1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
|
\chapter{Multiple Sequence Alignment objects}
\label{chapter:Bio.AlignIO}
This chapter is about Multiple Sequence Alignments, by which we mean a collection of
multiple sequences which have been aligned together -- usually with the insertion of gap
characters, and addition of leading or trailing gaps -- such that all the sequence
strings are the same length. Such an alignment can be regarded as a matrix of letters,
where each row is held as a \verb|SeqRecord| object internally.
We will introduce the \verb|MultipleSeqAlignment| object which holds this kind of data,
and the \verb|Bio.AlignIO| module for reading and writing them as various file formats
(following the design of the \verb|Bio.SeqIO| module from the previous chapter).
Note that both \verb|Bio.SeqIO| and \verb|Bio.AlignIO| can read and write sequence
alignment files. The appropriate choice will depend largely on what you want to do
with the data.
The final part of this chapter is about our command line wrappers for common multiple
sequence alignment tools like ClustalW and MUSCLE.
\section{Parsing or Reading Sequence Alignments}
We have two functions for reading in sequence alignments, \verb|Bio.AlignIO.read()| and \verb|Bio.AlignIO.parse()| which following the convention introduced in \verb|Bio.SeqIO| are for files containing one or multiple alignments respectively.
Using \verb|Bio.AlignIO.parse()| will return an {\it iterator} which gives \verb|MultipleSeqAlignment| objects. Iterators are typically used in a for loop. Examples of situations where you will have multiple different alignments include resampled alignments from the PHYLIP tool \verb|seqboot|, or multiple pairwise alignments from the EMBOSS tools \verb|water| or \verb|needle|, or Bill Pearson's FASTA tools.
However, in many situations you will be dealing with files which contain only a single alignment. In this case, you should use the \verb|Bio.AlignIO.read()| function which returns a single \verb|MultipleSeqAlignment| object.
Both functions expect two mandatory arguments:
\begin{enumerate}
\item The first argument is a {\it handle} to read the data from, typically an open file (see Section~\ref{sec:appendix-handles}), or a filename.
\item The second argument is a lower case string specifying the alignment format. As in \verb|Bio.SeqIO| we don't try and guess the file format for you! See \url{http://biopython.org/wiki/AlignIO} for a full listing of supported formats.
\end{enumerate}
\noindent There is also an optional \verb|seq_count| argument which is discussed in Section~\ref{sec:AlignIO-count-argument} below for dealing with ambiguous file formats which may contain more than one alignment.
A further optional \verb|alphabet| argument allowing you to specify the expected alphabet. This can be useful as many alignment file formats do not explicitly label the sequences as RNA, DNA or protein -- which means \verb|Bio.AlignIO| will default to using a generic alphabet.
\subsection{Single Alignments}
As an example, consider the following annotation rich protein alignment in the PFAM or Stockholm file format:
\begin{verbatim}
# STOCKHOLM 1.0
#=GS COATB_BPIKE/30-81 AC P03620.1
#=GS COATB_BPIKE/30-81 DR PDB; 1ifl ; 1-52;
#=GS Q9T0Q8_BPIKE/1-52 AC Q9T0Q8.1
#=GS COATB_BPI22/32-83 AC P15416.1
#=GS COATB_BPM13/24-72 AC P69541.1
#=GS COATB_BPM13/24-72 DR PDB; 2cpb ; 1-49;
#=GS COATB_BPM13/24-72 DR PDB; 2cps ; 1-49;
#=GS COATB_BPZJ2/1-49 AC P03618.1
#=GS Q9T0Q9_BPFD/1-49 AC Q9T0Q9.1
#=GS Q9T0Q9_BPFD/1-49 DR PDB; 1nh4 A; 1-49;
#=GS COATB_BPIF1/22-73 AC P03619.2
#=GS COATB_BPIF1/22-73 DR PDB; 1ifk ; 1-50;
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
#=GR COATB_BPIKE/30-81 SS -HHHHHHHHHHHHHH--HHHHHHHH--HHHHHHHHHHHHHHHHHHHHH----
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
COATB_BPM13/24-72 AEGDDP...AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR COATB_BPM13/24-72 SS ---S-T...CHCHHHHCCCCTCCCTTCHHHHHHHHHHHHHHHHHHHHCTT--
COATB_BPZJ2/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
Q9T0Q9_BPFD/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR Q9T0Q9_BPFD/1-49 SS ------...-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH--
COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
#=GR COATB_BPIF1/22-73 SS XX-HHHH--HHHHHH--HHHHHHH--HHHHHHHHHHHHHHHHHHHHHHH---
#=GC SS_cons XHHHHHHHHHHHHHHHCHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHHHC--
#=GC seq_cons AEssss...AptAhDSLpspAT-hIu.sWshVsslVsAsluIKLFKKFsSKA
//
\end{verbatim}
This is the seed alignment for the Phage\_Coat\_Gp8 (PF05371) PFAM entry, downloaded from a now out of date release of PFAM from \url{http://pfam.sanger.ac.uk/}. We can load this file as follows (assuming it has been saved to disk as ``PF05371\_seed.sth'' in the current working directory):
%doctest examples
\begin{verbatim}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
\end{verbatim}
\noindent This code will print out a summary of the alignment:
%cont-doctest
\begin{verbatim}
>>> print(alignment)
SingleLetterAlphabet() alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
\end{verbatim}
You'll notice in the above output the sequences have been truncated. We could instead write our own code to format this as we please by iterating over the rows as \verb|SeqRecord| objects:
%doctest examples
\begin{verbatim}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Alignment length %i" % alignment.get_alignment_length())
Alignment length 52
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73
\end{verbatim}
You could also use the alignment object's \verb|format| method to show it in a particular file format -- see Section~\ref{sec:alignment-format-method} for details.
Did you notice in the raw file above that several of the sequences include database cross-references to the PDB and the associated known secondary structure? Try this:
%cont-doctest
\begin{verbatim}
>>> for record in alignment:
... if record.dbxrefs:
... print("%s %s" % (record.id, record.dbxrefs))
COATB_BPIKE/30-81 ['PDB; 1ifl ; 1-52;']
COATB_BPM13/24-72 ['PDB; 2cpb ; 1-49;', 'PDB; 2cps ; 1-49;']
Q9T0Q9_BPFD/1-49 ['PDB; 1nh4 A; 1-49;']
COATB_BPIF1/22-73 ['PDB; 1ifk ; 1-50;']
\end{verbatim}
\noindent To have a look at all the sequence annotation, try this:
\begin{verbatim}
>>> for record in alignment:
... print(record)
\end{verbatim}
Sanger provide a nice web interface at \url{http://pfam.sanger.ac.uk/family?acc=PF05371} which will actually let you download this alignment in several other formats. This is what the file looks like in the FASTA file format:
\begin{verbatim}
>COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
>Q9T0Q8_BPIKE/1-52
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
>COATB_BPI22/32-83
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
>COATB_BPM13/24-72
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
>Q9T0Q9_BPFD/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPIF1/22-73
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
\end{verbatim}
\noindent Note the website should have an option about showing gaps as periods (dots) or dashes, we've shown dashes above. Assuming you download and save this as file ``PF05371\_seed.faa'' then you can load it with almost exactly the same code:
\begin{verbatim}
from Bio import AlignIO
alignment = AlignIO.read("PF05371_seed.faa", "fasta")
print(alignment)
\end{verbatim}
All that has changed in this code is the filename and the format string. You'll get the same output as before, the sequences and record identifiers are the same.
However, as you should expect, if you check each \verb|SeqRecord| there is no annotation nor database cross-references because these are not included in the FASTA file format.
Note that rather than using the Sanger website, you could have used \verb|Bio.AlignIO| to convert the original Stockholm format file into a FASTA file yourself (see below).
With any supported file format, you can load an alignment in exactly the same way just by changing the format string. For example, use ``phylip'' for PHYLIP files, ``nexus'' for NEXUS files or ``emboss'' for the alignments output by the EMBOSS tools. There is a full listing on the wiki page (\url{http://biopython.org/wiki/AlignIO}) and in the built in documentation (also \href{http://biopython.org/DIST/docs/api/Bio.AlignIO-module.html}{online}):
\begin{verbatim}
>>> from Bio import AlignIO
>>> help(AlignIO)
...
\end{verbatim}
\subsection{Multiple Alignments}
The previous section focused on reading files containing a single alignment. In general however, files can contain more than one alignment, and to read these files we must use the \verb|Bio.AlignIO.parse()| function.
Suppose you have a small alignment in PHYLIP format:
\begin{verbatim}
5 6
Alpha AACAAC
Beta AACCCC
Gamma ACCAAC
Delta CCACCA
Epsilon CCAAAC
\end{verbatim}
If you wanted to bootstrap a phylogenetic tree using the PHYLIP tools, one of the steps would be to create a set of many resampled alignments using the tool \verb|bootseq|. This would give output something like this, which has been abbreviated for conciseness:
\begin{verbatim}
5 6
Alpha AAACCA
Beta AAACCC
Gamma ACCCCA
Delta CCCAAC
Epsilon CCCAAA
5 6
Alpha AAACAA
Beta AAACCC
Gamma ACCCAA
Delta CCCACC
Epsilon CCCAAA
5 6
Alpha AAAAAC
Beta AAACCC
Gamma AACAAC
Delta CCCCCA
Epsilon CCCAAC
...
5 6
Alpha AAAACC
Beta ACCCCC
Gamma AAAACC
Delta CCCCAA
Epsilon CAAACC
\end{verbatim}
If you wanted to read this in using \verb|Bio.AlignIO| you could use:
%TODO - Replace the print blank line with print()?
\begin{verbatim}
from Bio import AlignIO
alignments = AlignIO.parse("resampled.phy", "phylip")
for alignment in alignments:
print(alignment)
print("")
\end{verbatim}
\noindent This would give the following output, again abbreviated for display:
\begin{verbatim}
SingleLetterAlphabet() alignment with 5 rows and 6 columns
AAACCA Alpha
AAACCC Beta
ACCCCA Gamma
CCCAAC Delta
CCCAAA Epsilon
SingleLetterAlphabet() alignment with 5 rows and 6 columns
AAACAA Alpha
AAACCC Beta
ACCCAA Gamma
CCCACC Delta
CCCAAA Epsilon
SingleLetterAlphabet() alignment with 5 rows and 6 columns
AAAAAC Alpha
AAACCC Beta
AACAAC Gamma
CCCCCA Delta
CCCAAC Epsilon
...
SingleLetterAlphabet() alignment with 5 rows and 6 columns
AAAACC Alpha
ACCCCC Beta
AAAACC Gamma
CCCCAA Delta
CAAACC Epsilon
\end{verbatim}
As with the function \verb|Bio.SeqIO.parse()|, using \verb|Bio.AlignIO.parse()| returns an iterator.
If you want to keep all the alignments in memory at once, which will allow you to access them in any order, then turn the iterator into a list:
\begin{verbatim}
from Bio import AlignIO
alignments = list(AlignIO.parse("resampled.phy", "phylip"))
last_align = alignments[-1]
first_align = alignments[0]
\end{verbatim}
\subsection{Ambiguous Alignments}
\label{sec:AlignIO-count-argument}
Many alignment file formats can explicitly store more than one alignment, and the division between each alignment is clear. However, when a general sequence file format has been used there is no such block structure. The most common such situation is when alignments have been saved in the FASTA file format. For example consider the following:
\begin{verbatim}
>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
\end{verbatim}
\noindent This could be a single alignment containing six sequences (with repeated identifiers). Or, judging from the identifiers, this is probably two different alignments each with three sequences, which happen to all have the same length.
What about this next example?
\begin{verbatim}
>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Delta
ACTACGGCTAGCACAGAAG
\end{verbatim}
\noindent Again, this could be a single alignment with six sequences. However this time based on the identifiers we might guess this is three pairwise alignments which by chance have all got the same lengths.
This final example is similar:
\begin{verbatim}
>Alpha
ACTACGACTAGCTCAG--G
>XXX
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG
>YYY
ACTACGGCAAGCACAGG
>Alpha
--ACTACGAC--TAGCTCAGG
>ZZZ
GGACTACGACAATAGCTCAGG
\end{verbatim}
\noindent In this third example, because of the differing lengths, this cannot be treated as a single alignment containing all six records. However, it could be three pairwise alignments.
Clearly trying to store more than one alignment in a FASTA file is not ideal. However, if you are forced to deal with these as input files \verb|Bio.AlignIO| can cope with the most common situation where all the alignments have the same number of records.
One example of this is a collection of pairwise alignments, which can be produced by the EMBOSS tools \verb|needle| and \verb|water| -- although in this situation, \verb|Bio.AlignIO| should be able to understand their native output using ``emboss'' as the format string.
To interpret these FASTA examples as several separate alignments, we can use \verb|Bio.AlignIO.parse()| with the optional \verb|seq_count| argument which specifies how many sequences are expected in each alignment (in these examples, 3, 2 and 2 respectively).
For example, using the third example as the input data:
%TODO - Replace the print blank line with print()?
\begin{verbatim}
for alignment in AlignIO.parse(handle, "fasta", seq_count=2):
print("Alignment length %i" % alignment.get_alignment_length())
for record in alignment:
print("%s - %s" % (record.seq, record.id))
print("")
\end{verbatim}
\noindent giving:
\begin{verbatim}
Alignment length 19
ACTACGACTAGCTCAG--G - Alpha
ACTACCGCTAGCTCAGAAG - XXX
Alignment length 17
ACTACGACTAGCTCAGG - Alpha
ACTACGGCAAGCACAGG - YYY
Alignment length 21
--ACTACGAC--TAGCTCAGG - Alpha
GGACTACGACAATAGCTCAGG - ZZZ
\end{verbatim}
Using \verb|Bio.AlignIO.read()| or \verb|Bio.AlignIO.parse()| without the \verb|seq_count| argument would give a single alignment containing all six records for the first two examples. For the third example, an exception would be raised because the lengths differ preventing them being turned into a single alignment.
If the file format itself has a block structure allowing \verb|Bio.AlignIO| to determine the number of sequences in each alignment directly, then the \verb|seq_count| argument is not needed. If it is supplied, and doesn't agree with the file contents, an error is raised.
Note that this optional \verb|seq_count| argument assumes each alignment in the file has the same number of sequences. Hypothetically you may come across stranger situations, for example a FASTA file containing several alignments each with a different number of sequences -- although I would love to hear of a real world example of this. Assuming you cannot get the data in a nicer file format, there is no straight forward way to deal with this using \verb|Bio.AlignIO|. In this case, you could consider reading in the sequences themselves using \verb|Bio.SeqIO| and batching them together to create the alignments as appropriate.
\section{Writing Alignments}
We've talked about using \verb|Bio.AlignIO.read()| and \verb|Bio.AlignIO.parse()| for alignment input (reading files), and now we'll look at \verb|Bio.AlignIO.write()| which is for alignment output (writing files). This is a function taking three arguments: some \verb|MultipleSeqAlignment| objects (or for backwards compatibility the obsolete \verb|Alignment| objects), a handle or filename to write to, and a sequence format.
Here is an example, where we start by creating a few \verb|MultipleSeqAlignment| objects the hard way (by hand, rather than by loading them from a file).
Note we create some \verb|SeqRecord| objects to construct the alignment from.
\begin{verbatim}
from Bio.Alphabet import generic_dna
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.Align import MultipleSeqAlignment
align1 = MultipleSeqAlignment([
SeqRecord(Seq("ACTGCTAGCTAG", generic_dna), id="Alpha"),
SeqRecord(Seq("ACT-CTAGCTAG", generic_dna), id="Beta"),
SeqRecord(Seq("ACTGCTAGDTAG", generic_dna), id="Gamma"),
])
align2 = MultipleSeqAlignment([
SeqRecord(Seq("GTCAGC-AG", generic_dna), id="Delta"),
SeqRecord(Seq("GACAGCTAG", generic_dna), id="Epsilon"),
SeqRecord(Seq("GTCAGCTAG", generic_dna), id="Zeta"),
])
align3 = MultipleSeqAlignment([
SeqRecord(Seq("ACTAGTACAGCTG", generic_dna), id="Eta"),
SeqRecord(Seq("ACTAGTACAGCT-", generic_dna), id="Theta"),
SeqRecord(Seq("-CTACTACAGGTG", generic_dna), id="Iota"),
])
my_alignments = [align1, align2, align3]
\end{verbatim}
\noindent Now we have a list of \verb|Alignment| objects, we'll write them to a PHYLIP format file:
\begin{verbatim}
from Bio import AlignIO
AlignIO.write(my_alignments, "my_example.phy", "phylip")
\end{verbatim}
\noindent And if you open this file in your favourite text editor it should look like this:
\begin{verbatim}
3 12
Alpha ACTGCTAGCT AG
Beta ACT-CTAGCT AG
Gamma ACTGCTAGDT AG
3 9
Delta GTCAGC-AG
Epislon GACAGCTAG
Zeta GTCAGCTAG
3 13
Eta ACTAGTACAG CTG
Theta ACTAGTACAG CT-
Iota -CTACTACAG GTG
\end{verbatim}
Its more common to want to load an existing alignment, and save that, perhaps after some simple manipulation like removing certain rows or columns.
Suppose you wanted to know how many alignments the \verb|Bio.AlignIO.write()| function wrote to the handle? If your alignments were in a list like the example above, you could just use \verb|len(my_alignments)|, however you can't do that when your records come from a generator/iterator. Therefore the \verb|Bio.AlignIO.write()| function returns the number of alignments written to the file.
\emph{Note} - If you tell the \verb|Bio.AlignIO.write()| function to write to a file that already exists, the old file will be overwritten without any warning.
\subsection{Converting between sequence alignment file formats}
\label{sec:converting-alignments}
Converting between sequence alignment file formats with \verb|Bio.AlignIO| works
in the same way as converting between sequence file formats with \verb|Bio.SeqIO|
(Section~\ref{sec:SeqIO-conversion}). We load generally the alignment(s) using
\verb|Bio.AlignIO.parse()| and then save them using the \verb|Bio.AlignIO.write()|
-- or just use the \verb|Bio.AlignIO.convert()| helper function.
For this example, we'll load the PFAM/Stockholm format file used earlier and save it as a Clustal W format file:
\begin{verbatim}
from Bio import AlignIO
count = AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.aln", "clustal")
print("Converted %i alignments" % count)
\end{verbatim}
Or, using \verb|Bio.AlignIO.parse()| and \verb|Bio.AlignIO.write()|:
\begin{verbatim}
from Bio import AlignIO
alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
count = AlignIO.write(alignments, "PF05371_seed.aln", "clustal")
print("Converted %i alignments" % count)
\end{verbatim}
The \verb|Bio.AlignIO.write()| function expects to be given multiple alignment objects. In the example above we gave it the alignment iterator returned by \verb|Bio.AlignIO.parse()|.
In this case, we know there is only one alignment in the file so we could have used \verb|Bio.AlignIO.read()| instead, but notice we have to pass this alignment to \verb|Bio.AlignIO.write()| as a single element list:
\begin{verbatim}
from Bio import AlignIO
alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
AlignIO.write([alignment], "PF05371_seed.aln", "clustal")
\end{verbatim}
Either way, you should end up with the same new Clustal W format file ``PF05371\_seed.aln'' with the following content:
\begin{verbatim}
CLUSTAL X (1.81) multiple sequence alignment
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
COATB_BPZJ2/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFAS
Q9T0Q9_BPFD/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVS
COATB_BPIKE/30-81 KA
Q9T0Q8_BPIKE/1-52 RA
COATB_BPI22/32-83 KA
COATB_BPM13/24-72 KA
COATB_BPZJ2/1-49 KA
Q9T0Q9_BPFD/1-49 KA
COATB_BPIF1/22-73 RA
\end{verbatim}
Alternatively, you could make a PHYLIP format file which we'll name ``PF05371\_seed.phy'':
\begin{verbatim}
from Bio import AlignIO
AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip")
\end{verbatim}
This time the output looks like this:
\begin{verbatim}
7 52
COATB_BPIK AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
Q9T0Q8_BPI AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
COATB_BPI2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
COATB_BPM1 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZJ AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9T0Q9_BPF AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
\end{verbatim}
One of the big handicaps of the original PHYLIP alignment file format is
that the sequence identifiers are strictly truncated at ten characters.
In this example, as you can see the resulting names are still unique -
but they are not very readable. As a result, a more relaxed variant of
the original PHYLIP format is now quite widely used:
\begin{verbatim}
from Bio import AlignIO
AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip-relaxed")
\end{verbatim}
This time the output looks like this, using a longer indentation to
allow all the identifers to be given in full::
\begin{verbatim}
7 52
COATB_BPIKE/30-81 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZJ2/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9T0Q9_BPFD/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF1/22-73 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
\end{verbatim}
If you have to work with the original strict PHYLIP format, then you may need to
compress the identifers somehow -- or assign your own names or numbering system.
This following bit of code manipulates the record identifiers before saving the output:
\begin{verbatim}
from Bio import AlignIO
alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
name_mapping = {}
for i, record in enumerate(alignment):
name_mapping[i] = record.id
record.id = "seq%i" % i
print(name_mapping)
AlignIO.write([alignment], "PF05371_seed.phy", "phylip")
\end{verbatim}
\noindent This code used a Python dictionary to record a simple mapping from the new sequence system to the original identifier:
\begin{verbatim}
{0: 'COATB_BPIKE/30-81', 1: 'Q9T0Q8_BPIKE/1-52', 2: 'COATB_BPI22/32-83', ...}
\end{verbatim}
\noindent Here is the new (strict) PHYLIP format output:
\begin{verbatim}
7 52
seq0 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
seq1 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
seq2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
seq3 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq4 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
seq5 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq6 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
\end{verbatim}
\noindent In general, because of the identifier limitation, working with
\textit{strict} PHYLIP file formats shouldn't be your first choice.
Using the PFAM/Stockholm format on the other hand allows you to record a lot of additional annotation too.
\subsection{Getting your alignment objects as formatted strings}
\label{sec:alignment-format-method}
The \verb|Bio.AlignIO| interface is based on handles, which means if you want to get your alignment(s) into a string in a particular file format you need to do a little bit more work (see below).
However, you will probably prefer to take advantage of the alignment object's \verb|format()| method.
This takes a single mandatory argument, a lower case string which is supported by \verb|Bio.AlignIO| as an output format. For example:
\begin{verbatim}
from Bio import AlignIO
alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
print(alignment.format("clustal"))
\end{verbatim}
As described in Section~\ref{sec:SeqRecord-format}, the \verb|SeqRecord| object has a similar method using output formats supported by \verb|Bio.SeqIO|.
Internally the \verb|format()| method is using the \verb|StringIO| string based handle and calling
\verb|Bio.AlignIO.write()|. You can do this in your own code if for example you are using an
older version of Biopython:
\begin{verbatim}
from Bio import AlignIO
from StringIO import StringIO
alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
out_handle = StringIO()
AlignIO.write(alignments, out_handle, "clustal")
clustal_data = out_handle.getvalue()
print(clustal_data)
\end{verbatim}
\section{Manipulating Alignments}
\label{sec:manipulating-alignments}
Now that we've covered loading and saving alignments, we'll look at what else you can do
with them.
\subsection{Slicing alignments}
First of all, in some senses the alignment objects act like a Python \verb|list| of
\verb|SeqRecord| objects (the rows). With this model in mind hopefully the actions
of \verb|len()| (the number of rows) and iteration (each row as a \verb|SeqRecord|)
make sense:
%doctest examples
\begin{verbatim}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Number of rows: %i" % len(alignment))
Number of rows: 7
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73
\end{verbatim}
You can also use the list-like \verb|append| and \verb|extend| methods to add
more rows to the alignment (as \verb|SeqRecord| objects). Keeping the list
metaphor in mind, simple slicing of the alignment should also make sense -
it selects some of the rows giving back another alignment object:
%cont-doctest
\begin{verbatim}
>>> print(alignment)
SingleLetterAlphabet() alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
>>> print(alignment[3:7])
SingleLetterAlphabet() alignment with 4 rows and 52 columns
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
\end{verbatim}
What if you wanted to select by column? Those of you who have used the NumPy
matrix or array objects won't be surprised at this - you use a double index.
%cont-doctest
\begin{verbatim}
>>> print(alignment[2, 6])
T
\end{verbatim}
\noindent Using two integer indices pulls out a single letter, short hand for this:
%cont-doctest
\begin{verbatim}
>>> print(alignment[2].seq[6])
T
\end{verbatim}
You can pull out a single column as a string like this:
%cont-doctest
\begin{verbatim}
>>> print(alignment[:, 6])
TTT---T
\end{verbatim}
You can also select a range of columns. For example, to pick out those same
three rows we extracted earlier, but take just their first six columns:
%cont-doctest
\begin{verbatim}
>>> print(alignment[3:6, :6])
SingleLetterAlphabet() alignment with 3 rows and 6 columns
AEGDDP COATB_BPM13/24-72
AEGDDP COATB_BPZJ2/1-49
AEGDDP Q9T0Q9_BPFD/1-49
\end{verbatim}
Leaving the first index as \verb|:| means take all the rows:
%cont-doctest
\begin{verbatim}
>>> print(alignment[:, :6])
SingleLetterAlphabet() alignment with 7 rows and 6 columns
AEPNAA COATB_BPIKE/30-81
AEPNAA Q9T0Q8_BPIKE/1-52
DGTSTA COATB_BPI22/32-83
AEGDDP COATB_BPM13/24-72
AEGDDP COATB_BPZJ2/1-49
AEGDDP Q9T0Q9_BPFD/1-49
FAADDA COATB_BPIF1/22-73
\end{verbatim}
This brings us to a neat way to remove a section. Notice columns
7, 8 and 9 which are gaps in three of the seven sequences:
%cont-doctest
\begin{verbatim}
>>> print(alignment[:, 6:9])
SingleLetterAlphabet() alignment with 7 rows and 3 columns
TNY COATB_BPIKE/30-81
TNY Q9T0Q8_BPIKE/1-52
TSY COATB_BPI22/32-83
--- COATB_BPM13/24-72
--- COATB_BPZJ2/1-49
--- Q9T0Q9_BPFD/1-49
TSQ COATB_BPIF1/22-73
\end{verbatim}
\noindent Again, you can slice to get everything after the ninth column:
%cont-doctest
\begin{verbatim}
>>> print(alignment[:, 9:])
SingleLetterAlphabet() alignment with 7 rows and 43 columns
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
ATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
AKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
\end{verbatim}
\noindent Now, the interesting thing is that addition of alignment objects works
by column. This lets you do this as a way to remove a block of columns:
%cont-doctest
\begin{verbatim}
>>> edited = alignment[:, :6] + alignment[:, 9:]
>>> print(edited)
SingleLetterAlphabet() alignment with 7 rows and 49 columns
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
\end{verbatim}
Another common use of alignment addition would be to combine alignments for
several different genes into a meta-alignment. Watch out though - the identifiers
need to match up (see Section~\ref{sec:SeqRecord-addition} for how adding
\verb|SeqRecord| objects works). You may find it helpful to first sort the
alignment rows alphabetically by id:
%cont-doctest
\begin{verbatim}
>>> edited.sort()
>>> print(edited)
SingleLetterAlphabet() alignment with 7 rows and 49 columns
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
\end{verbatim}
\noindent Note that you can only add two alignments together if they
have the same number of rows.
\subsection{Alignments as arrays}
Depending on what you are doing, it can be more useful to turn the alignment
object into an array of letters -- and you can do this with NumPy:
%This example fails under PyPy 2.0, https://bugs.pypy.org/issue1546
%doctest examples lib:numpy
\begin{verbatim}
>>> import numpy as np
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> align_array = np.array([list(rec) for rec in alignment], np.character)
>>> print("Array shape %i by %i" % align_array.shape)
Array shape 7 by 52
\end{verbatim}
If you will be working heavily with the columns, you can tell NumPy to store
the array by column (as in Fortran) rather then its default of by row (as in C):
\begin{verbatim}
>>> align_array = np.array([list(rec) for rec in alignment], np.character, order="F")
\end{verbatim}
Note that this leaves the original Biopython alignment object and the NumPy array
in memory as separate objects - editing one will not update the other!
\section{Alignment Tools}
\label{sec:alignment-tools}
There are \emph{lots} of algorithms out there for aligning sequences, both pairwise alignments
and multiple sequence alignments. These calculations are relatively slow, and you generally
wouldn't want to write such an algorithm in Python. For pairwise alignments Biopython contains
the \verb|Bio.pairwise2| module (see Section~\ref{sec:pairwise2}), which is supplemented by
functions written in C for speed enhancements. In addition, you can use Biopython to invoke a
command line tool on your behalf. Normally you would:
\begin{enumerate}
\item Prepare an input file of your unaligned sequences, typically this will be a FASTA file
which you might create using \verb|Bio.SeqIO| (see Chapter~\ref{chapter:Bio.SeqIO}).
\item Call the command line tool to process this input file, typically via one of Biopython's
command line wrappers (which we'll discuss here).
\item Read the output from the tool, i.e. your aligned sequences, typically using
\verb|Bio.AlignIO| (see earlier in this chapter).
\end{enumerate}
All the command line wrappers we're going to talk about in this chapter follow the same style.
You create a command line object specifying the options (e.g. the input filename and the
output filename), then invoke this command line via a Python operating system call (e.g.
using the \texttt{subprocess} module).
Most of these wrappers are defined in the \verb|Bio.Align.Applications| module:
\begin{verbatim}
>>> import Bio.Align.Applications
>>> dir(Bio.Align.Applications)
...
['ClustalwCommandline', 'DialignCommandline', 'MafftCommandline', 'MuscleCommandline',
'PrankCommandline', 'ProbconsCommandline', 'TCoffeeCommandline' ...]
\end{verbatim}
\noindent (Ignore the entries starting with an underscore -- these have
special meaning in Python.)
The module \verb|Bio.Emboss.Applications| has wrappers for some of the
\href{http://emboss.sourceforge.net/}{EMBOSS suite}, including
\texttt{needle} and \texttt{water}, which are described below in
Section~\ref{seq:emboss-needle-water}, and wrappers for the EMBOSS
packaged versions of the PHYLIP tools (which EMBOSS refer to as one
of their EMBASSY packages - third party tools with an EMBOSS style
interface).
We won't explore all these alignment tools here in the section, just a
sample, but the same principles apply.
\subsection{ClustalW}
\label{sec:align_clustal}
ClustalW is a popular command line tool for multiple sequence alignment
(there is also a graphical interface called ClustalX). Biopython's
\verb|Bio.Align.Applications| module has a wrapper for this alignment tool
(and several others).
Before trying to use ClustalW from within Python, you should first try running
the ClustalW tool yourself by hand at the command line, to familiarise
yourself the other options. You'll find the Biopython wrapper is very
faithful to the actual command line API:
\begin{verbatim}
>>> from Bio.Align.Applications import ClustalwCommandline
>>> help(ClustalwCommandline)
...
\end{verbatim}
For the most basic usage, all you need is to have a FASTA input file, such as
\href{https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta}{opuntia.fasta}
(available online or in the Doc/examples subdirectory of the Biopython source
code). This is a small FASTA file containing seven prickly-pear DNA sequences
(from the cactus family \textit{Opuntia}).
By default ClustalW will generate an alignment and guide tree file with names
based on the input FASTA file, in this case \texttt{opuntia.aln} and
\texttt{opuntia.dnd}, but you can override this or make it explicit:
%doctest
\begin{verbatim}
>>> from Bio.Align.Applications import ClustalwCommandline
>>> cline = ClustalwCommandline("clustalw2", infile="opuntia.fasta")
>>> print(cline)
clustalw2 -infile=opuntia.fasta
\end{verbatim}
Notice here we have given the executable name as \texttt{clustalw2},
indicating we have version two installed, which has a different filename to
version one (\texttt{clustalw}, the default). Fortunately both versions
support the same set of arguments at the command line (and indeed, should be
functionally identical).
You may find that even though you have ClustalW installed, the above command
doesn't work -- you may get a message about ``command not found'' (especially
on Windows). This indicated that the ClustalW executable is not on your PATH
(an environment variable, a list of directories to be searched). You can
either update your PATH setting to include the location of your copy of
ClustalW tools (how you do this will depend on your OS), or simply type in
the full path of the tool. For example:
%doctest
\begin{verbatim}
>>> import os
>>> from Bio.Align.Applications import ClustalwCommandline
>>> clustalw_exe = r"C:\Program Files\new clustal\clustalw2.exe"
>>> clustalw_cline = ClustalwCommandline(clustalw_exe, infile="opuntia.fasta")
\end{verbatim}
%Don't run it in the doctest
\begin{verbatim}
>>> assert os.path.isfile(clustalw_exe), "Clustal W executable missing"
>>> stdout, stderr = clustalw_cline()
\end{verbatim}
\noindent Remember, in Python strings \verb|\n| and \verb|\t| are by default
interpreted as a new line and a tab -- which is why we're put a letter
``r'' at the start for a raw string that isn't translated in this way.
This is generally good practice when specifying a Windows style file name.
Internally this uses the
\verb|subprocess| module which is now the recommended way to run another
program in Python. This replaces older options like the \verb|os.system()|
and the \verb|os.popen*| functions.
Now, at this point it helps to know about how command line tools ``work''.
When you run a tool at the command line, it will often print text output
directly to screen. This text can be captured or redirected, via
two ``pipes'', called standard output (the normal results) and standard
error (for error messages and debug messages). There is also standard
input, which is any text fed into the tool. These names get shortened
to stdin, stdout and stderr. When the tool finishes, it has a return
code (an integer), which by convention is zero for success.
When you run the command line tool like this via the Biopython wrapper,
it will wait for it to finish, and check the return code. If this is
non zero (indicating an error), an exception is raised. The wrapper
then returns two strings, stdout and stderr.
In the case of ClustalW, when run at the command line all the important
output is written directly to the output files. Everything normally printed to
screen while you wait (via stdout or stderr) is boring and can be
ignored (assuming it worked).
What we care about are the two output files, the alignment and the guide
tree. We didn't tell ClustalW what filenames to use, but it defaults to
picking names based on the input file. In this case the output should be
in the file \verb|opuntia.aln|.
You should be able to work out how to read in the alignment using
\verb|Bio.AlignIO| by now:
%doctest examples
\begin{verbatim}
>>> from Bio import AlignIO
>>> align = AlignIO.read("opuntia.aln", "clustal")
>>> print(align)
SingleLetterAlphabet() alignment with 7 rows and 906 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
\end{verbatim}
In case you are interested (and this is an aside from the main thrust of this
chapter), the \texttt{opuntia.dnd} file ClustalW creates is just a standard
Newick tree file, and \verb|Bio.Phylo| can parse these:
%doctest examples
\begin{verbatim}
>>> from Bio import Phylo
>>> tree = Phylo.read("opuntia.dnd", "newick")
>>> Phylo.draw_ascii(tree)
_______________ gi|6273291|gb|AF191665.1|AF191665
__________________________|
| | ______ gi|6273290|gb|AF191664.1|AF191664
| |__|
| |_____ gi|6273289|gb|AF191663.1|AF191663
|
_|_________________ gi|6273287|gb|AF191661.1|AF191661
|
|__________ gi|6273286|gb|AF191660.1|AF191660
|
| __ gi|6273285|gb|AF191659.1|AF191659
|___|
| gi|6273284|gb|AF191658.1|AF191658
<BLANKLINE>
\end{verbatim}
\noindent Chapter \ref{sec:Phylo} covers Biopython's support for phylogenetic trees in more
depth.
\subsection{MUSCLE}
MUSCLE is a more recent multiple sequence alignment tool than ClustalW, and
Biopython also has a wrapper for it under the \verb|Bio.Align.Applications|
module. As before, we recommend you try using MUSCLE from the command line before
trying it from within Python, as the Biopython wrapper is very faithful to the
actual command line API:
\begin{verbatim}
>>> from Bio.Align.Applications import MuscleCommandline
>>> help(MuscleCommandline)
...
\end{verbatim}
For the most basic usage, all you need is to have a FASTA input file, such as
\href{https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta}{opuntia.fasta}
(available online or in the Doc/examples subdirectory of the Biopython source
code). You can then tell MUSCLE to read in this FASTA file, and write the
alignment to an output file:
%doctest
\begin{verbatim}
>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.txt")
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.txt
\end{verbatim}
Note that MUSCLE uses ``-in'' and ``-out'' but in Biopython we have to use
``input'' and ``out'' as the keyword arguments or property names. This is
because ``in'' is a reserved word in Python.
By default MUSCLE will output the alignment as a FASTA file (using gapped
sequences). The \verb|Bio.AlignIO| module should be able to read this
alignment using \texttt{format="fasta"}.
You can also ask for ClustalW-like output:
%doctest
\begin{verbatim}
>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.aln", clw=True)
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.aln -clw
\end{verbatim}
Or, strict ClustalW output where the original ClustalW header line is
used for maximum compatibility:
%doctest
\begin{verbatim}
>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.aln", clwstrict=True)
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.aln -clwstrict
\end{verbatim}
\noindent The \verb|Bio.AlignIO| module should be able to read these alignments
using \texttt{format="clustal"}.
MUSCLE can also output in GCG MSF format (using the \texttt{msf} argument), but
Biopython can't currently parse that, or using HTML which would give a human
readable web page (not suitable for parsing).
You can also set the other optional parameters, for example the maximum number
of iterations. See the built in help for details.
You would then run MUSCLE command line string as described above for
ClustalW, and parse the output using \verb|Bio.AlignIO| to get an
alignment object.
\subsection{MUSCLE using stdout}
Using a MUSCLE command line as in the examples above will write the alignment
to a file. This means there will be no important information written to the
standard out (stdout) or standard error (stderr) handles. However, by default
MUSCLE will write the alignment to standard output (stdout). We can take
advantage of this to avoid having a temporary output file! For example:
%doctest
\begin{verbatim}
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")
>>> print(muscle_cline)
muscle -in opuntia.fasta
\end{verbatim}
If we run this via the wrapper, we get back the output as a string. In order
to parse this we can use \verb|StringIO| to turn it into a handle.
Remember that MUSCLE defaults to using FASTA as the output format:
\begin{verbatim}
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")
>>> stdout, stderr = muscle_cline()
>>> from StringIO import StringIO
>>> from Bio import AlignIO
>>> align = AlignIO.read(StringIO(stdout), "fasta")
>>> print(align)
SingleLetterAlphabet() alignment with 7 rows and 906 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658
\end{verbatim}
The above approach is fairly simple, but if you are dealing with very large output
text the fact that all of stdout and stderr is loaded into memory as a string can
be a potential drawback. Using the \verb|subprocess| module we can work directly
with handles instead:
\begin{verbatim}
>>> import subprocess
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")
>>> child = subprocess.Popen(str(muscle_cline),
... stdout=subprocess.PIPE,
... stderr=subprocess.PIPE,
... universal_newlines=True,
... shell=(sys.platform!="win32"))
>>> from Bio import AlignIO
>>> align = AlignIO.read(child.stdout, "fasta")
>>> print(align)
SingleLetterAlphabet() alignment with 7 rows and 906 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658
\end{verbatim}
\subsection{MUSCLE using stdin and stdout}
We don't actually \emph{need} to have our FASTA input sequences prepared in a file,
because by default MUSCLE will read in the input sequence from standard input!
Note this is a bit more advanced and fiddly, so don't bother with this technique
unless you need to.
First, we'll need some unaligned sequences in memory as \verb|SeqRecord| objects.
For this demonstration I'm going to use a filtered version of the original FASTA
file (using a generator expression), taking just six of the seven sequences:
%doctest
\begin{verbatim}
>>> from Bio import SeqIO
>>> records = (r for r in SeqIO.parse("opuntia.fasta", "fasta") if len(r) < 900)
\end{verbatim}
Then we create the MUSCLE command line, leaving the input and output to their
defaults (stdin and stdout). I'm also going to ask for strict ClustalW format
as for the output.
%doctest
\begin{verbatim}
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(clwstrict=True)
>>> print(muscle_cline)
muscle -clwstrict
\end{verbatim}
Now for the fiddly bits using the \verb|subprocess| module, stdin and stdout:
\begin{verbatim}
>>> import subprocess
>>> import sys
>>> child = subprocess.Popen(str(cline),
... stdin=subprocess.PIPE,
... stdout=subprocess.PIPE,
... stderr=subprocess.PIPE,
... universal_newlines=True,
... shell=(sys.platform!="win32"))
\end{verbatim}
That should start MUSCLE, but it will be sitting waiting for its FASTA input
sequences, which we must supply via its stdin handle:
\begin{verbatim}
>>> SeqIO.write(records, child.stdin, "fasta")
6
>>> child.stdin.close()
\end{verbatim}
After writing the six sequences to the handle, MUSCLE will still be waiting
to see if that is all the FASTA sequences or not -- so we must signal that
this is all the input data by closing the handle. At that point MUSCLE should
start to run, and we can ask for the output:
\begin{verbatim}
>>> from Bio import AlignIO
>>> align = AlignIO.read(child.stdout, "clustal")
>>> print(align)
SingleLetterAlphabet() alignment with 6 rows and 900 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF19166
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF19166
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF19165
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF19165
\end{verbatim}
Wow! There we are with a new alignment of just the six records, without having created
a temporary FASTA input file, or a temporary alignment output file. However, a word of
caution: Dealing with errors with this style of calling external programs is much more
complicated.
It also becomes far harder to diagnose problems, because you can't try running MUSCLE
manually outside of Biopython (because you don't have the input file to supply).
There can also be subtle cross platform issues (e.g. Windows versus Linux,
Python 2 versus Python 3), and how
you run your script can have an impact (e.g. at the command line, from IDLE or an
IDE, or as a GUI script). These are all generic Python issues though, and not
specific to Biopython.
If you find working directly with \texttt{subprocess} like this scary, there is an
alternative. If you execute the tool with \texttt{muscle\_cline()} you can supply
any standard input as a big string, \texttt{muscle\_cline(stdin=...)}. So,
provided your data isn't very big, you can prepare the FASTA input in memory as
a string using \texttt{StringIO} (see Section~\ref{sec:appendix-handles}):
%doctest
\begin{verbatim}
>>> from Bio import SeqIO
>>> records = (r for r in SeqIO.parse("opuntia.fasta", "fasta") if len(r) < 900)
>>> from StringIO import StringIO
>>> handle = StringIO()
>>> SeqIO.write(records, handle, "fasta")
6
>>> data = handle.getvalue()
\end{verbatim}
\noindent You can then run the tool and parse the alignment as follows:
%not a doctest as can't assume the MUSCLE binary is present
\begin{verbatim}
>>> stdout, stderr = muscle_cline(stdin=data)
>>> from Bio import AlignIO
>>> align = AlignIO.read(StringIO(stdout), "clustal")
>>> print(align)
SingleLetterAlphabet() alignment with 6 rows and 900 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF19166
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF19166
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF19165
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF19165
\end{verbatim}
You might find this easier, but it does require more memory (RAM) for the strings
used for the input FASTA and output Clustal formatted data.
\subsection{EMBOSS needle and water}
\label{seq:emboss-needle-water}
The \href{http://emboss.sourceforge.net/}{EMBOSS} suite includes the \texttt{water} and
\texttt{needle} tools for Smith-Waterman algorithm local alignment, and Needleman-Wunsch
global alignment. The tools share the same style interface, so switching between the two
is trivial -- we'll just use \texttt{needle} here.
Suppose you want to do a global pairwise alignment between two sequences, prepared in
FASTA format as follows:
\begin{verbatim}
>HBA_HUMAN
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
AVHASLDKFLASVSTVLTSKYR
\end{verbatim}
\noindent in a file \texttt{alpha.faa}, and secondly in a file \texttt{beta.faa}:
\begin{verbatim}
>HBB_HUMAN
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
KEFTPPVQAAYQKVVAGVANALAHKYH
\end{verbatim}
You can find copies of these example files with the Biopython source code
under the \verb|Doc/examples/| directory.
Let's start by creating a complete \texttt{needle} command line object in one go:
%doctest
\begin{verbatim}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> needle_cline = NeedleCommandline(asequence="alpha.faa", bsequence="beta.faa",
... gapopen=10, gapextend=0.5, outfile="needle.txt")
>>> print(needle_cline)
needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5
\end{verbatim}
Why not try running this by hand at the command prompt? You should see it does a
pairwise comparison and records the output in the file \texttt{needle.txt} (in the
default EMBOSS alignment file format).
Even if you have EMBOSS installed, running this command may not work -- you
might get a message about ``command not found'' (especially on Windows). This
probably means that the EMBOSS tools are not on your PATH environment
variable. You can either update your PATH setting, or simply tell Biopython
the full path to the tool, for example:
%doctest
\begin{verbatim}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> needle_cline = NeedleCommandline(r"C:\EMBOSS\needle.exe",
... asequence="alpha.faa", bsequence="beta.faa",
... gapopen=10, gapextend=0.5, outfile="needle.txt")
\end{verbatim}
\noindent Remember in Python that for a default string \verb|\n| or \verb|\t| means a
new line or a tab -- which is why we're put a letter ``r'' at the start for a raw string.
At this point it might help to try running the EMBOSS tools yourself by hand at the
command line, to familiarise yourself the other options and compare them to the
Biopython help text:
\begin{verbatim}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> help(NeedleCommandline)
...
\end{verbatim}
Note that you can also specify (or change or look at) the settings like this:
%doctest
\begin{verbatim}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> needle_cline = NeedleCommandline()
>>> needle_cline.asequence="alpha.faa"
>>> needle_cline.bsequence="beta.faa"
>>> needle_cline.gapopen=10
>>> needle_cline.gapextend=0.5
>>> needle_cline.outfile="needle.txt"
>>> print(needle_cline)
needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5
>>> print(needle_cline.outfile)
needle.txt
\end{verbatim}
Next we want to use Python to run this command for us. As explained above,
for full control, we recommend you use the built in Python \texttt{subprocess}
module, but for simple usage the wrapper object usually suffices:
\begin{verbatim}
>>> stdout, stderr = needle_cline()
>>> print(stdout + stderr)
Needleman-Wunsch global alignment of two sequences
\end{verbatim}
Next we can load the output file with \verb|Bio.AlignIO| as
discussed earlier in this chapter, as the \texttt{emboss} format:
\begin{verbatim}
>>> from Bio import AlignIO
>>> align = AlignIO.read("needle.txt", "emboss")
>>> print(align)
SingleLetterAlphabet() alignment with 2 rows and 149 columns
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR HBA_HUMAN
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF...KYH HBB_HUMAN
\end{verbatim}
In this example, we told EMBOSS to write the output to a file, but you
\emph{can} tell it to write the output to stdout instead (useful if you
don't want a temporary output file to get rid of -- use
\texttt{stdout=True} rather than the \texttt{outfile} argument), and
also to read \emph{one} of the one of the inputs from stdin (e.g.
\texttt{asequence="stdin"}, much like in the MUSCLE example in the
section above).
This has only scratched the surface of what you can do with \texttt{needle}
and \texttt{water}. One useful trick is that the second file can contain
multiple sequences (say five), and then EMBOSS will do five pairwise
alignments.
\subsection{Biopython's pairwise2}
\label{sec:pairwise2}
Biopython has its own module to make local and global pairwise alignments,
\verb|Bio.pairwise2|. This module contains essentially the same algorithms as
\texttt{water} (local) and \texttt{needle} (global) from the
\href{http://emboss.sourceforge.net/}{EMBOSS} suite (see above) and should
return the same results.
Suppose you want to do a global pairwise alignment between the same two
hemoglobin sequences from above (\texttt{HBA\_HUMAN}, \texttt{HBB\_HUMAN})
stored in \texttt{alpha.faa} and \texttt{beta.faa}:
%doctest examples
\begin{verbatim}
>>> from Bio import pairwise2
>>> from Bio import SeqIO
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> alignments = pairwise2.align.globalxx(seq1.seq, seq2.seq)
\end{verbatim}
As you see, we call the alignment function with \verb|align.globalxx|. The tricky
part are the last two letters of the function name (here: \texttt{xx}), which are
used for decoding the scores and penalties for matches (and mismatches) and gaps.
The first letter decodes the match score, e.g. \texttt{x} means that a match counts
1 while mismatches have no costs. With \texttt{m} general values for either matches
or mismatches can be defined
(for more options see \href{http://biopython.org/DIST/docs/api/Bio.pairwise2-module.html}{Biopython's API}).
The second letter decodes the cost for gaps; \texttt{x} means no gap costs at all,
with \texttt{s} different penalties for opening and extending a gap can be assigned.
So, \verb|globalxx| means that only matches between both sequences are counted.
Our variable \texttt{alignments} now contains a list of alignments (at least one) which
have the same optimal score for the given conditions. In our example this are 80
different alignments with the score 72 (\verb|Bio.pairwise2| will return up to 1000
alignments). Have a look at one of these alignments:
%cont-doctest
\begin{verbatim}
>>> len(alignments)
80
\end{verbatim}
%This has been abbreviated, can't use as doctest
\begin{verbatim}
>>> print(alignments[0])
('MV-LSPADKTNV---K-A--A-WGKVGAHAG...YR-', 'MVHL-----T--PEEKSAVTALWGKV----...Y-H',
72.0, 0, 217)
\end{verbatim}
Each alignment is a tuple consisting of the two aligned sequences, the score, the
start and the end positions of the alignment (in global alignments the start is
always 0 and the end the length of the alignment). \verb|Bio.pairwise2| has a
function \verb|format_alignment| for a nicer printout:
%This has been abbreviated, can't use as doctest
\begin{verbatim}
>>> print(pairwise2.format_alignment(*alignment[0]))
MV-LSPADKTNV---K-A--A-WGKVGAHAG---EY-GA-EALE-RMFLSF----PTTK-TY--F...YR-
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||...|||
MVHL-----T--PEEKSAVTALWGKV-----NVDE-VG-GEAL-GR--L--LVVYP---WT-QRF...Y-H
Score=72
\end{verbatim}
Better alignments are usually obtained by penalizing gaps: higher costs
for opening a gap and lower costs for extending an existing gap. For amino
acid sequences match scores are usually encoded in matrices like \texttt{PAM}
or \texttt{BLOSUM}. Thus, a more meaningful alignment for our example can be
obtained by using the BLOSUM62 matrix, together with a gap open penalty of 10
and a gap extension penalty of 0.5 (using \verb|globalds|):
%doctest examples
\begin{verbatim}
>>> from Bio import pairwise2
>>> from Bio import SeqIO
>>> from Bio.SubsMat.MatrixInfo import blosum62
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> alignments = pairwise2.align.globalds(seq1.seq, seq2.seq, blosum62, -10, -0.5)
>>> len(alignments)
2
\end{verbatim}
%This has been abbreviated, can't use as doctest
\begin{verbatim}
>>> print(pairwise2.format_alignment(*alignments[0]))
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR
||||||||||||||||||||||||||||||||||||||||||||...|||
MVHLTPEEKSAVTALWGKV-NVDEVGGEALGRLLVVYPWTQRFF...KYH
Score=292.5
\end{verbatim}
This alignment has the same score that we obtained earlier with EMBOSS needle
using the same sequences and the same parameters.
Local alignments are called similarly with the function \verb|align.localXX|,
where again XX stands for a two letter code for the match and gap functions:
%doctest
\begin{verbatim}
>>> from Bio import pairwise2
>>> from Bio.SubsMat.MatrixInfo import blosum62
>>> alignments = pairwise2.align.localds("LSPADKTNVKAA", "PEEKSAV", blosum62, -10, -1)
>>> print(pairwise2.format_alignment(*alignments[0]))
LSPADKTNVKAA
|||||||
--PEEKSAV---
Score=16
<BLANKLINE>
\end{verbatim}
Instead of supplying a complete match/mismatch matrix, the match code
\texttt{m} allows for easy defining general match/mismatch values. The next
example uses match/mismatch scores of 5/-4 and gap penalties (open/extend)
of 2/0.5 using \verb|localms|):
%cont-doctest
\begin{verbatim}
>>> alignments = pairwise2.align.localms("AGAACT", "GAC", 5, -4, -2, -0.5)
>>> print(pairwise2.format_alignment(*alignments[0]))
AGAACT
||||
-G-AC-
Score=13
<BLANKLINE>
\end{verbatim}
One useful keyword argument of the \verb|Bio.pairwise2.align| functions is
\texttt{score\_only}. When set to \texttt{True} it will only return the score
of the best alignment(s), but in a significantly shorter time. It will also
allow the alignment of longer sequences before a memory error is raised.
Unfortunately, \verb|Bio.pairwise2| does not work with Biopython's multiple
sequence alignment objects (yet).
However, the module has some interesting advanced features: you can
define your own match and gap functions (interested in testing affine
logarithmic gap costs?), gap penalties and end gaps penalties can be different
for both sequences, sequences can be supplied as lists (useful if you have
residues that are encoded by more than one character), etc. These features
are hard (if at all) to realize with other alignment tools. For more details
see the modules documentation in
\href{http://biopython.org/DIST/docs/api/Bio.pairwise2-module.html}{Biopython's API}.
|