1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
/* Copyright 2002 by Jeffrey Chang.
* Copyright 2016 by Markus Piotrowski.
* All rights reserved.
* This code is part of the Biopython distribution and governed by its
* license. Please see the LICENSE file that should have been included
* as part of this package.
*
* cpairwise2module.c
* Created 30 Sep 2001
*
* Optimized C routines that complement pairwise2.py.
*/
#include "Python.h"
#define _PRECISION 1000
#define rint(x) (int)((x)*_PRECISION+0.5)
/* Functions in this module. */
static double calc_affine_penalty(int length, double open, double extend,
int penalize_extend_when_opening)
{
double penalty;
if(length <= 0)
return 0.0;
penalty = open + extend * length;
if(!penalize_extend_when_opening)
penalty -= extend;
return penalty;
}
static double _get_match_score(PyObject *py_sequenceA, PyObject *py_sequenceB,
PyObject *py_match_fn, int i, int j,
char *sequenceA, char *sequenceB,
int use_sequence_cstring,
double match, double mismatch,
int use_match_mismatch_scores)
{
PyObject *py_A=NULL, *py_B=NULL;
PyObject *py_arglist=NULL, *py_result=NULL;
double score = 0;
if(use_sequence_cstring && use_match_mismatch_scores) {
score = (sequenceA[i] == sequenceB[j]) ? match : mismatch;
return score;
}
/* Calculate the match score. */
if(!(py_A = PySequence_GetItem(py_sequenceA, i)))
goto _get_match_score_cleanup;
if(!(py_B = PySequence_GetItem(py_sequenceB, j)))
goto _get_match_score_cleanup;
if(!(py_arglist = Py_BuildValue("(OO)", py_A, py_B)))
goto _get_match_score_cleanup;
if(!(py_result = PyEval_CallObject(py_match_fn, py_arglist)))
goto _get_match_score_cleanup;
score = PyFloat_AsDouble(py_result);
_get_match_score_cleanup:
if(py_A) {
Py_DECREF(py_A);
}
if(py_B) {
Py_DECREF(py_B);
}
if(py_arglist) {
Py_DECREF(py_arglist);
}
if(py_result) {
Py_DECREF(py_result);
}
return score;
}
#if PY_MAJOR_VERSION >= 3
static PyObject* _create_bytes_object(PyObject* o)
{
PyObject* b;
if (PyBytes_Check(o)) {
return o;
}
if (!PyUnicode_Check(o)) {
return NULL;
}
b = PyUnicode_AsASCIIString(o);
if (!b) {
PyErr_Clear();
return NULL;
}
return b;
}
#endif
/* This function is a more-or-less straightforward port of the
* equivalent function in pairwise2. Please see there for algorithm
* documentation.
*/
static PyObject *cpairwise2__make_score_matrix_fast(PyObject *self,
PyObject *args)
{
int i;
int row, col;
PyObject *py_sequenceA, *py_sequenceB, *py_match_fn;
#if PY_MAJOR_VERSION >= 3
PyObject *py_bytesA, *py_bytesB;
#endif
char *sequenceA=NULL, *sequenceB=NULL;
int use_sequence_cstring;
double open_A, extend_A, open_B, extend_B;
int penalize_extend_when_opening, penalize_end_gaps_A, penalize_end_gaps_B;
int align_globally, score_only;
PyObject *py_match=NULL, *py_mismatch=NULL;
double first_A_gap, first_B_gap;
double match, mismatch;
double score;
int use_match_mismatch_scores;
int lenA, lenB;
double *score_matrix = NULL;
unsigned char *trace_matrix = NULL;
PyObject *py_score_matrix=NULL, *py_trace_matrix=NULL;
double *col_cache_score = NULL;
PyObject *py_retval = NULL;
if(!PyArg_ParseTuple(args, "OOOddddi(ii)ii", &py_sequenceA, &py_sequenceB,
&py_match_fn, &open_A, &extend_A, &open_B, &extend_B,
&penalize_extend_when_opening,
&penalize_end_gaps_A, &penalize_end_gaps_B,
&align_globally, &score_only))
return NULL;
if(!PySequence_Check(py_sequenceA) || !PySequence_Check(py_sequenceB)) {
PyErr_SetString(PyExc_TypeError,
"py_sequenceA and py_sequenceB should be sequences.");
return NULL;
}
/* Optimize for the common case. Check to see if py_sequenceA and
py_sequenceB are strings. If they are, use the c string
representation. */
#if PY_MAJOR_VERSION < 3
use_sequence_cstring = 0;
if(PyString_Check(py_sequenceA) && PyString_Check(py_sequenceB)) {
sequenceA = PyString_AS_STRING(py_sequenceA);
sequenceB = PyString_AS_STRING(py_sequenceB);
use_sequence_cstring = 1;
}
#else
py_bytesA = _create_bytes_object(py_sequenceA);
py_bytesB = _create_bytes_object(py_sequenceB);
if (py_bytesA && py_bytesB) {
sequenceA = PyBytes_AS_STRING(py_bytesA);
sequenceB = PyBytes_AS_STRING(py_bytesB);
use_sequence_cstring = 1;
}
else {
Py_XDECREF(py_bytesA);
Py_XDECREF(py_bytesB);
use_sequence_cstring = 0;
}
#endif
if(!PyCallable_Check(py_match_fn)) {
PyErr_SetString(PyExc_TypeError, "py_match_fn must be callable.");
return NULL;
}
/* Optimize for the common case. Check to see if py_match_fn is
an identity_match. If so, pull out the match and mismatch
member variables and calculate the scores myself. */
match = mismatch = 0;
use_match_mismatch_scores = 0;
if(!(py_match = PyObject_GetAttrString(py_match_fn, "match")))
goto cleanup_after_py_match_fn;
match = PyFloat_AsDouble(py_match);
if(match==-1.0 && PyErr_Occurred())
goto cleanup_after_py_match_fn;
if(!(py_mismatch = PyObject_GetAttrString(py_match_fn, "mismatch")))
goto cleanup_after_py_match_fn;
mismatch = PyFloat_AsDouble(py_mismatch);
if(mismatch==-1.0 && PyErr_Occurred())
goto cleanup_after_py_match_fn;
use_match_mismatch_scores = 1;
cleanup_after_py_match_fn:
if(PyErr_Occurred())
PyErr_Clear();
if(py_match) {
Py_DECREF(py_match);
}
if(py_mismatch) {
Py_DECREF(py_mismatch);
}
/* Cache some commonly used gap penalties */
first_A_gap = calc_affine_penalty(1, open_A, extend_A,
penalize_extend_when_opening);
first_B_gap = calc_affine_penalty(1, open_B, extend_B,
penalize_extend_when_opening);
/* Allocate matrices for storing the results and initialize first row and col. */
lenA = PySequence_Length(py_sequenceA);
lenB = PySequence_Length(py_sequenceB);
score_matrix = malloc((lenA+1)*(lenB+1)*sizeof(*score_matrix));
if(!score_matrix) {
PyErr_SetString(PyExc_MemoryError, "Out of memory");
goto _cleanup_make_score_matrix_fast;
}
for(i=0; i<(lenB+1); i++)
score_matrix[i] = 0;
for(i=0; i<(lenA+1)*(lenB+1); i += (lenB+1))
score_matrix[i] = 0;
/* If we only want the score, we don't need the trace matrix. */
if (!score_only){
trace_matrix = malloc((lenA+1)*(lenB+1)*sizeof(*trace_matrix));
if(!trace_matrix) {
PyErr_SetString(PyExc_MemoryError, "Out of memory");
goto _cleanup_make_score_matrix_fast;
}
for(i=0; i<(lenB+1); i++)
trace_matrix[i] = 0;
for(i=0; i<(lenA+1)*(lenB+1); i += (lenB+1))
trace_matrix[i] = 0;
}
else
trace_matrix = malloc(1);
/* Initialize the first row and col of the score matrix. */
for(i=0; i<=lenA; i++) {
if(penalize_end_gaps_B)
score = calc_affine_penalty(i, open_B, extend_B,
penalize_extend_when_opening);
else
score = 0;
score_matrix[i*(lenB+1)] = score;
}
for(i=0; i<=lenB; i++) {
if(penalize_end_gaps_A)
score = calc_affine_penalty(i, open_A, extend_A,
penalize_extend_when_opening);
else
score = 0;
score_matrix[i] = score;
}
/* Now initialize the col cache. */
col_cache_score = malloc((lenB+1)*sizeof(*col_cache_score));
memset((void *)col_cache_score, 0, (lenB+1)*sizeof(*col_cache_score));
for(i=0; i<=lenB; i++) {
col_cache_score[i] = calc_affine_penalty(i, (2*open_B), extend_B,
penalize_extend_when_opening);
}
/* Fill in the score matrix. The row cache is calculated on the fly.*/
for(row=1; row<=lenA; row++) {
double row_cache_score = calc_affine_penalty(row, (2*open_A), extend_A,
penalize_extend_when_opening);
for(col=1; col<=lenB; col++) {
double match_score, nogap_score;
double row_open, row_extend, col_open, col_extend, best_score;
int best_score_rint, row_score_rint, col_score_rint;
unsigned char row_trace_score, col_trace_score, trace_score;
/* Calculate the best score. */
match_score = _get_match_score(py_sequenceA, py_sequenceB,
py_match_fn, row-1, col-1,
sequenceA, sequenceB,
use_sequence_cstring,
match, mismatch,
use_match_mismatch_scores);
if(match_score==-1.0 && PyErr_Occurred())
goto _cleanup_make_score_matrix_fast;
nogap_score = score_matrix[(row-1)*(lenB+1)+col-1] + match_score;
if (!penalize_end_gaps_A && row==lenA) {
row_open = score_matrix[(row)*(lenB+1)+col-1];
row_extend = row_cache_score;
}
else {
row_open = score_matrix[(row)*(lenB+1)+col-1] + first_A_gap;
row_extend = row_cache_score + extend_A;
}
row_cache_score = (row_open > row_extend) ? row_open : row_extend;
if (!penalize_end_gaps_B && col==lenB){
col_open = score_matrix[(row-1)*(lenB+1)+col];
col_extend = col_cache_score[col];
}
else {
col_open = score_matrix[(row-1)*(lenB+1)+col] + first_B_gap;
col_extend = col_cache_score[col] + extend_B;
}
col_cache_score[col] = (col_open > col_extend) ? col_open : col_extend;
best_score = (row_cache_score > col_cache_score[col]) ? row_cache_score : col_cache_score[col];
if(nogap_score > best_score)
best_score = nogap_score;
if(!align_globally && best_score < 0)
score_matrix[row*(lenB+1)+col] = 0;
else
score_matrix[row*(lenB+1)+col] = best_score;
if (!score_only) {
row_score_rint = rint(row_cache_score);
col_score_rint = rint(col_cache_score[col]);
row_trace_score = 0;
col_trace_score = 0;
if (rint(row_open) == row_score_rint)
row_trace_score = row_trace_score|1;
if (rint(row_extend) == row_score_rint)
row_trace_score = row_trace_score|8;
if (rint(col_open) == col_score_rint)
col_trace_score = col_trace_score|4;
if (rint(col_extend) == col_score_rint)
col_trace_score = col_trace_score|16;
trace_score = 0;
best_score_rint = rint(best_score);
if (rint(nogap_score) == best_score_rint)
trace_score = trace_score|2;
if (row_score_rint == best_score_rint)
trace_score += row_trace_score;
if (col_score_rint == best_score_rint)
trace_score += col_trace_score;
trace_matrix[row*(lenB+1)+col] = trace_score;
}
}
}
/* Save the score and traceback matrices into real python objects. */
if(!(py_score_matrix = PyList_New(lenA+1)))
goto _cleanup_make_score_matrix_fast;
if(!score_only){
if(!(py_trace_matrix = PyList_New(lenA+1)))
goto _cleanup_make_score_matrix_fast;
}
else
py_trace_matrix = PyList_New(1);
for(row=0; row<=lenA; row++) {
PyObject *py_score_row, *py_trace_row;
if(!(py_score_row = PyList_New(lenB+1)))
goto _cleanup_make_score_matrix_fast;
PyList_SET_ITEM(py_score_matrix, row, py_score_row);
if(!score_only){
if(!(py_trace_row = PyList_New(lenB+1)))
goto _cleanup_make_score_matrix_fast;
PyList_SET_ITEM(py_trace_matrix, row, py_trace_row);
}
for(col=0; col<=lenB; col++) {
PyObject *py_score, *py_trace;
int offset = row*(lenB+1) + col;
/* Set py_score_matrix[row][col] to the score. */
if(!(py_score = PyFloat_FromDouble(score_matrix[offset])))
goto _cleanup_make_score_matrix_fast;
PyList_SET_ITEM(py_score_row, col, py_score);
if(score_only)
continue;
/* Set py_trace_matrix[row][col] to a list of indexes. On
the edges of the matrix (row or column is 0), the
matrix should be [None]. */
if(!row || !col) {
if(!(py_trace = Py_BuildValue("B", 1)))
goto _cleanup_make_score_matrix_fast;
Py_INCREF(Py_None);
PyList_SET_ITEM(py_trace_row, col, Py_None);
}
else {
if(!(py_trace = Py_BuildValue("B", trace_matrix[offset])))
goto _cleanup_make_score_matrix_fast;
PyList_SET_ITEM(py_trace_row, col, py_trace);
}
}
}
py_retval = Py_BuildValue("(OO)", py_score_matrix, py_trace_matrix);
_cleanup_make_score_matrix_fast:
if(score_matrix)
free(score_matrix);
if(trace_matrix)
free(trace_matrix);
if(col_cache_score)
free(col_cache_score);
if(py_score_matrix){
Py_DECREF(py_score_matrix);
}
if(py_trace_matrix){
Py_DECREF(py_trace_matrix);
}
#if PY_MAJOR_VERSION >= 3
if (py_bytesA != NULL && py_bytesA != py_sequenceA) Py_DECREF(py_bytesA);
if (py_bytesB != NULL && py_bytesB != py_sequenceB) Py_DECREF(py_bytesB);
#endif
return py_retval;
}
static PyObject *cpairwise2_rint(PyObject *self, PyObject *args,
PyObject *keywds)
{
double x;
int precision = _PRECISION;
int rint_x;
static char *kwlist[] = {"x", "precision", NULL};
if(!PyArg_ParseTupleAndKeywords(args, keywds, "d|l", kwlist,
&x, &precision))
return NULL;
rint_x = (int)(x * precision + 0.5);
#if PY_MAJOR_VERSION >= 3
return PyLong_FromLong((long)rint_x);
#else
return PyInt_FromLong((long)rint_x);
#endif
}
/* Module definition stuff */
static PyMethodDef cpairwise2Methods[] = {
{"_make_score_matrix_fast",
(PyCFunction)cpairwise2__make_score_matrix_fast, METH_VARARGS, ""},
{"rint", (PyCFunction)cpairwise2_rint, METH_VARARGS|METH_KEYWORDS, ""},
{NULL, NULL, 0, NULL}
};
static char cpairwise2__doc__[] =
"Optimized C routines that complement pairwise2.py. These are called from within pairwise2.py.\n\
\n\
";
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"cpairwise2",
cpairwise2__doc__,
-1,
cpairwise2Methods,
NULL,
NULL,
NULL,
NULL
};
PyObject *
PyInit_cpairwise2(void)
#else
void
initcpairwise2(void)
#endif
{
#if PY_MAJOR_VERSION >= 3
PyObject* module = PyModule_Create(&moduledef);
if (module==NULL) return NULL;
return module;
#else
(void) Py_InitModule3("cpairwise2", cpairwise2Methods, cpairwise2__doc__);
#endif
}
|