1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
# Copyright 2002 by Jeffrey Chang.
# Copyright 2016 by Markus Piotrowski.
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""This package implements pairwise sequence alignment using a dynamic
programming algorithm.
This provides functions to get global and local alignments between two
sequences. A global alignment finds the best concordance between all
characters in two sequences. A local alignment finds just the
subsequences that align the best.
When doing alignments, you can specify the match score and gap
penalties. The match score indicates the compatibility between an
alignment of two characters in the sequences. Highly compatible
characters should be given positive scores, and incompatible ones
should be given negative scores or 0. The gap penalties should be
negative.
The names of the alignment functions in this module follow the
convention
<alignment type>XX
where <alignment type> is either "global" or "local" and XX is a 2
character code indicating the parameters it takes. The first
character indicates the parameters for matches (and mismatches), and
the second indicates the parameters for gap penalties.
The match parameters are::
CODE DESCRIPTION
x No parameters. Identical characters have score of 1, otherwise 0.
m A match score is the score of identical chars, otherwise mismatch
score.
d A dictionary returns the score of any pair of characters.
c A callback function returns scores.
The gap penalty parameters are::
CODE DESCRIPTION
x No gap penalties.
s Same open and extend gap penalties for both sequences.
d The sequences have different open and extend gap penalties.
c A callback function returns the gap penalties.
All the different alignment functions are contained in an object
``align``. For example:
>>> from Bio import pairwise2
>>> alignments = pairwise2.align.globalxx("ACCGT", "ACG")
will return a list of the alignments between the two strings. For a nice
printout, use the ``format_alignment`` method of the module:
>>> from Bio.pairwise2 import format_alignment
>>> print(format_alignment(*alignments[0]))
ACCGT
|||||
A-CG-
Score=3
<BLANKLINE>
All alignment functions have the following arguments:
- Two sequences: strings, Biopython sequence objects or lists.
Lists are useful for suppling sequences which contain residues that are
encoded by more than one letter.
- ``penalize_extend_when_opening``: boolean (default: False).
Whether to count an extension penalty when opening a gap. If false, a gap of
1 is only penalized an "open" penalty, otherwise it is penalized
"open+extend".
- ``penalize_end_gaps``: boolean.
Whether to count the gaps at the ends of an alignment. By default, they are
counted for global alignments but not for local ones. Setting
``penalize_end_gaps`` to (boolean, boolean) allows you to specify for the
two sequences separately whether gaps at the end of the alignment should be
counted.
- ``gap_char``: string (default: ``'-'``).
Which character to use as a gap character in the alignment returned. If your
input sequences are lists, you must change this to ``['-']``.
- ``force_generic``: boolean (default: False).
Always use the generic, non-cached, dynamic programming function (slow!).
For debugging.
- ``score_only``: boolean (default: False).
Only get the best score, don't recover any alignments. The return value of
the function is the score. Faster and uses less memory.
- ``one_alignment_only``: boolean (default: False).
Only recover one alignment.
The other parameters of the alignment function depend on the function called.
Some examples:
- Find the best global alignment between the two sequences. Identical
characters are given 1 point. No points are deducted for mismatches or gaps.
>>> for a in pairwise2.align.globalxx("ACCGT", "ACG"):
... print(format_alignment(*a))
ACCGT
|||||
A-CG-
Score=3
<BLANKLINE>
ACCGT
|||||
AC-G-
Score=3
<BLANKLINE>
- Same thing as before, but with a local alignment.
>>> for a in pairwise2.align.localxx("ACCGT", "ACG"):
... print(format_alignment(*a))
ACCGT
||||
A-CG-
Score=3
<BLANKLINE>
ACCGT
||||
AC-G-
Score=3
<BLANKLINE>
- Do a global alignment. Identical characters are given 2 points, 1 point is
deducted for each non-identical character. Don't penalize gaps.
>>> for a in pairwise2.align.globalmx("ACCGT", "ACG", 2, -1):
... print(format_alignment(*a))
ACCGT
|||||
A-CG-
Score=6
<BLANKLINE>
ACCGT
|||||
AC-G-
Score=6
<BLANKLINE>
- Same as above, except now 0.5 points are deducted when opening a gap, and
0.1 points are deducted when extending it.
>>> for a in pairwise2.align.globalms("ACCGT", "ACG", 2, -1, -.5, -.1):
... print(format_alignment(*a))
ACCGT
|||||
A-CG-
Score=5
<BLANKLINE>
ACCGT
|||||
AC-G-
Score=5
<BLANKLINE>
- Depending on the penalties, a gap in one sequence may be followed by a gap in
the other sequence.If you don't like this behaviour, increase the gap-open
penalty:
>>> for a in pairwise2.align.globalms("A", "T", 5, -4, -1, -.1):
... print(format_alignment(*a))
A-
||
-T
Score=-2
<BLANKLINE>
>>> for a in pairwise2.align.globalms("A", "T", 5, -4, -3, -.1):
... print(format_alignment(*a))
A
|
T
Score=-4
<BLANKLINE>
- The alignment function can also use known matrices already included in
Biopython (``MatrixInfo`` from ``Bio.SubsMat``):
>>> from Bio.SubsMat import MatrixInfo as matlist
>>> matrix = matlist.blosum62
>>> for a in pairwise2.align.globaldx("KEVLA", "EVL", matrix):
... print(format_alignment(*a))
KEVLA
|||||
-EVL-
Score=13
<BLANKLINE>
- With the parameter ``c`` you can define your own match- and gap functions.
E.g. to define an affine logarithmic gap function and using it:
>>> from math import log
>>> def gap_function(x, y): # x is gap position in seq, y is gap length
... if y == 0: # No gap
... return 0
... elif y == 1: # Gap open penalty
... return -2
... return - (2 + y/4.0 + log(y)/2.0)
...
>>> alignment = pairwise2.align.globalmc("ACCCCCGT", "ACG", 5, -4,
... gap_function, gap_function)
You can define different gap functions for each sequence.
Self-defined match functions must take the two residues to be compared and
return a score.
To see a description of the parameters for a function, please look at
the docstring for the function via the help function, e.g.
type ``help(pairwise2.align.localds``) at the Python prompt.
"""
from __future__ import print_function
import warnings
from Bio import BiopythonWarning
MAX_ALIGNMENTS = 1000 # maximum alignments recovered in traceback
class align(object):
"""This class provides functions that do alignments."""
class alignment_function(object):
"""This class is callable impersonates an alignment function.
The constructor takes the name of the function. This class
will decode the name of the function to figure out how to
interpret the parameters.
"""
# match code -> tuple of (parameters, docstring)
match2args = {
'x': ([], ''),
'm': (['match', 'mismatch'],
"match is the score to given to identical characters. "
"mismatch is the score given to non-identical ones."),
'd': (['match_dict'],
"match_dict is a dictionary where the keys are tuples "
"of pairs of characters and the values are the scores, "
"e.g. ('A', 'C') : 2.5."),
'c': (['match_fn'],
"match_fn is a callback function that takes two "
"characters and returns the score between them."),
}
# penalty code -> tuple of (parameters, docstring)
penalty2args = {
'x': ([], ''),
's': (['open', 'extend'],
"open and extend are the gap penalties when a gap is "
"opened and extended. They should be negative."),
'd': (['openA', 'extendA', 'openB', 'extendB'],
"openA and extendA are the gap penalties for sequenceA, "
"and openB and extendB for sequeneB. The penalties "
"should be negative."),
'c': (['gap_A_fn', 'gap_B_fn'],
"gap_A_fn and gap_B_fn are callback functions that takes "
"(1) the index where the gap is opened, and (2) the length "
"of the gap. They should return a gap penalty."),
}
def __init__(self, name):
# Check to make sure the name of the function is
# reasonable.
if name.startswith("global"):
if len(name) != 8:
raise AttributeError("function should be globalXX")
elif name.startswith("local"):
if len(name) != 7:
raise AttributeError("function should be localXX")
else:
raise AttributeError(name)
align_type, match_type, penalty_type = \
name[:-2], name[-2], name[-1]
try:
match_args, match_doc = self.match2args[match_type]
except KeyError:
raise AttributeError("unknown match type %r" % match_type)
try:
penalty_args, penalty_doc = self.penalty2args[penalty_type]
except KeyError:
raise AttributeError("unknown penalty type %r" % penalty_type)
# Now get the names of the parameters to this function.
param_names = ['sequenceA', 'sequenceB']
param_names.extend(match_args)
param_names.extend(penalty_args)
self.function_name = name
self.align_type = align_type
self.param_names = param_names
self.__name__ = self.function_name
# Set the doc string.
doc = "%s(%s) -> alignments\n" % (
self.__name__, ', '.join(self.param_names))
if match_doc:
doc += "\n%s\n" % match_doc
if penalty_doc:
doc += "\n%s\n" % penalty_doc
doc += ("""\
\nalignments is a list of tuples (seqA, seqB, score, begin, end).
seqA and seqB are strings showing the alignment between the
sequences. score is the score of the alignment. begin and end
are indexes into seqA and seqB that indicate the where the
alignment occurs.
""")
self.__doc__ = doc
def decode(self, *args, **keywds):
# Decode the arguments for the _align function. keywds
# will get passed to it, so translate the arguments to
# this function into forms appropriate for _align.
keywds = keywds.copy()
if len(args) != len(self.param_names):
raise TypeError("%s takes exactly %d argument (%d given)"
% (self.function_name, len(self.param_names),
len(args)))
i = 0
while i < len(self.param_names):
if self.param_names[i] in [
'sequenceA', 'sequenceB',
'gap_A_fn', 'gap_B_fn', 'match_fn']:
keywds[self.param_names[i]] = args[i]
i += 1
elif self.param_names[i] == 'match':
assert self.param_names[i + 1] == 'mismatch'
match, mismatch = args[i], args[i + 1]
keywds['match_fn'] = identity_match(match, mismatch)
i += 2
elif self.param_names[i] == 'match_dict':
keywds['match_fn'] = dictionary_match(args[i])
i += 1
elif self.param_names[i] == 'open':
assert self.param_names[i + 1] == 'extend'
open, extend = args[i], args[i + 1]
pe = keywds.get('penalize_extend_when_opening', 0)
keywds['gap_A_fn'] = affine_penalty(open, extend, pe)
keywds['gap_B_fn'] = affine_penalty(open, extend, pe)
i += 2
elif self.param_names[i] == 'openA':
assert self.param_names[i + 3] == 'extendB'
openA, extendA, openB, extendB = args[i:i + 4]
pe = keywds.get('penalize_extend_when_opening', 0)
keywds['gap_A_fn'] = affine_penalty(openA, extendA, pe)
keywds['gap_B_fn'] = affine_penalty(openB, extendB, pe)
i += 4
else:
raise ValueError("unknown parameter %r"
% self.param_names[i])
# Here are the default parameters for _align. Assign
# these to keywds, unless already specified.
pe = keywds.get('penalize_extend_when_opening', 0)
default_params = [
('match_fn', identity_match(1, 0)),
('gap_A_fn', affine_penalty(0, 0, pe)),
('gap_B_fn', affine_penalty(0, 0, pe)),
('penalize_extend_when_opening', 0),
('penalize_end_gaps', self.align_type == 'global'),
('align_globally', self.align_type == 'global'),
('gap_char', '-'),
('force_generic', 0),
('score_only', 0),
('one_alignment_only', 0),
]
for name, default in default_params:
keywds[name] = keywds.get(name, default)
value = keywds['penalize_end_gaps']
try:
n = len(value)
except TypeError:
keywds['penalize_end_gaps'] = tuple([value] * 2)
else:
assert n == 2
return keywds
def __call__(self, *args, **keywds):
keywds = self.decode(*args, **keywds)
return _align(**keywds)
def __getattr__(self, attr):
return self.alignment_function(attr)
align = align()
def _align(sequenceA, sequenceB, match_fn, gap_A_fn, gap_B_fn,
penalize_extend_when_opening, penalize_end_gaps,
align_globally, gap_char, force_generic, score_only,
one_alignment_only):
"""Return a list of alignments between two sequences or its score"""
if not sequenceA or not sequenceB:
return []
try:
sequenceA + gap_char
sequenceB + gap_char
except TypeError:
raise TypeError('both sequences must be of the same type, either ' +
'string/sequence object or list. Gap character must ' +
'fit the sequence type (string or list)')
if not isinstance(sequenceA, list):
sequenceA = str(sequenceA)
if not isinstance(sequenceB, list):
sequenceB = str(sequenceB)
if (not force_generic) and isinstance(gap_A_fn, affine_penalty) \
and isinstance(gap_B_fn, affine_penalty):
open_A, extend_A = gap_A_fn.open, gap_A_fn.extend
open_B, extend_B = gap_B_fn.open, gap_B_fn.extend
x = _make_score_matrix_fast(
sequenceA, sequenceB, match_fn, open_A, extend_A, open_B,
extend_B, penalize_extend_when_opening, penalize_end_gaps,
align_globally, score_only)
else:
x = _make_score_matrix_generic(
sequenceA, sequenceB, match_fn, gap_A_fn, gap_B_fn,
penalize_end_gaps, align_globally, score_only)
score_matrix, trace_matrix = x
# print("SCORE %s" % print_matrix(score_matrix))
# print("TRACEBACK %s" % print_matrix(trace_matrix))
# Look for the proper starting point. Get a list of all possible
# starting points.
starts = _find_start(score_matrix, align_globally)
# Find the highest score.
best_score = max([x[0] for x in starts])
# If they only want the score, then return it.
if score_only:
return best_score
tolerance = 0 # XXX do anything with this?
# Now find all the positions within some tolerance of the best
# score.
starts = [(score, pos) for score, pos in starts
if rint(abs(score - best_score)) <= rint(tolerance)]
# Recover the alignments and return them.
return _recover_alignments(sequenceA, sequenceB, starts, score_matrix,
trace_matrix, align_globally, gap_char,
one_alignment_only, gap_A_fn, gap_B_fn)
def _make_score_matrix_generic(sequenceA, sequenceB, match_fn, gap_A_fn,
gap_B_fn, penalize_end_gaps, align_globally,
score_only):
"""Generate a score and traceback matrix according to Needleman-Wunsch
This implementation allows the usage of general gap functions and is rather
slow. It is automatically called if you define your own gap functions. You
can force the usage of this method with ``force_generic=True``.
"""
# Create the score and traceback matrices. These should be in the
# shape:
# sequenceA (down) x sequenceB (across)
lenA, lenB = len(sequenceA), len(sequenceB)
score_matrix, trace_matrix = [], []
for i in range(lenA + 1):
score_matrix.append([None] * (lenB + 1))
if not score_only:
trace_matrix.append([None] * (lenB + 1))
# Initialize first row and column with gap scores. This is like opening up
# i gaps at the beginning of sequence A or B.
for i in range(lenA + 1):
if penalize_end_gaps[1]: # [1]:gap in sequence B
score = gap_B_fn(0, i)
else:
score = 0
score_matrix[i][0] = score
for i in range(lenB + 1):
if penalize_end_gaps[0]: # [0]:gap in sequence A
score = gap_A_fn(0, i)
else:
score = 0
score_matrix[0][i] = score
# Fill in the score matrix. Each position in the matrix
# represents an alignment between a character from sequence A to
# one in sequence B. As I iterate through the matrix, find the
# alignment by choose the best of:
# 1) extending a previous alignment without gaps
# 2) adding a gap in sequenceA
# 3) adding a gap in sequenceB
for row in range(1, lenA + 1):
for col in range(1, lenB + 1):
# First, calculate the score that would occur by extending
# the alignment without gaps.
nogap_score = score_matrix[row - 1][col - 1] + \
match_fn(sequenceA[row - 1], sequenceB[col - 1])
# Try to find a better score by opening gaps in sequenceA.
# Do this by checking alignments from each column in the row.
# Each column represents a different character to align from,
# and thus a different length gap.
# Although the gap function does not distinguish between opening
# and extending a gap, we distinguish them for the backtrace.
if not penalize_end_gaps[0] and row == lenA:
row_open = score_matrix[row][col - 1]
row_extend = max([score_matrix[row][x] for x in range(col)])
else:
row_open = score_matrix[row][col - 1] + gap_A_fn(row, 1)
row_extend = max([score_matrix[row][x] + gap_A_fn(row, col - x)
for x in range(col)])
# Try to find a better score by opening gaps in sequenceB.
if not penalize_end_gaps[1] and col == lenB:
col_open = score_matrix[row - 1][col]
col_extend = max([score_matrix[x][col] for x in range(row)])
else:
col_open = score_matrix[row - 1][col] + gap_B_fn(col, 1)
col_extend = max([score_matrix[x][col] + gap_B_fn(col, row - x)
for x in range(row)])
best_score = max(nogap_score, row_open, row_extend, col_open,
col_extend)
if not align_globally and best_score < 0:
score_matrix[row][col] = 0
else:
score_matrix[row][col] = best_score
# The backtrace is encoded binary. See _make_score_matrix_fast
# for details.
if not score_only:
trace_score = 0
if rint(nogap_score) == rint(best_score):
trace_score += 2
if rint(row_open) == rint(best_score):
trace_score += 1
if rint(row_extend) == rint(best_score):
trace_score += 8
if rint(col_open) == rint(best_score):
trace_score += 4
if rint(col_extend) == rint(best_score):
trace_score += 16
trace_matrix[row][col] = trace_score
return score_matrix, trace_matrix
def _make_score_matrix_fast(sequenceA, sequenceB, match_fn, open_A, extend_A,
open_B, extend_B, penalize_extend_when_opening,
penalize_end_gaps, align_globally, score_only):
"""Generate a score and traceback matrix according to Gotoh"""
# This is an implementation of the Needleman-Wunsch dynamic programming
# algorithm as modified by Gotoh, implementing affine gap penalties.
# In short, we have three matrices, holding scores for alignments ending
# in (1) a match/mismatch, (2) a gap in sequence A, and (3) a gap in
# sequence B, respectively. However, we can combine them in one matrix,
# which holds the best scores, and store only those values from the
# other matrices that are actually used for the next step of calculation.
# The traceback matrix holds the positions for backtracing the alignment.
first_A_gap = calc_affine_penalty(1, open_A, extend_A,
penalize_extend_when_opening)
first_B_gap = calc_affine_penalty(1, open_B, extend_B,
penalize_extend_when_opening)
# Create the score and traceback matrices. These should be in the
# shape:
# sequenceA (down) x sequenceB (across)
lenA, lenB = len(sequenceA), len(sequenceB)
score_matrix, trace_matrix = [], []
for i in range(lenA + 1):
score_matrix.append([None] * (lenB + 1))
if not score_only:
trace_matrix.append([None] * (lenB + 1))
# Initialize first row and column with gap scores. This is like opening up
# i gaps at the beginning of sequence A or B.
for i in range(lenA + 1):
if penalize_end_gaps[1]: # [1]:gap in sequence B
score = calc_affine_penalty(i, open_B, extend_B,
penalize_extend_when_opening)
else:
score = 0
score_matrix[i][0] = score
for i in range(lenB + 1):
if penalize_end_gaps[0]: # [0]:gap in sequence A
score = calc_affine_penalty(i, open_A, extend_A,
penalize_extend_when_opening)
else:
score = 0
score_matrix[0][i] = score
# Now initialize the col 'matrix'. Actually this is only a one dimensional
# list, since we only need the col scores from the last row.
col_score = [0] # Best score, if actual alignment ends with gap in seqB
for i in range(1, lenB + 1):
col_score.append(calc_affine_penalty(i, 2 * open_B, extend_B,
penalize_extend_when_opening))
# The row 'matrix' is calculated on the fly. Here we only need the actual
# score.
# Now, filling up the score and traceback matrices:
for row in range(1, lenA + 1):
row_score = calc_affine_penalty(row, 2 * open_A, extend_A,
penalize_extend_when_opening)
for col in range(1, lenB + 1):
# Calculate the score that would occur by extending the
# alignment without gaps.
nogap_score = score_matrix[row - 1][col - 1] + \
match_fn(sequenceA[row - 1], sequenceB[col - 1])
# Check the score that would occur if there were a gap in
# sequence A. This could come from opening a new gap or
# extending an existing one.
# A gap in sequence A can also be opened if it follows a gap in
# sequence B: A-
# -B
if not penalize_end_gaps[0] and row == lenA:
row_open = score_matrix[row][col - 1]
row_extend = row_score
else:
row_open = score_matrix[row][col - 1] + first_A_gap
row_extend = row_score + extend_A
row_score = max(row_open, row_extend)
# The same for sequence B:
if not penalize_end_gaps[1] and col == lenB:
col_open = score_matrix[row - 1][col]
col_extend = col_score[col]
else:
col_open = score_matrix[row - 1][col] + first_B_gap
col_extend = col_score[col] + extend_B
col_score[col] = max(col_open, col_extend)
best_score = max(nogap_score, col_score[col], row_score)
if not align_globally and best_score < 0:
score_matrix[row][col] = 0
else:
score_matrix[row][col] = best_score
# Now the trace_matrix. The edges of the backtrace are encoded
# binary: 1 = open gap in seqA, 2 = match/mismatch of seqA and
# seqB, 4 = open gap in seqB, 8 = extend gap in seqA, and
# 16 = extend gap in seqA. This values can be summed up.
# Thus, the trace score 7 means that the best score can either
# come from opening a gap in seqA (=1), pairing two characters
# of seqA and seqB (+2=3) or opening a gap in seqB (+4=7).
# However, if we only want the score we don't care about the trace.
if not score_only:
row_score_rint = rint(row_score)
col_score_rint = rint(col_score[col])
row_trace_score = 0
col_trace_score = 0
if rint(row_open) == row_score_rint:
row_trace_score += 1 # Open gap in seqA
if rint(row_extend) == row_score_rint:
row_trace_score += 8 # Extend gap in seqA
if rint(col_open) == col_score_rint:
col_trace_score += 4 # Open gap in seqB
if rint(col_extend) == col_score_rint:
col_trace_score += 16 # Extend gap in seqB
trace_score = 0
best_score_rint = rint(best_score)
if rint(nogap_score) == best_score_rint:
trace_score += 2 # Align seqA with seqB
if row_score_rint == best_score_rint:
trace_score += row_trace_score
if col_score_rint == best_score_rint:
trace_score += col_trace_score
trace_matrix[row][col] = trace_score
return score_matrix, trace_matrix
def _recover_alignments(sequenceA, sequenceB, starts, score_matrix,
trace_matrix, align_globally, gap_char,
one_alignment_only, gap_A_fn, gap_B_fn):
"""Do the backtracing and return a list of alignments"""
# Recover the alignments by following the traceback matrix. This
# is a recursive procedure, but it's implemented here iteratively
# with a stack.
lenA, lenB = len(sequenceA), len(sequenceB)
ali_seqA, ali_seqB = sequenceA[0:0], sequenceB[0:0]
tracebacks = []
in_process = []
for start in starts:
score, (row, col) = start
begin = 0
if align_globally:
end = None
else:
# Local alignments should start with a positive score!
if score <= 0:
continue
# Local alignments should not end with a gap!:
trace = trace_matrix[row][col]
if (trace - trace % 2) % 4 == 2: # Trace contains 'nogap', fine!
trace_matrix[row][col] = 2
# If not, don't start here!
else:
continue
end = -max(lenA - row, lenB - col)
if not end:
end = None
col_distance = lenB - col
row_distance = lenA - row
ali_seqA = ((col_distance - row_distance) * gap_char +
sequenceA[lenA - 1:row - 1:-1])
ali_seqB = ((row_distance - col_distance) * gap_char +
sequenceB[lenB - 1:col - 1:-1])
in_process += [(ali_seqA, ali_seqB, end, row, col, False,
trace_matrix[row][col])]
while in_process and len(tracebacks) < MAX_ALIGNMENTS:
# Although we allow a gap in seqB to be followed by a gap in seqA,
# we don't want to allow it the other way round, since this would
# give redundant alignments of type: A- vs. -A
# -B B-
# Thus we need to keep track if a gap in seqA was opened (col_gap)
# and stop the backtrace (dead_end) if a gap in seqB follows.
dead_end = False
ali_seqA, ali_seqB, end, row, col, col_gap, trace = in_process.pop()
while (row > 0 or col > 0) and not dead_end:
cache = (ali_seqA[:], ali_seqB[:], end, row, col, col_gap)
# If trace is empty we have reached at least one border of the
# matrix or the end of a local aligment. Just add the rest of
# the sequence(s) and fill with gaps if neccessary.
if not trace:
if col and col_gap:
dead_end = True
else:
ali_seqA, ali_seqB = _finish_backtrace(
sequenceA, sequenceB, ali_seqA, ali_seqB,
row, col, gap_char)
break
elif trace % 2 == 1: # = row open = open gap in seqA
trace -= 1
if col_gap:
dead_end = True
else:
col -= 1
ali_seqA += gap_char
ali_seqB += sequenceB[col]
col_gap = False
elif trace % 4 == 2: # = match/mismatch of seqA with seqB
trace -= 2
row -= 1
col -= 1
ali_seqA += sequenceA[row]
ali_seqB += sequenceB[col]
col_gap = False
elif trace % 8 == 4: # = col open = open gap in seqB
trace -= 4
row -= 1
ali_seqA += sequenceA[row]
ali_seqB += gap_char
col_gap = True
elif trace in (8, 24): # = row extend = extend gap in seqA
trace -= 8
if col_gap:
dead_end = True
else:
col_gap = False
# We need to find the starting point of the extended gap
x = _find_gap_open(sequenceA, sequenceB, ali_seqA,
ali_seqB, end, row, col, col_gap,
gap_char, score_matrix, trace_matrix,
in_process, gap_A_fn, col, row, 'col')
ali_seqA, ali_seqB, row, col, in_process, dead_end = x
elif trace == 16: # = col extend = extend gap in seqB
trace -= 16
col_gap = True
x = _find_gap_open(sequenceA, sequenceB, ali_seqA, ali_seqB,
end, row, col, col_gap, gap_char,
score_matrix, trace_matrix, in_process,
gap_B_fn, row, col, 'row')
ali_seqA, ali_seqB, row, col, in_process, dead_end = x
if trace: # There is another path to follow...
cache += (trace,)
in_process.append(cache)
trace = trace_matrix[row][col]
if not align_globally and score_matrix[row][col] <= 0:
begin = max(row, col)
trace = 0
if not dead_end:
tracebacks.append((ali_seqA[::-1], ali_seqB[::-1], score, begin,
end))
if one_alignment_only:
break
return _clean_alignments(tracebacks)
def _find_start(score_matrix, align_globally):
"""Return a list of starting points (score, (row, col)).
Indicating every possible place to start the tracebacks.
"""
nrows, ncols = len(score_matrix), len(score_matrix[0])
# In this implementation of the global algorithm, the start will always be
# the bottom right corner of the matrix.
if align_globally:
starts = [(score_matrix[-1][-1], (nrows - 1, ncols - 1))]
else:
starts = []
for row in range(nrows):
for col in range(ncols):
score = score_matrix[row][col]
starts.append((score, (row, col)))
return starts
def _clean_alignments(alignments):
"""Take a list of alignments and return a cleaned version."""
# Remove duplicates, make sure begin and end are set correctly, remove
# empty alignments.
unique_alignments = []
for align in alignments:
if align not in unique_alignments:
unique_alignments.append(align)
i = 0
while i < len(unique_alignments):
seqA, seqB, score, begin, end = unique_alignments[i]
# Make sure end is set reasonably.
if end is None: # global alignment
end = len(seqA)
elif end < 0:
end = end + len(seqA)
# If there's no alignment here, get rid of it.
if begin >= end:
del unique_alignments[i]
continue
unique_alignments[i] = seqA, seqB, score, begin, end
i += 1
return unique_alignments
def _finish_backtrace(sequenceA, sequenceB, ali_seqA, ali_seqB, row, col,
gap_char):
"""Add remaining sequences and fill with gaps if neccessary"""
if row:
ali_seqA += sequenceA[row - 1::-1]
if col:
ali_seqB += sequenceB[col - 1::-1]
if row > col:
ali_seqB += gap_char * (len(ali_seqA) - len(ali_seqB))
elif col > row:
ali_seqA += gap_char * (len(ali_seqB) - len(ali_seqA))
return ali_seqA, ali_seqB
def _find_gap_open(sequenceA, sequenceB, ali_seqA, ali_seqB, end, row, col,
col_gap, gap_char, score_matrix, trace_matrix, in_process,
gap_fn, target, index, direction):
"""Find the starting point(s) of the extended gap"""
dead_end = False
target_score = score_matrix[row][col]
for n in range(target):
if direction == 'col':
col -= 1
ali_seqA += gap_char
ali_seqB += sequenceB[col]
else:
row -= 1
ali_seqA += sequenceA[row]
ali_seqB += gap_char
actual_score = score_matrix[row][col] + gap_fn(index, n + 1)
if rint(actual_score) == rint(target_score) and n > 0:
if not trace_matrix[row][col]:
break
else:
in_process.append((ali_seqA[:], ali_seqB[:], end, row, col,
col_gap, trace_matrix[row][col]))
if not trace_matrix[row][col]:
dead_end = True
return ali_seqA, ali_seqB, row, col, in_process, dead_end
_PRECISION = 1000
def rint(x, precision=_PRECISION):
return int(x * precision + 0.5)
class identity_match(object):
"""identity_match([match][, mismatch]) -> match_fn
Create a match function for use in an alignment. match and
mismatch are the scores to give when two residues are equal or
unequal. By default, match is 1 and mismatch is 0.
"""
def __init__(self, match=1, mismatch=0):
self.match = match
self.mismatch = mismatch
def __call__(self, charA, charB):
if charA == charB:
return self.match
return self.mismatch
class dictionary_match(object):
"""dictionary_match(score_dict[, symmetric]) -> match_fn
Create a match function for use in an alignment. score_dict is a
dictionary where the keys are tuples (residue 1, residue 2) and
the values are the match scores between those residues. symmetric
is a flag that indicates whether the scores are symmetric. If
true, then if (res 1, res 2) doesn't exist, I will use the score
at (res 2, res 1).
"""
def __init__(self, score_dict, symmetric=1):
self.score_dict = score_dict
self.symmetric = symmetric
def __call__(self, charA, charB):
if self.symmetric and (charA, charB) not in self.score_dict:
# If the score dictionary is symmetric, then look up the
# score both ways.
charB, charA = charA, charB
return self.score_dict[(charA, charB)]
class affine_penalty(object):
"""affine_penalty(open, extend[, penalize_extend_when_opening]) -> gap_fn
Create a gap function for use in an alignment.
"""
def __init__(self, open, extend, penalize_extend_when_opening=0):
if open > 0 or extend > 0:
raise ValueError("Gap penalties should be non-positive.")
if not penalize_extend_when_opening and (extend < open):
raise ValueError("Gap opening penalty should be higher than " +
"gap extension penalty (or equal)")
self.open, self.extend = open, extend
self.penalize_extend_when_opening = penalize_extend_when_opening
def __call__(self, index, length):
return calc_affine_penalty(
length, self.open, self.extend, self.penalize_extend_when_opening)
def calc_affine_penalty(length, open, extend, penalize_extend_when_opening):
if length <= 0:
return 0
penalty = open + extend * length
if not penalize_extend_when_opening:
penalty -= extend
return penalty
def print_matrix(matrix):
"""print_matrix(matrix)
Print out a matrix. For debugging purposes.
"""
# Transpose the matrix and get the length of the values in each column.
matrixT = [[] for x in range(len(matrix[0]))]
for i in range(len(matrix)):
for j in range(len(matrix[i])):
matrixT[j].append(len(str(matrix[i][j])))
ndigits = [max(x) for x in matrixT]
for i in range(len(matrix)):
# Using string formatting trick to add leading spaces,
print(" ".join("%*s " % (ndigits[j], matrix[i][j])
for j in range(len(matrix[i]))))
def format_alignment(align1, align2, score, begin, end):
"""format_alignment(align1, align2, score, begin, end) -> string
Format the alignment prettily into a string.
"""
s = []
s.append("%s\n" % align1)
s.append("%s%s\n" % (" " * begin, "|" * (end - begin)))
s.append("%s\n" % align2)
s.append(" Score=%g\n" % score)
return ''.join(s)
# Try and load C implementations of functions. If I can't,
# then throw a warning and use the pure Python implementations.
try:
from .cpairwise2 import rint, _make_score_matrix_fast
except ImportError:
warnings.warn('Import of C module failed. Falling back to pure Python ' +
'implementation. This may be slooow...', BiopythonWarning)
|