1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
# Copyright 2013 by Zheng Ruan (zruan1991@gmail.com).
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Code for dealing with Codon Alignment.
"""
from __future__ import print_function
from Bio import BiopythonWarning
from Bio import BiopythonExperimentalWarning
try:
from itertools import izip
except ImportError:
izip = zip
# from itertools import izip
from Bio.SeqRecord import SeqRecord
from Bio.codonalign.codonseq import CodonSeq
from Bio.codonalign.codonalignment import CodonAlignment, mktest
from Bio.codonalign.codonalphabet import CodonAlphabet
from Bio.codonalign.codonalphabet import default_codon_table, default_codon_alphabet
from Bio.codonalign.codonalphabet import get_codon_alphabet as _get_codon_alphabet
import warnings
warnings.warn('Bio.codonalign is an experimental module which may undergo '
'significant changes prior to its future official release.',
BiopythonExperimentalWarning)
def build(pro_align, nucl_seqs, corr_dict=None, gap_char='-', unknown='X',
codon_table=default_codon_table, alphabet=None,
complete_protein=False, anchor_len=10, max_score=10):
"""Build a codon alignment from a protein alignment and
corresponding nucleotide sequences
Arguments:
- pro_align - a protein MultipleSeqAlignment object
- nucl_align - an object returned by SeqIO.parse or SeqIO.index
or a collection of SeqRecord.
- alphabet - alphabet for the returned codon alignment
- corr_dict - a dict that maps protein id to nucleotide id
- complete_protein - whether the sequence begins with a start
codon
- frameshift - whether to apply frameshift detection
Return a CodonAlignment object
>>> from Bio.Alphabet import IUPAC
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> seq1 = SeqRecord(Seq('TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG',
... alphabet=IUPAC.IUPACUnambiguousDNA()), id='pro1')
>>> seq2 = SeqRecord(Seq('TCAGGGACTTCGAGAACCAAGCGCTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG',
... alphabet=IUPAC.IUPACUnambiguousDNA()), id='pro2')
>>> pro1 = SeqRecord(Seq('SGTARTKLLLLLAALCAAGGALE', alphabet=IUPAC.protein),id='pro1')
>>> pro2 = SeqRecord(Seq('SGTSRTKRLLLLAALGAAGGALE', alphabet=IUPAC.protein),id='pro2')
>>> aln = MultipleSeqAlignment([pro1, pro2])
>>> codon_aln = build(aln, [seq1, seq2])
>>> print(codon_aln)
CodonAlphabet(Standard) CodonAlignment with 2 rows and 69 columns (23 codons)
TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGT...GAG pro1
TCAGGGACTTCGAGAACCAAGCG-CTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGT...GAG pro2
"""
# TODO
# add an option to allow the user to specify the returned object?
from Bio.Alphabet import ProteinAlphabet
from Bio.Align import MultipleSeqAlignment
# check the type of object of pro_align
if not isinstance(pro_align, MultipleSeqAlignment):
raise TypeError("the first argument should be a MultipleSeqAlignment "
"object")
# check the alphabet of pro_align
for pro in pro_align:
if not isinstance(pro.seq.alphabet, ProteinAlphabet):
raise TypeError("Alphabet Error!\nThe input alignment should be "
"a *PROTEIN* alignment")
if alphabet is None:
alphabet = _get_codon_alphabet(codon_table, gap_char=gap_char)
# check whether the number of seqs in pro_align and nucl_seqs is
# the same
pro_num = len(pro_align)
if corr_dict is None:
if nucl_seqs.__class__.__name__ == "generator":
# nucl_seqs will be a tuple if read by SeqIO.parse()
nucl_seqs = tuple(nucl_seqs)
nucl_num = len(nucl_seqs)
if pro_num > nucl_num:
raise ValueError("Higher Number of SeqRecords in Protein Alignment "
"({0}) than the Number of Nucleotide SeqRecords "
"({1}) are found!".format(pro_num, nucl_num))
# Determine the protein sequences and nucl sequences
# correspondence. If nucl_seqs is a list, tuple or read by
# SeqIO.parse(), we assume the order of sequences in pro_align
# and nucl_seqs are the same. If nucl_seqs is a dict or read by
# SeqIO.index(), we match seqs in pro_align and those in
# nucl_seq by their id.
if nucl_seqs.__class__.__name__ in ("_IndexedSeqFileDict", "dict"):
corr_method = 1
elif nucl_seqs.__class__.__name__ in ("list", "tuple"):
corr_method = 0
else:
raise TypeError("Nucl Sequences Error, Unknown type to assign "
"correspondence method")
else:
if not isinstance(corr_dict, dict):
raise TypeError("corr_dict should be a dict that corresponds "
"protein id to nucleotide id!")
if len(corr_dict) >= pro_num:
# read by SeqIO.parse()
if nucl_seqs.__class__.__name__ == "generator":
from Bio import SeqIO
nucl_seqs = SeqIO.to_dict(nucl_seqs)
elif nucl_seqs.__class__.__name__ in ("list", "tuple"):
nucl_seqs = dict((i.id, i) for i in nucl_seqs)
# nucl_seqs = {i.id: i for i in nucl_seqs}
elif nucl_seqs.__class__.__name__ in \
("_IndexedSeqFileDict", "dict"):
pass
else:
raise TypeError("Nucl Sequences Error, Unknown type of "
"Nucleotide Records!")
corr_method = 2
else:
raise RuntimeError("Number of items in corr_dict ({0}) is less "
"than number of protein records "
"({1})".format(len(corr_dict), pro_num))
# set up pro-nucl correspondence based on corr_method
# corr_method = 0, consecutive pairing
if corr_method == 0:
pro_nucl_pair = izip(pro_align, nucl_seqs)
# corr_method = 1, keyword pairing
elif corr_method == 1:
nucl_id = set(nucl_seqs.keys())
pro_id = set(i.id for i in pro_align)
# check if there is pro_id that does not have a nucleotide match
if pro_id - nucl_id:
diff = pro_id - nucl_id
raise ValueError("Protein Record {0} cannot find a nucleotide "
"sequence match, please check the "
"id".format(', '.join(diff)))
else:
pro_nucl_pair = []
for pro_rec in pro_align:
pro_nucl_pair.append((pro_rec, nucl_seqs[pro_rec.id]))
# corr_method = 2, dict pairing
elif corr_method == 2:
pro_nucl_pair = []
for pro_rec in pro_align:
try:
nucl_id = corr_dict[pro_rec.id]
except KeyError:
print("Protein record (%s) is not in corr_dict!" % pro_rec.id)
exit(1)
pro_nucl_pair.append((pro_rec, nucl_seqs[nucl_id]))
codon_aln = []
shift = False
for pair in pro_nucl_pair:
# Beware that the following span corresponds to an ungapped
# nucleotide sequence.
corr_span = _check_corr(pair[0], pair[1], gap_char=gap_char,
codon_table=codon_table,
complete_protein=complete_protein,
anchor_len=anchor_len)
if not corr_span:
raise ValueError("Protein Record {0} and Nucleotide Record {1} do"
" not match!".format((pair[0].id, pair[1].id)))
else:
codon_rec = _get_codon_rec(pair[0], pair[1], corr_span,
alphabet=alphabet,
complete_protein=False,
codon_table=codon_table,
max_score=max_score)
codon_aln.append(codon_rec)
if corr_span[1] == 2:
shift = True
if shift:
return CodonAlignment(_align_shift_recs(codon_aln), alphabet=alphabet)
else:
return CodonAlignment(codon_aln, alphabet=alphabet)
def _codons2re(codons):
"""Generate regular expression based on a given list of codons
"""
reg = ''
for i in izip(*codons):
if len(set(i)) == 1:
reg += ''.join(set(i))
else:
reg += '[' + ''.join(set(i)) + ']'
return reg
def _get_aa_regex(codon_table, stop='*', unknown='X'):
"""Set up the regular expression of a given CodonTable for
further use.
>>> from Bio.Data.CodonTable import generic_by_id
>>> p = generic_by_id[1]
>>> t = _get_aa_regex(p)
>>> print(t['A'][0])
G
>>> print(t['A'][1])
C
>>> print(sorted(list(t['A'][2:])))
['A', 'C', 'G', 'T', 'U', '[', ']']
>>> print(sorted(list(t['L'][:5])))
['C', 'T', 'U', '[', ']']
>>> print(sorted(list(t['L'][5:9])))
['T', 'U', '[', ']']
>>> print(sorted(list(t['L'][9:])))
['A', 'C', 'G', 'T', 'U', '[', ']']
"""
from Bio.Data.CodonTable import CodonTable
if not isinstance(codon_table, CodonTable):
raise TypeError("Input table is not a instance of "
"Bio.Data.CodonTable object")
aa2codon = {}
for codon, aa in codon_table.forward_table.items():
aa2codon.setdefault(aa, []).append(codon)
for aa, codons in aa2codon.items():
aa2codon[aa] = _codons2re(codons)
aa2codon[stop] = _codons2re(codon_table.stop_codons)
aa2codon[unknown] = '...'
return aa2codon
def _check_corr(pro, nucl, gap_char='-', codon_table=default_codon_table,
complete_protein=False, anchor_len=10):
"""check if a give protein SeqRecord can be translated by another
nucleotide SeqRecord.
"""
import re
from Bio.Alphabet import NucleotideAlphabet
if not isinstance(pro, SeqRecord) or not isinstance(nucl, SeqRecord):
raise TypeError("_check_corr accepts two SeqRecord object. Please "
"check your input.")
def get_alpha(alpha):
if hasattr(alpha, 'alphabet'):
return get_alpha(alpha.alphabet)
else:
return alpha
if not isinstance(get_alpha(nucl.seq.alphabet), NucleotideAlphabet):
raise TypeError("Alphabet for nucl should be an instance of "
"NucleotideAlphabet, {0} "
"detected".format(str(nucl.seq.alphabet)))
aa2re = _get_aa_regex(codon_table)
pro_re = ""
for aa in pro.seq:
if aa != gap_char:
pro_re += aa2re[aa]
nucl_seq = str(nucl.seq.upper().ungap(gap_char))
match = re.search(pro_re, nucl_seq)
if match:
# mode = 0, direct match
return (match.span(), 0)
else:
# Might caused by mismatches or frameshift, using anchors to
# have a try
# anchor_len = 10 # adjust this value to test performance
pro_seq = str(pro.seq).replace(gap_char, "")
anchors = [pro_seq[i:(i + anchor_len)] for i in
range(0, len(pro_seq), anchor_len)]
# if the last anchor is less than the specified anchor
# size, we combine the penultimate and the last anchor
# together as the last one.
# TODO: modify this to deal with short sequence with only
# one anchor.
if len(anchors[-1]) < anchor_len:
anchors[-1] = anchors[-2] + anchors[-1]
pro_re = []
anchor_distance = 0
anchor_pos = []
for i, anchor in enumerate(anchors):
this_anchor_len = len(anchor)
qcodon = ""
fncodon = ""
# dirty code to deal with the last anchor
# as the last anchor is combined in the steps
# above, we need to get the true last anchor to
# pro_re
if this_anchor_len == anchor_len:
for aa in anchor:
if complete_protein and i == 0:
qcodon += _codons2re(codon_table.start_codons)
fncodon += aa2re['X']
continue
qcodon += aa2re[aa]
fncodon += aa2re['X']
match = re.search(qcodon, nucl_seq)
elif this_anchor_len > anchor_len:
last_qcodon = ""
last_fcodon = ""
for j in range(anchor_len, len(anchor)):
last_qcodon += aa2re[anchor[j]]
last_fcodon += aa2re['X']
match = re.search(last_qcodon, nucl_seq)
# build full_pro_re from anchors
if match:
anchor_pos.append((match.start(), match.end(), i))
if this_anchor_len == anchor_len:
pro_re.append(qcodon)
else:
pro_re.append(last_qcodon)
else:
if this_anchor_len == anchor_len:
pro_re.append(fncodon)
else:
pro_re.append(last_fcodon)
full_pro_re = "".join(pro_re)
match = re.search(full_pro_re, nucl_seq)
if match:
# mode = 1, mismatch
return (match.span(), 1)
else:
# check frames of anchors
# ten frameshift events are allowed in a sequence
first_anchor = True
shift_id_pos = 0
# check the first anchor
if first_anchor and anchor_pos[0][2] != 0:
shift_val_lst = [1, 2, 3 * anchor_len - 2, 3 * anchor_len - 1, 0]
sh_anc = anchors[0]
for shift_val in shift_val_lst:
if shift_val == 0:
qcodon = None
break
if shift_val in (1, 2):
sh_nuc_len = anchor_len * 3 + shift_val
elif shift_val in (3 * anchor_len - 2, 3 * anchor_len - 1):
sh_nuc_len = anchor_len * 3 - (3 * anchor_len - shift_val)
if anchor_pos[0][0] >= sh_nuc_len:
sh_nuc = nucl_seq[anchor_pos[0][0] - sh_nuc_len:anchor_pos[0][0]]
else:
# this is unlikely to produce the correct output
sh_nuc = nucl_seq[:anchor_pos[0][0]]
qcodon, shift_id_pos = _get_shift_anchor_re(sh_anc, sh_nuc,
shift_val,
aa2re,
anchor_len,
shift_id_pos)
if qcodon is not None and qcodon != -1:
# pro_re[0] should be '.'*anchor_len, therefore I
# replace it.
pro_re[0] = qcodon
break
if qcodon == -1:
warnings.warn("first frameshift detection failed for "
"{0}".format(nucl.id), BiopythonWarning)
# check anchors in the middle
for i in range(len(anchor_pos) - 1):
shift_val = (anchor_pos[i + 1][0] - anchor_pos[i][0]) % \
(3 * anchor_len)
sh_anc = "".join(anchors[anchor_pos[i][2]:anchor_pos[i + 1][2]])
sh_nuc = nucl_seq[anchor_pos[i][0]:anchor_pos[i + 1][0]]
qcodon = None
if shift_val != 0:
qcodon, shift_id_pos = _get_shift_anchor_re(sh_anc, sh_nuc,
shift_val,
aa2re,
anchor_len,
shift_id_pos)
if qcodon is not None and qcodon != -1:
pro_re[anchor_pos[i][2]:anchor_pos[i + 1][2]] = [qcodon]
qcodon = None
elif qcodon == -1:
warnings.warn("middle frameshift detection failed for "
"{0}".format(nucl.id), BiopythonWarning)
# check the last anchor
if anchor_pos[-1][2] + 1 == len(anchors) - 1:
sh_anc = anchors[-1]
this_anchor_len = len(sh_anc)
shift_val_lst = [1, 2, 3 * this_anchor_len - 2, 3 * this_anchor_len - 1, 0]
for shift_val in shift_val_lst:
if shift_val == 0:
qcodon = None
break
if shift_val in (1, 2):
sh_nuc_len = this_anchor_len * 3 + shift_val
elif shift_val in \
(3 * this_anchor_len - 2, 3 * this_anchor_len - 1):
sh_nuc_len = this_anchor_len * 3 - (3 * this_anchor_len - shift_val)
if len(nucl_seq) - anchor_pos[-1][0] >= sh_nuc_len:
sh_nuc = nucl_seq[anchor_pos[-1][0]:anchor_pos[-1][0] + sh_nuc_len]
else:
# this is unlikely to produce the correct output
sh_nuc = nucl_seq[anchor_pos[-1][0]:]
qcodon, shift_id_pos = _get_shift_anchor_re(sh_anc, sh_nuc,
shift_val,
aa2re,
this_anchor_len,
shift_id_pos)
if qcodon is not None and qcodon != -1:
pro_re.pop()
pro_re[-1] = qcodon
break
if qcodon == -1:
warnings.warn("last frameshift detection failed for "
"{0}".format(nucl.id), BiopythonWarning)
# try global match
full_pro_re = "".join(pro_re)
match = re.search(full_pro_re, nucl_seq)
if match:
return (match.span(), 2, match)
else:
raise RuntimeError("Protein SeqRecord ({0}) and Nucleotide "
"SeqRecord ({1}) do not "
"match!".format((pro.id, nucl.id)))
def _get_shift_anchor_re(sh_anc, sh_nuc, shift_val, aa2re, anchor_len,
shift_id_pos):
"""This function tries all the best to come up with an re that
matches a potentially shifted anchor.
Arguments:
- sh_anc - shifted anchor sequence
- sh_nuc - potentially corresponding nucleotide sequence
of sh_anc
- shift_val - 1 or 2 indicates forward frame shift, whereas
3*anchor_len-1 or 3*anchor_len-2 indicates
backward shift
- aa2re - aa to codon re dict
- anchor_len - length of the anchor
- shift_id_pos - specify current shift name we are at
"""
import re
shift_id = [chr(i) for i in range(97, 107)]
if 0 < shift_val < 3 * anchor_len - 2:
# if shift_val in (1, 2):
for j in range(len(sh_anc)):
qcodon = "^"
for k, aa in enumerate(sh_anc):
if k == j:
qcodon += aa2re[aa] + "(?P<" + shift_id[shift_id_pos] + ">..*)"
else:
qcodon += aa2re[aa]
qcodon += "$"
match = re.search(qcodon, sh_nuc)
if match:
qcodon = qcodon.replace('^', '').replace('$', '')
shift_id_pos += 1
return qcodon, shift_id_pos
if not match:
# failed to find a match (frameshift)
return -1, shift_id_pos
elif shift_val in (3 * anchor_len - 1, 3 * anchor_len - 2):
shift_val = 3 * anchor_len - shift_val
# obtain shifted anchor and corresponding nucl
# first check if the shifted pos is just at the end of the
# previous anchor.
for j in range(1, len(sh_anc)):
qcodon = "^"
for k, aa in enumerate(sh_anc):
if k == j - 1:
# will be considered in the next step
pass
elif k == j:
qcodon += _merge_aa2re(
sh_anc[j - 1], sh_anc[j], shift_val, aa2re,
shift_id[shift_id_pos].upper())
else:
qcodon += aa2re[aa]
qcodon += '$'
match = re.search(qcodon, sh_nuc)
if match:
qcodon = qcodon.replace('^', '').replace('$', '')
shift_id_pos += 1
return qcodon, shift_id_pos
if not match:
# failed to find a match (frameshift)
return -1, shift_id_pos
def _merge_aa2re(aa1, aa2, shift_val, aa2re, reid):
"""Function to merge two amino acids based on detected frame shift
value.
"""
def get_aa_from_codonre(re_aa):
aas = []
m = 0
for i in re_aa:
if i == '[':
m = -1
aas.append('')
elif i == ']':
m = 0
continue
elif m == -1:
aas[-1] = aas[-1] + i
elif m == 0:
aas.append(i)
return aas
scodon = list(map(get_aa_from_codonre, (aa2re[aa1], aa2re[aa2])))
if shift_val == 1:
intersect = ''.join(set(scodon[0][2]) & set(scodon[1][0]))
scodonre = '(?P<' + reid + '>'
scodonre += '[' + scodon[0][0] + ']' + \
'[' + scodon[0][1] + ']' + \
'[' + intersect + ']' + \
'[' + scodon[1][1] + ']' + \
'[' + scodon[1][2] + ']'
elif shift_val == 2:
intersect1 = ''.join(set(scodon[0][1]) & set(scodon[1][0]))
intersect2 = ''.join(set(scodon[0][2]) & set(scodon[1][1]))
scodonre = '(?P<' + reid + '>'
scodonre += '[' + scodon[0][0] + ']' + \
'[' + intersect1 + ']' + \
'[' + intersect2 + ']' + \
'[' + scodon[1][2] + ']'
scodonre += ')'
return scodonre
def _get_codon_rec(pro, nucl, span_mode, alphabet, gap_char="-",
codon_table=default_codon_table, complete_protein=False,
max_score=10):
"""Generate codon alignment based on regular re match (PRIVATE)
span_mode is a tuple returned by _check_corr. The first element
is the span of a re search, and the second element is the mode
for the match.
mode
- 0: direct match
- 1: mismatch (no indels)
- 2: frameshift
"""
import re
from Bio.Seq import Seq
nucl_seq = nucl.seq.ungap(gap_char)
codon_seq = ""
span = span_mode[0]
mode = span_mode[1]
aa2re = _get_aa_regex(codon_table)
if mode in (0, 1):
if len(pro.seq.ungap(gap_char)) * 3 != (span[1] - span[0]):
raise ValueError("Protein Record {0} and Nucleotide Record {1} "
"do not match!".format((pro.id, nucl.id)))
aa_num = 0
for aa in pro.seq:
if aa == "-":
codon_seq += "---"
elif complete_protein and aa_num == 0:
this_codon = nucl_seq._data[span[0]:span[0] + 3]
if not re.search(_codons2re[codon_table.start_codons],
this_codon.upper()):
max_score -= 1
warnings.warn("start codon of {0} ({1} {2}) does not "
"correspond to {3} "
"({4})".format(pro.id, aa, aa_num,
nucl.id, this_codon),
BiopythonWarning)
if max_score == 0:
raise RuntimeError("max_score reached for {0}! Please "
"raise up the tolerance to get an "
"alignment in anyway".format(nucl.id))
codon_seq += this_codon
aa_num += 1
else:
this_codon = nucl_seq._data[(span[0] + 3 * aa_num):
(span[0] + 3 * (aa_num + 1))]
if not str(Seq(this_codon.upper()).translate(table=codon_table)) == aa:
max_score -= 1
warnings.warn("%s(%s %d) does not correspond to %s(%s)"
% (pro.id, aa, aa_num, nucl.id, this_codon),
BiopythonWarning)
if max_score == 0:
raise RuntimeError("max_score reached for {0}! Please "
"raise up the tolerance to get an "
"alignment in anyway".format(nucl.id))
codon_seq += this_codon
aa_num += 1
return SeqRecord(CodonSeq(codon_seq, alphabet=alphabet), id=nucl.id)
elif mode == 2:
from collections import deque
shift_pos = deque([])
shift_start = []
match = span_mode[2]
m_groupdict = list(match.groupdict().keys())
# backward frameshift
for i in m_groupdict:
shift_pos.append(match.span(i))
shift_start.append(match.start(i))
rf_table = []
i = match.start()
while True:
rf_table.append(i)
i += 3
if i in shift_start and \
m_groupdict[shift_start.index(i)].isupper():
shift_index = shift_start.index(i)
shift_val = 6 - (shift_pos[shift_index][1] -
shift_pos[shift_index][0])
rf_table.append(i)
rf_table.append(i + 3 - shift_val)
i = shift_pos[shift_index][1]
elif i in shift_start and \
m_groupdict[shift_start.index(i)].islower():
i = shift_pos[shift_start.index(i)][1]
if i >= match.end():
break
aa_num = 0
for aa in pro.seq:
if aa == "-":
codon_seq += "---"
elif complete_protein and aa_num == 0:
this_codon = nucl_seq._data[rf_table[0]:rf_table[0] + 3]
if not re.search(_codons2re[codon_table.start_codons],
this_codon.upper()):
max_score -= 1
warnings.warn("start codon of {0}({1} {2}) does not "
"correspond to {3}({4})".format(
pro.id, aa, aa_num, nucl.id, this_codon),
BiopythonWarning)
codon_seq += this_codon
aa_num += 1
else:
if aa_num < len(pro.seq.ungap('-')) - 1 and \
rf_table[aa_num + 1] - rf_table[aa_num] - 3 < 0:
max_score -= 1
start = rf_table[aa_num]
end = start + (3 - shift_val)
ngap = shift_val
this_codon = nucl_seq._data[start:end] + '-' * ngap
elif rf_table[aa_num] - rf_table[aa_num - 1] - 3 > 0:
max_score -= 1
start = rf_table[aa_num - 1] + 3
end = rf_table[aa_num]
ngap = 3 - (rf_table[aa_num] - rf_table[aa_num - 1] - 3)
this_codon = nucl_seq._data[start:end] + '-' * ngap + \
nucl_seq._data[rf_table[aa_num]:rf_table[aa_num] + 3]
else:
start = rf_table[aa_num]
end = start + 3
this_codon = nucl_seq._data[start:end]
if not str(Seq(this_codon.upper()).translate(table=codon_table)) == aa:
max_score -= 1
warnings.warn("Codon of {0}({1} {2}) does not "
"correspond to {3}({4})".format(
pro.id, aa, aa_num, nucl.id,
this_codon),
BiopythonWarning)
if max_score == 0:
raise RuntimeError("max_score reached for {0}! Please "
"raise up the tolerance to get an "
"alignment in anyway".format(nucl.id))
codon_seq += this_codon
aa_num += 1
return SeqRecord(CodonSeq(codon_seq, alphabet=alphabet,
rf_table=rf_table), id=nucl.id)
def _align_shift_recs(recs):
"""This function is useful to build alignment according to the
frameshift detected by _check_corr.
Argument:
- recs - a list of SeqRecords containing a CodonSeq dictated
by a rf_table (with frameshift in some of them).
"""
def find_next_int(k, lst):
idx = lst.index(k)
p = 0
while True:
if isinstance(lst[idx + p], int):
return lst[idx + p], p
p += 1
full_rf_table_lst = [rec.seq.get_full_rf_table() for rec in recs]
rf_num = [0] * len(recs)
for k, rec in enumerate(recs):
for i in rec.seq.get_full_rf_table():
if isinstance(i, int):
rf_num[k] += 1
# isinstance(i, float) should be True
elif rec.seq._data[int(i):int(i) + 3] == "---":
rf_num[k] += 1
if len(set(rf_num)) != 1:
raise RuntimeError("Number alignable codons unequal in given records")
i = 0
rec_num = len(recs)
while True:
add_lst = []
try:
col_rf_lst = [k[i] for k in full_rf_table_lst]
except IndexError:
# we probably reached the last codon
break
for j, k in enumerate(col_rf_lst):
add_lst.append((j, int(k)))
if isinstance(k, float) and \
recs[j].seq._data[int(k):int(k) + 3] != "---":
m, p = find_next_int(k, full_rf_table_lst[j])
if (m - k) % 3 != 0:
gap_num = 3 - (m - k) % 3
else:
gap_num = 0
if gap_num != 0:
gaps = '-' * int(gap_num)
seq = recs[j].seq._data[:int(k)] + gaps + \
recs[j].seq._data[int(k):]
full_rf_table = full_rf_table_lst[j]
bp = full_rf_table.index(k)
full_rf_table = full_rf_table[:bp] + \
[v + int(gap_num) for v in full_rf_table[bp + 1:]]
full_rf_table_lst[j] = full_rf_table
recs[j].seq = CodonSeq(seq,
rf_table=recs[j].seq.rf_table,
alphabet=recs[j].seq.alphabet)
add_lst.pop()
gap_num += m - k
i += p - 1
if len(add_lst) != rec_num:
for j, k in add_lst:
gaps = "-" * int(gap_num)
seq = recs[j].seq._data[:int(k)] + gaps + \
recs[j].seq._data[int(k):]
full_rf_table = full_rf_table_lst[j]
bp = full_rf_table.index(k)
inter_rf = []
for t in filter(lambda x: x % 3 == 0, range(len(gaps))):
inter_rf.append(k + t + 3.0)
full_rf_table = full_rf_table[:bp] + inter_rf + \
[v + int(gap_num) for v in full_rf_table[bp:]]
full_rf_table_lst[j] = full_rf_table
recs[j].seq = CodonSeq(seq,
rf_table=recs[j].seq.rf_table,
alphabet=recs[j].seq.alphabet)
i += 1
return recs
# def toCodonAlignment(align, alphabet=default_codon_alphabet):
# """Function to convert a MultipleSeqAlignment to CodonAlignment.
# It is the user's responsibility to ensure all the requirement
# needed by CodonAlignment is met.
#
# """
# rec = [SeqRecord(CodonSeq(str(i.seq), alphabet=alphabet), id=i.id) \
# for i in align._records]
# return CodonAlignment(rec, alphabet=align._alphabet)
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|