File: __init__.py

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 46,856 kB
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (689 lines) | stat: -rw-r--r-- 23,884 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# Copyright 2000-2009 by Iddo Friedberg.  All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
#
# Iddo Friedberg idoerg@cc.huji.ac.il

"""Substitution matrices, log odds matrices, and operations on them.

General:
--------

This module provides a class and a few routines for generating
substitution matrices, similar ot BLOSUM or PAM matrices, but based on
user-provided data.
The class used for these matrices is SeqMat

Matrices are implemented as a dictionary. Each index contains a 2-tuple,
which are the two residue/nucleotide types replaced. The value differs
according to the matrix's purpose: e.g in a log-odds frequency matrix, the
value would be log(Pij/(Pi*Pj)) where:
Pij: frequency of substitution of letter (residue/nucleotide) i by j
Pi, Pj: expected frequencies of i and j, respectively.

Usage:
------
The following section is laid out in the order by which most people wish
to generate a log-odds matrix. Of course, interim matrices can be
generated and investigated. Most people just want a log-odds matrix,
that's all.

Generating an Accepted Replacement Matrix:
------------------------------------------
Initially, you should generate an accepted replacement matrix (ARM)
from your data. The values in ARM are the _counted_ number of
replacements according to your data. The data could be a set of pairs
or multiple alignments. So for instance if Alanine was replaced by
Cysteine 10 times, and Cysteine by Alanine 12 times, the corresponding
ARM entries would be:
['A','C']: 10,
['C','A'] 12
As order doesn't matter, user can already provide only one entry:
['A','C']: 22
A SeqMat instance may be initialized with either a full (first
method of counting: 10, 12) or half (the latter method, 22) matrix. A
Full protein alphabet matrix would be of the size 20x20 = 400. A Half
matrix of that alphabet would be 20x20/2 + 20/2 = 210. That is because
same-letter entries don't change. (The matrix diagonal). Given an
alphabet size of N:
Full matrix size:N*N
Half matrix size: N(N+1)/2

If you provide a full matrix, the constructor will create a half-matrix
automatically.
If you provide a half-matrix, make sure of a (low, high) sorted order in
the keys: there should only be
a ('A','C') not a ('C','A').

Internal functions:

Generating the observed frequency matrix (OFM):
-----------------------------------------------
Use: OFM = _build_obs_freq_mat(ARM)
The OFM is generated from the ARM, only instead of replacement counts, it
contains replacement frequencies.

Generating an expected frequency matrix (EFM):
----------------------------------------------
Use: EFM = _build_exp_freq_mat(OFM,exp_freq_table)
exp_freq_table: should be a freqTableC instantiation. See freqTable.py for
detailed information. Briefly, the expected frequency table has the
frequencies of appearance for each member of the alphabet

Generating a substitution frequency matrix (SFM):
-------------------------------------------------
Use: SFM = _build_subs_mat(OFM,EFM)
Accepts an OFM, EFM. Provides the division product of the corresponding
values.

Generating a log-odds matrix (LOM):
-----------------------------------
Use: LOM=_build_log_odds_mat(SFM[,logbase=10,factor=10.0,roundit=1])
Accepts an SFM. logbase: base of the logarithm used to generate the
log-odds values. factor: factor used to multiply the log-odds values.
roundit: default - true. Whether to round the values.
Each entry is generated by log(LOM[key])*factor
And rounded if required.

External:
---------
In most cases, users will want to generate a log-odds matrix only, without
explicitly calling the OFM --> EFM --> SFM stages. The function
build_log_odds_matrix does that. User provides an ARM and an expected
frequency table. The function returns the log-odds matrix.

Methods for subtraction, addition and multiplication of matrices:
-----------------------------------------------------------------
* Generation of an expected frequency table from an observed frequency
  matrix.
* Calculation of linear correlation coefficient between two matrices.
* Calculation of relative entropy is now done using the
  _make_relative_entropy method and is stored in the member
  self.relative_entropy
* Calculation of entropy is now done using the _make_entropy method and
  is stored in the member self.entropy.
* Jensen-Shannon distance between the distributions from which the
  matrices are derived. This is a distance function based on the
  distribution's entropies.
"""


from __future__ import print_function

import re
import sys
import copy
import math
import warnings

# BioPython imports
import Bio
from Bio import Alphabet
from Bio.SubsMat import FreqTable


log = math.log
# Matrix types
NOTYPE = 0
ACCREP = 1
OBSFREQ = 2
SUBS = 3
EXPFREQ = 4
LO = 5
EPSILON = 0.00000000000001


class SeqMat(dict):
    """A Generic sequence matrix class
    The key is a 2-tuple containing the letter indices of the matrix. Those
    should be sorted in the tuple (low, high). Because each matrix is dealt
    with as a half-matrix."""

    def _alphabet_from_matrix(self):
        ab_dict = {}
        s = ''
        for i in self:
            ab_dict[i[0]] = 1
            ab_dict[i[1]] = 1
        for i in sorted(ab_dict):
            s += i
        self.alphabet.letters = s

    def __init__(self, data=None, alphabet=None, mat_name='', build_later=0):
        # User may supply:
        # data: matrix itself
        # mat_name: its name. See below.
        # alphabet: an instance of Bio.Alphabet, or a subclass. If not
        # supplied, constructor builds its own from that matrix.
        # build_later: skip the matrix size assertion. User will build the
        # matrix after creating the instance. Constructor builds a half matrix
        # filled with zeroes.

        assert isinstance(mat_name, str)

        # "data" may be:
        # 1) None --> then self.data is an empty dictionary
        # 2) type({}) --> then self takes the items in data
        # 3) An instance of SeqMat
        # This whole creation-during-execution is done to avoid changing
        # default values, the way Python does because default values are
        # created when the function is defined, not when it is created.
        if data:
            try:
                self.update(data)
            except ValueError:
                raise ValueError("Failed to store data in a dictionary")
        if alphabet is None:
            alphabet = Alphabet.Alphabet()
        assert Alphabet.generic_alphabet.contains(alphabet)
        self.alphabet = alphabet

        # If passed alphabet is empty, use the letters in the matrix itself
        if not self.alphabet.letters:
            self._alphabet_from_matrix()
        # Assert matrix size: half or full
        if not build_later:
            N = len(self.alphabet.letters)
            assert len(self) == N ** 2 or len(self) == N * (N + 1) / 2
        self.ab_list = list(self.alphabet.letters)
        self.ab_list.sort()
        # Names: a string like "BLOSUM62" or "PAM250"
        self.mat_name = mat_name
        if build_later:
            self._init_zero()
        else:
            # Convert full to half
            self._full_to_half()
            self._correct_matrix()
        self.sum_letters = {}
        self.relative_entropy = 0

    def _correct_matrix(self):
        for key in self:
            if key[0] > key[1]:
                self[(key[1], key[0])] = self[key]
                del self[key]

    def _full_to_half(self):
        """
        Convert a full-matrix to a half-matrix
        """
        # For instance: two entries ('A','C'):13 and ('C','A'):20 will be summed
        # into ('A','C'): 33 and the index ('C','A') will be deleted
        # alphabet.letters:('A','A') and ('C','C') will remain the same.

        N = len(self.alphabet.letters)
        # Do nothing if this is already a half-matrix
        if len(self) == N * (N + 1) / 2:
            return
        for i in self.ab_list:
            for j in self.ab_list[:self.ab_list.index(i) + 1]:
                if i != j:
                    self[j, i] = self[j, i] + self[i, j]
                    del self[i, j]

    def _init_zero(self):
        for i in self.ab_list:
            for j in self.ab_list[:self.ab_list.index(i) + 1]:
                self[j, i] = 0.

    def make_entropy(self):
        self.entropy = 0
        for i in self:
            if self[i] > EPSILON:
                self.entropy += self[i] * log(self[i]) / log(2)
        self.entropy = -self.entropy

    def sum(self):
        result = {}
        for letter in self.alphabet.letters:
            result[letter] = 0.0
        for pair, value in self.items():
            i1, i2 = pair
            if i1 == i2:
                result[i1] += value
            else:
                result[i1] += value / 2
                result[i2] += value / 2
        return result

    def print_full_mat(self, f=None, format="%4d", topformat="%4s",
                alphabet=None, factor=1, non_sym=None):
        f = f or sys.stdout
        # create a temporary dictionary, which holds the full matrix for
        # printing
        assert non_sym is None or isinstance(non_sym, float) or \
        isinstance(non_sym, int)
        full_mat = copy.copy(self)
        for i in self:
            if i[0] != i[1]:
                full_mat[(i[1], i[0])] = full_mat[i]
        if not alphabet:
            alphabet = self.ab_list
        topline = ''
        for i in alphabet:
            topline = topline + topformat % i
        topline = topline + '\n'
        f.write(topline)
        for i in alphabet:
            outline = i
            for j in alphabet:
                if alphabet.index(j) > alphabet.index(i) and non_sym is not None:
                    val = non_sym
                else:
                    val = full_mat[i, j]
                    val *= factor
                if val <= -999:
                    cur_str = '  ND'
                else:
                    cur_str = format % val

                outline = outline + cur_str
            outline = outline + '\n'
            f.write(outline)

    def print_mat(self, f=None, format="%4d", bottomformat="%4s",
                alphabet=None, factor=1):
        """Print a nice half-matrix. f=sys.stdout to see on the screen
        User may pass own alphabet, which should contain all letters in the
        alphabet of the matrix, but may be in a different order. This
        order will be the order of the letters on the axes"""

        f = f or sys.stdout
        if not alphabet:
            alphabet = self.ab_list
        bottomline = ''
        for i in alphabet:
            bottomline = bottomline + bottomformat % i
        bottomline = bottomline + '\n'
        for i in alphabet:
            outline = i
            for j in alphabet[:alphabet.index(i) + 1]:
                try:
                    val = self[j, i]
                except KeyError:
                    val = self[i, j]
                val *= factor
                if val == -999:
                    cur_str = '  ND'
                else:
                    cur_str = format % val

                outline = outline + cur_str
            outline = outline + '\n'
            f.write(outline)
        f.write(bottomline)

    def __str__(self):
        """Print a nice half-matrix."""
        output = ""
        alphabet = self.ab_list
        n = len(alphabet)
        for i in range(n):
            c1 = alphabet[i]
            output += c1
            for j in range(i + 1):
                c2 = alphabet[j]
                try:
                    val = self[c2, c1]
                except KeyError:
                    val = self[c1, c2]
                if val == -999:
                    output += '  ND'
                else:
                    output += "%4d" % val
            output += '\n'
        output += '%4s' * n % tuple(alphabet) + "\n"
        return output

    def __sub__(self, other):
        """ returns a number which is the subtraction product of the two matrices"""
        mat_diff = 0
        for i in self:
            mat_diff += (self[i] - other[i])
        return mat_diff

    def __mul__(self, other):
        """ returns a matrix for which each entry is the multiplication product of the
        two matrices passed"""
        new_mat = copy.copy(self)
        for i in self:
            new_mat[i] *= other[i]
        return new_mat

    def __add__(self, other):
        new_mat = copy.copy(self)
        for i in self:
            new_mat[i] += other[i]
        return new_mat


class AcceptedReplacementsMatrix(SeqMat):
    """Accepted replacements matrix"""


class ObservedFrequencyMatrix(SeqMat):
    """Observed frequency matrix"""


class ExpectedFrequencyMatrix(SeqMat):
    """Expected frequency matrix"""


class SubstitutionMatrix(SeqMat):
    """Substitution matrix"""

    def calculate_relative_entropy(self, obs_freq_mat):
        """Calculate and return the relative entropy with respect to an
        observed frequency matrix"""
        relative_entropy = 0.
        for key, value in self.items():
            if value > EPSILON:
                relative_entropy += obs_freq_mat[key] * log(value)
        relative_entropy /= log(2)
        return relative_entropy


class LogOddsMatrix(SeqMat):
    """Log odds matrix"""

    def calculate_relative_entropy(self, obs_freq_mat):
        """Calculate and return the relative entropy with respect to an
        observed frequency matrix"""
        relative_entropy = 0.
        for key, value in self.items():
            relative_entropy += obs_freq_mat[key] * value / log(2)
        return relative_entropy


def _build_obs_freq_mat(acc_rep_mat):
    """
    build_obs_freq_mat(acc_rep_mat):
    Build the observed frequency matrix, from an accepted replacements matrix
    The acc_rep_mat matrix should be generated by the user.
    """
    # Note: acc_rep_mat should already be a half_matrix!!
    total = float(sum(acc_rep_mat.values()))
    obs_freq_mat = ObservedFrequencyMatrix(alphabet=acc_rep_mat.alphabet,
                                           build_later=1)
    for i in acc_rep_mat:
        obs_freq_mat[i] = acc_rep_mat[i] / total
    return obs_freq_mat


def _exp_freq_table_from_obs_freq(obs_freq_mat):
    exp_freq_table = {}
    for i in obs_freq_mat.alphabet.letters:
        exp_freq_table[i] = 0.
    for i in obs_freq_mat:
        if i[0] == i[1]:
            exp_freq_table[i[0]] += obs_freq_mat[i]
        else:
            exp_freq_table[i[0]] += obs_freq_mat[i] / 2.
            exp_freq_table[i[1]] += obs_freq_mat[i] / 2.
    return FreqTable.FreqTable(exp_freq_table, FreqTable.FREQ)


def _build_exp_freq_mat(exp_freq_table):
    """Build an expected frequency matrix
    exp_freq_table: should be a FreqTable instance
    """
    exp_freq_mat = ExpectedFrequencyMatrix(alphabet=exp_freq_table.alphabet,
                                          build_later=1)
    for i in exp_freq_mat:
        if i[0] == i[1]:
            exp_freq_mat[i] = exp_freq_table[i[0]] ** 2
        else:
            exp_freq_mat[i] = 2.0 * exp_freq_table[i[0]] * exp_freq_table[i[1]]
    return exp_freq_mat


#
# Build the substitution matrix
#
def _build_subs_mat(obs_freq_mat, exp_freq_mat):
    """ Build the substitution matrix """
    if obs_freq_mat.ab_list != exp_freq_mat.ab_list:
        raise ValueError("Alphabet mismatch in passed matrices")
    subs_mat = SubstitutionMatrix(obs_freq_mat)
    for i in obs_freq_mat:
        subs_mat[i] = obs_freq_mat[i] / exp_freq_mat[i]
    return subs_mat


#
# Build a log-odds matrix
#
def _build_log_odds_mat(subs_mat, logbase=2, factor=10.0, round_digit=0, keep_nd=0):
    """_build_log_odds_mat(subs_mat,logbase=10,factor=10.0,round_digit=1):
    Build a log-odds matrix
    logbase=2: base of logarithm used to build (default 2)
    factor=10.: a factor by which each matrix entry is multiplied
    round_digit: roundoff place after decimal point
    keep_nd: if true, keeps the -999 value for non-determined values (for which there
    are no substitutions in the frequency substitutions matrix). If false, plants the
    minimum log-odds value of the matrix in entries containing -999
    """
    lo_mat = LogOddsMatrix(subs_mat)
    for key, value in subs_mat.items():
        if value < EPSILON:
            lo_mat[key] = -999
        else:
            lo_mat[key] = round(factor * log(value) / log(logbase), round_digit)
    mat_min = min(lo_mat.values())
    if not keep_nd:
        for i in lo_mat:
            if lo_mat[i] <= -999:
                lo_mat[i] = mat_min
    return lo_mat


#
# External function. User provides an accepted replacement matrix, and,
# optionally the following: expected frequency table, log base, mult. factor,
# and rounding factor. Generates a log-odds matrix, calling internal SubsMat
# functions.
#
def make_log_odds_matrix(acc_rep_mat, exp_freq_table=None, logbase=2,
                         factor=1., round_digit=9, keep_nd=0):
    obs_freq_mat = _build_obs_freq_mat(acc_rep_mat)
    if not exp_freq_table:
        exp_freq_table = _exp_freq_table_from_obs_freq(obs_freq_mat)
    exp_freq_mat = _build_exp_freq_mat(exp_freq_table)
    subs_mat = _build_subs_mat(obs_freq_mat, exp_freq_mat)
    lo_mat = _build_log_odds_mat(subs_mat, logbase, factor, round_digit, keep_nd)
    return lo_mat


def observed_frequency_to_substitution_matrix(obs_freq_mat):
    exp_freq_table = _exp_freq_table_from_obs_freq(obs_freq_mat)
    exp_freq_mat = _build_exp_freq_mat(exp_freq_table)
    subs_mat = _build_subs_mat(obs_freq_mat, exp_freq_mat)
    return subs_mat


def read_text_matrix(data_file):
    matrix = {}
    tmp = data_file.read().split("\n")
    table = []
    for i in tmp:
        table.append(i.split())
    # remove records beginning with ``#''
    for rec in table[:]:
        if (rec.count('#') > 0):
            table.remove(rec)

    # remove null lists
    while (table.count([]) > 0):
        table.remove([])
    # build a dictionary
    alphabet = table[0]
    j = 0
    for rec in table[1:]:
        # print(j)
        row = alphabet[j]
        # row = rec[0]
        if re.compile('[A-z\*]').match(rec[0]):
            first_col = 1
        else:
            first_col = 0
        i = 0
        for field in rec[first_col:]:
            col = alphabet[i]
            matrix[(row, col)] = float(field)
            i += 1
        j += 1
    # delete entries with an asterisk
    for i in matrix:
        if '*' in i:
            del(matrix[i])
    ret_mat = SeqMat(matrix)
    return ret_mat

diagNO = 1
diagONLY = 2
diagALL = 3


def two_mat_relative_entropy(mat_1, mat_2, logbase=2, diag=diagALL):
    rel_ent = 0.
    key_list_1 = sorted(mat_1)
    key_list_2 = sorted(mat_2)
    key_list = []
    sum_ent_1 = 0.
    sum_ent_2 = 0.
    for i in key_list_1:
        if i in key_list_2:
            key_list.append(i)
    if len(key_list_1) != len(key_list_2):
        sys.stderr.write("Warning: first matrix has more entries than the second\n")
    if key_list_1 != key_list_2:
        sys.stderr.write("Warning: indices not the same between matrices\n")
    for key in key_list:
        if diag == diagNO and key[0] == key[1]:
            continue
        if diag == diagONLY and key[0] != key[1]:
            continue
        if mat_1[key] > EPSILON and mat_2[key] > EPSILON:
            sum_ent_1 += mat_1[key]
            sum_ent_2 += mat_2[key]

    for key in key_list:
        if diag == diagNO and key[0] == key[1]:
            continue
        if diag == diagONLY and key[0] != key[1]:
            continue
        if mat_1[key] > EPSILON and mat_2[key] > EPSILON:
            val_1 = mat_1[key] / sum_ent_1
            val_2 = mat_2[key] / sum_ent_2
#            rel_ent += mat_1[key] * log(mat_1[key]/mat_2[key])/log(logbase)
            rel_ent += val_1 * log(val_1 / val_2) / log(logbase)
    return rel_ent


# Gives the linear correlation coefficient between two matrices
def two_mat_correlation(mat_1, mat_2):
    try:
        import numpy
    except ImportError:
        raise ImportError("Please install Numerical Python (numpy) if you want to use this function")
    values = []
    assert mat_1.ab_list == mat_2.ab_list
    for ab_pair in mat_1:
        try:
            values.append((mat_1[ab_pair], mat_2[ab_pair]))
        except KeyError:
            raise ValueError("%s is not a common key" % ab_pair)
    correlation_matrix = numpy.corrcoef(values, rowvar=0)
    correlation = correlation_matrix[0, 1]
    return correlation


# Jensen-Shannon Distance
# Need to input observed frequency matrices
def two_mat_DJS(mat_1, mat_2, pi_1=0.5, pi_2=0.5):
    assert mat_1.ab_list == mat_2.ab_list
    assert pi_1 > 0 and pi_2 > 0 and pi_1 < 1 and pi_2 < 1
    assert not (pi_1 + pi_2 - 1.0 > EPSILON)
    sum_mat = SeqMat(build_later=1)
    sum_mat.ab_list = mat_1.ab_list
    for i in mat_1:
        sum_mat[i] = pi_1 * mat_1[i] + pi_2 * mat_2[i]
    sum_mat.make_entropy()
    mat_1.make_entropy()
    mat_2.make_entropy()
    # print(mat_1.entropy, mat_2.entropy)
    dJS = sum_mat.entropy - pi_1 * mat_1.entropy - pi_2 * mat_2.entropy
    return dJS

"""
This isn't working yet. Boo hoo!
def two_mat_print(mat_1, mat_2, f=None, alphabet=None, factor_1=1, factor_2=1,
                  format="%4d", bottomformat="%4s", topformat="%4s",
                  topindent=7*" ", bottomindent=1*" "):
    f = f or sys.stdout
    if not alphabet:
        assert mat_1.ab_list == mat_2.ab_list
        alphabet = mat_1.ab_list
    len_alphabet = len(alphabet)
    print_mat = {}
    topline = topindent
    bottomline = bottomindent
    for i in alphabet:
        bottomline += bottomformat % i
        topline += topformat % alphabet[len_alphabet-alphabet.index(i)-1]
    topline += '\n'
    bottomline += '\n'
    f.write(topline)
    for i in alphabet:
        for j in alphabet:
            print_mat[i, j] = -999
    diag_1 = {}
    diag_2 = {}
    for i in alphabet:
        for j in alphabet[:alphabet.index(i)+1]:
            if i == j:
                diag_1[i] = mat_1[(i, i)]
                diag_2[i] = mat_2[(alphabet[len_alphabet-alphabet.index(i)-1],
                    alphabet[len_alphabet-alphabet.index(i)-1])]
            else:
                if i > j:
                    key = (j, i)
                else:
                    key = (i, j)
                mat_2_key = [alphabet[len_alphabet-alphabet.index(key[0])-1],
                    alphabet[len_alphabet-alphabet.index(key[1])-1]]
                # print(mat_2_key)
                mat_2_key.sort()
                mat_2_key = tuple(mat_2_key)
                # print("%s||%s" % (key, mat_2_key)
                print_mat[key] = mat_2[mat_2_key]
                print_mat[(key[1], key[0])] = mat_1[key]
    for i in alphabet:
        outline = i
        for j in alphabet:
            if i == j:
                if diag_1[i] == -999:
                    val_1 = ' ND'
                else:
                    val_1 = format % (diag_1[i]*factor_1)
                if diag_2[i] == -999:
                    val_2 = ' ND'
                else:
                    val_2 = format % (diag_2[i]*factor_2)
                cur_str = val_1 + "  " + val_2
            else:
                if print_mat[(i, j)] == -999:
                    val = ' ND'
                elif alphabet.index(i) > alphabet.index(j):
                    val = format % (print_mat[(i, j)]*factor_1)
                else:
                    val = format % (print_mat[(i, j)]*factor_2)
                cur_str = val
            outline += cur_str
        outline += bottomformat % (alphabet[len_alphabet-alphabet.index(i)-1] +
                                 '\n')
        f.write(outline)
    f.write(bottomline)
"""