp__ and there is no need to
    # define __cmp__ on Python 2 as have all of  _lt__ etc defined.

    # Python 3:
    def __bool__(self):
        """Boolean value of an instance of this class (True).

        This behaviour is for backwards compatibility, since until the
        __len__ method was added, a SeqRecord always evaluated as True.

        Note that in comparison, a Seq object will evaluate to False if it
        has a zero length sequence.

        WARNING: The SeqRecord may in future evaluate to False when its
        sequence is of zero length (in order to better match the Seq
        object behaviour)!
        """
        return True

    # Python 2:
    __nonzero__ = __bool__

    def __add__(self, other):
        """Add another sequence or string to this sequence.

        The other sequence can be a SeqRecord object, a Seq object (or
        similar, e.g. a MutableSeq) or a plain Python string. If you add
        a plain string or a Seq (like) object, the new SeqRecord will simply
        have this appended to the existing data. However, any per letter
        annotation will be lost:

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Quality/solexa_faked.fastq", "fastq-solexa")
        >>> print("%s %s" % (record.id, record.seq))
        slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
        >>> print(list(record.letter_annotations))
        ['solexa_quality']

        >>> new = record + "ACT"
        >>> print("%s %s" % (new.id, new.seq))
        slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNNACT
        >>> print(list(new.letter_annotations))
        []

        The new record will attempt to combine the annotation, but for any
        ambiguities (e.g. different names) it defaults to omitting that
        annotation.

        >>> from Bio import SeqIO
        >>> with open("GenBank/pBAD30.gb") as handle:
        ...     plasmid = SeqIO.read(handle, "gb")
        >>> print("%s %i" % (plasmid.id, len(plasmid)))
        pBAD30 4923

        Now let's cut the plasmid into two pieces, and join them back up the
        other way round (i.e. shift the starting point on this plasmid, have
        a look at the annotated features in the original file to see why this
        particular split point might make sense):

        >>> left = plasmid[:3765]
        >>> right = plasmid[3765:]
        >>> new = right + left
        >>> print("%s %i" % (new.id, len(new)))
        pBAD30 4923
        >>> str(new.seq) == str(right.seq + left.seq)
        True
        >>> len(new.features) == len(left.features) + len(right.features)
        True

        When we add the left and right SeqRecord objects, their annotation
        is all consistent, so it is all conserved in the new SeqRecord:

        >>> new.id == left.id == right.id == plasmid.id
        True
        >>> new.name == left.name == right.name == plasmid.name
        True
        >>> new.description == plasmid.description
        True
        >>> new.annotations == left.annotations == right.annotations
        True
        >>> new.letter_annotations == plasmid.letter_annotations
        True
        >>> new.dbxrefs == left.dbxrefs == right.dbxrefs
        True

        However, we should point out that when we sliced the SeqRecord,
        any annotations dictionary or dbxrefs list entries were lost.
        You can explicitly copy them like this:

        >>> new.annotations = plasmid.annotations.copy()
        >>> new.dbxrefs = plasmid.dbxrefs[:]
        """
        if not isinstance(other, SeqRecord):
            # Assume it is a string or a Seq.
            # Note can't transfer any per-letter-annotations
            return SeqRecord(self.seq + other,
                             id=self.id, name=self.name,
                             description=self.description,
                             features=self.features[:],
                             annotations=self.annotations.copy(),
                             dbxrefs=self.dbxrefs[:])
        # Adding two SeqRecord objects... must merge annotation.
        answer = SeqRecord(self.seq + other.seq,
                           features=self.features[:],
                           dbxrefs=self.dbxrefs[:])
        # Will take all the features and all the db cross refs,
        l = len(self)
        for f in other.features:
            answer.features.append(f._shift(l))
        del l
        for ref in other.dbxrefs:
            if ref not in answer.dbxrefs:
                answer.dbxrefs.append(ref)
        # Take common id/name/description/annotation
        if self.id == other.id:
            answer.id = self.id
        if self.name == other.name:
            answer.name = self.name
        if self.description == other.description:
            answer.description = self.description
        for k, v in self.annotations.items():
            if k in other.annotations and other.annotations[k] == v:
                answer.annotations[k] = v
        # Can append matching per-letter-annotation
        for k, v in self.letter_annotations.items():
            if k in other.letter_annotations:
                answer.letter_annotations[k] = v + other.letter_annotations[k]
        return answer

    def __radd__(self, other):
        """Add another sequence or string to this sequence (from the left).

        This method handles adding a Seq object (or similar, e.g. MutableSeq)
        or a plain Python string (on the left) to a SeqRecord (on the right).
        See the __add__ method for more details, but for example:

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Quality/solexa_faked.fastq", "fastq-solexa")
        >>> print("%s %s" % (record.id, record.seq))
        slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
        >>> print(list(record.letter_annotations))
        ['solexa_quality']

        >>> new = "ACT" + record
        >>> print("%s %s" % (new.id, new.seq))
        slxa_0001_1_0001_01 ACTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
        >>> print(list(new.letter_annotations))
        []
        """
        if isinstance(other, SeqRecord):
            raise RuntimeError("This should have happened via the __add__ of "
                               "the other SeqRecord being added!")
        # Assume it is a string or a Seq.
        # Note can't transfer any per-letter-annotations
        offset = len(other)
        return SeqRecord(other + self.seq,
                         id=self.id, name=self.name,
                         description=self.description,
                         features=[f._shift(offset) for f in self.features],
                         annotations=self.annotations.copy(),
                         dbxrefs=self.dbxrefs[:])

    def upper(self):
        """Returns a copy of the record with an upper case sequence.

        All the annotation is preserved unchanged. e.g.

        >>> from Bio.Alphabet import generic_dna
        >>> from Bio.Seq import Seq
        >>> from Bio.SeqRecord import SeqRecord
        >>> record = SeqRecord(Seq("acgtACGT", generic_dna), id="Test",
        ...                    description = "Made up for this example")
        >>> record.letter_annotations["phred_quality"] = [1, 2, 3, 4, 5, 6, 7, 8]
        >>> print(record.upper().format("fastq"))
        @Test Made up for this example
        ACGTACGT
        +
        "#$%&'()
        <BLANKLINE>

        Naturally, there is a matching lower method:

        >>> print(record.lower().format("fastq"))
        @Test Made up for this example
        acgtacgt
        +
        "#$%&'()
        <BLANKLINE>
        """
        return SeqRecord(self.seq.upper(),
                         id=self.id, name=self.name,
                         description=self.description,
                         dbxrefs=self.dbxrefs[:],
                         features=self.features[:],
                         annotations=self.annotations.copy(),
                         letter_annotations=self.letter_annotations.copy())

    def lower(self):
        """Returns a copy of the record with a lower case sequence.

        All the annotation is preserved unchanged. e.g.

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Fasta/aster.pro", "fasta")
        >>> print(record.format("fasta"))
        >gi|3298468|dbj|BAA31520.1| SAMIPF
        GGHVNPAVTFGAFVGGNITLLRGIVYIIAQLLGSTVACLLLKFVTNDMAVGVFSLSAGVG
        VTNALVFEIVMTFGLVYTVYATAIDPKKGSLGTIAPIAIGFIVGANI
        <BLANKLINE>
        >>> print(record.lower().format("fasta"))
        >gi|3298468|dbj|BAA31520.1| SAMIPF
        gghvnpavtfgafvggnitllrgivyiiaqllgstvaclllkfvtndmavgvfslsagvg
        vtnalvfeivmtfglvytvyataidpkkgslgtiapiaigfivgani
        <BLANKLINE>

        To take a more annotation rich example,

        >>> from Bio import SeqIO
        >>> old = SeqIO.read("EMBL/TRBG361.embl", "embl")
        >>> len(old.features)
        3
        >>> new = old.lower()
        >>> len(old.features) == len(new.features)
        True
        >>> old.annotations["organism"] == new.annotations["organism"]
        True
        >>> old.dbxrefs == new.dbxrefs
        True
        """
        return SeqRecord(self.seq.lower(),
                         id=self.id, name=self.name,
                         description=self.description,
                         dbxrefs=self.dbxrefs[:],
                         features=self.features[:],
                         annotations=self.annotations.copy(),
                         letter_annotations=self.letter_annotations.copy())

    def reverse_complement(self, id=False, name=False, description=False,
                           features=True, annotations=False,
                           letter_annotations=True, dbxrefs=False):
        """Returns new SeqRecord with reverse complement sequence.

        You can specify the returned record's id, name and description as
        strings, or True to keep that of the parent, or False for a default.

        You can specify the returned record's features with a list of
        SeqFeature objects, or True to keep that of the parent, or False to
        omit them. The default is to keep the original features (with the
        strand and locations adjusted).

        You can also specify both the returned record's annotations and
        letter_annotations as dictionaries, True to keep that of the parent,
        or False to omit them. The default is to keep the original
        annotations (with the letter annotations reversed).

        To show what happens to the pre-letter annotations, consider an
        example Solexa variant FASTQ file with a single entry, which we'll
        read in as a SeqRecord:

        >>> from Bio import SeqIO
        >>> record = SeqIO.read("Quality/solexa_faked.fastq", "fastq-solexa")
        >>> print("%s %s" % (record.id, record.seq))
        slxa_0001_1_0001_01 ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTNNNNNN
        >>> print(list(record.letter_annotations))
        ['solexa_quality']
        >>> print(record.letter_annotations["solexa_quality"])
        [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]

        Now take the reverse complement,

        >>> rc_record = record.reverse_complement(id=record.id+"_rc")
        >>> print("%s %s" % (rc_record.id, rc_record.seq))
        slxa_0001_1_0001_01_rc NNNNNNACGTACGTACGTACGTACGTACGTACGTACGTACGTACGT

        Notice that the per-letter-annotations have also been reversed,
        although this may not be appropriate for all cases.

        >>> print(rc_record.letter_annotations["solexa_quality"])
        [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]

        Now for the features, we need a different example. Parsing a GenBank
        file is probably the easiest way to get an nice example with features
        in it...

        >>> from Bio import SeqIO
        >>> with open("GenBank/pBAD30.gb") as handle:
        ...     plasmid = SeqIO.read(handle, "gb")
        >>> print("%s %i" % (plasmid.id, len(plasmid)))
        pBAD30 4923
        >>> plasmid.seq
        Seq('GCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGA...ATG', IUPACAmbiguousDNA())
        >>> len(plasmid.features)
        13

        Now, let's take the reverse complement of this whole plasmid:

        >>> rc_plasmid = plasmid.reverse_complement(id=plasmid.id+"_rc")
        >>> print("%s %i" % (rc_plasmid.id, len(rc_plasmid)))
        pBAD30_rc 4923
        >>> rc_plasmid.seq
        Seq('CATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCA...AGC', IUPACAmbiguousDNA())
        >>> len(rc_plasmid.features)
        13

        Let's compare the first CDS feature - it has gone from being the
        second feature (index 1) to the second last feature (index -2), its
        strand has changed, and the location switched round.

        >>> print(plasmid.features[1])
        type: CDS
        location: [1081:1960](-)
        qualifiers:
            Key: label, Value: ['araC']
            Key: note, Value: ['araC regulator of the arabinose BAD promoter']
            Key: vntifkey, Value: ['4']
        <BLANKLINE>
        >>> print(rc_plasmid.features[-2])
        type: CDS
        location: [2963:3842](+)
        qualifiers:
            Key: label, Value: ['araC']
            Key: note, Value: ['araC regulator of the arabinose BAD promoter']
            Key: vntifkey, Value: ['4']
        <BLANKLINE>

        You can check this new location, based on the length of the plasmid:

        >>> len(plasmid) - 1081
        3842
        >>> len(plasmid) - 1960
        2963

        Note that if the SeqFeature annotation includes any strand specific
        information (e.g. base changes for a SNP), this information is not
        amended, and would need correction after the reverse complement.

        Note trying to reverse complement a protein SeqRecord raises an
        exception:

        >>> from Bio.SeqRecord import SeqRecord
        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> protein_rec = SeqRecord(Seq("MAIVMGR", IUPAC.protein), id="Test")
        >>> protein_rec.reverse_complement()
        Traceback (most recent call last):
           ...
        ValueError: Proteins do not have complements!

        Also note you can reverse complement a SeqRecord using a MutableSeq:

        >>> from Bio.SeqRecord import SeqRecord
        >>> from Bio.Seq import MutableSeq
        >>> from Bio.Alphabet import generic_dna
        >>> rec = SeqRecord(MutableSeq("ACGT", generic_dna), id="Test")
        >>> rec.seq[0] = "T"
        >>> print("%s %s" % (rec.id, rec.seq))
        Test TCGT
        >>> rc = rec.reverse_complement(id=True)
        >>> print("%s %s" % (rc.id, rc.seq))
        Test ACGA
        """
        from Bio.Seq import MutableSeq  # Lazy to avoid circular imports
        if isinstance(self.seq, MutableSeq):
            # Currently the MutableSeq reverse complement is in situ
            answer = SeqRecord(self.seq.toseq().reverse_complement())
        else:
            answer = SeqRecord(self.seq.reverse_complement())
        if isinstance(id, basestring):
            answer.id = id
        elif id:
            answer.id = self.id
        if isinstance(name, basestring):
            answer.name = name
        elif name:
            answer.name = self.name
        if isinstance(description, basestring):
            answer.description = description
        elif description:
            answer.description = self.description
        if isinstance(dbxrefs, list):
            answer.dbxrefs = dbxrefs
        elif dbxrefs:
            # Copy the old dbxrefs
            answer.dbxrefs = self.dbxrefs[:]
        if isinstance(features, list):
            answer.features = features
        elif features:
            # Copy the old features, adjusting location and string
            l = len(answer)
            answer.features = [f._flip(l) for f in self.features]
            # The old list should have been sorted by start location,
            # reversing it will leave it sorted by what is now the end position,
            # so we need to resort in case of overlapping features.
            # NOTE - In the common case of gene before CDS (and similar) with
            # the exact same locations, this will still maintain gene before CDS
            answer.features.sort(key=lambda x: x.location.start.position)
        if isinstance(annotations, dict):
            answer.annotations = annotations
        elif annotations:
            # Copy the old annotations,
            answer.annotations = self.annotations.copy()
        if isinstance(letter_annotations, dict):
            answer.letter_annotations = letter_annotations
        elif letter_annotations:
            # Copy the old per letter annotations, reversing them
            for key, value in self.letter_annotations.items():
                answer._per_letter_annotations[key] = value[::-1]
        return answer


if __name__ == "__main__":
    from Bio._utils import run_doctest
    run_doctest()