File: chapter_graphics.tex

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 46,856 kB
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (1094 lines) | stat: -rw-r--r-- 42,949 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
\chapter{Graphics including GenomeDiagram}
\label{chapter:graphics}

The \verb|Bio.Graphics| module depends on the third party Python library
\href{http://www.reportlab.org}{ReportLab}.  Although focused on producing PDF files,
ReportLab can also create encapsulated postscript (EPS) and (SVG) files.  In addition
to these vector based images, provided certain further dependencies such as the
\href{http://www.pythonware.com/products/pil/}{Python Imaging Library (PIL)} are
installed, ReportLab can also output bitmap images (including JPEG, PNG, GIF, BMP
and PICT formats).

\section{GenomeDiagram}
\label{sec:genomediagram}
\subsection{Introduction}

The \verb|Bio.Graphics.GenomeDiagram| module was added to Biopython 1.50,
having previously been available as a separate Python module dependent on Biopython.
GenomeDiagram is described in the Bioinformatics journal publication by Pritchard et al. (2006) \cite{pritchard2006},
which includes some examples images. There is a PDF copy of the old manual here,
\url{http://biopython.org/DIST/docs/GenomeDiagram/userguide.pdf} which has some
more examples.
%TODO - Leighton's old website is AWOL, put this link back later if possible.
%http://bioinf.scri.ac.uk/lp/programs.php#genomediagram

As the name might suggest, GenomeDiagram was designed for drawing whole genomes, in
particular prokaryotic genomes, either as linear diagrams (optionally broken up into
fragments to fit better) or as circular wheel diagrams.  Have a look at Figure 2 in
Toth \textit{et al.} (2006) \cite{toth2006}
for a good example. It proved also well suited to drawing quite detailed figures for
smaller genomes such as phage, plasmids or mitochrondia, for example see Figures 1
and 2 in Van der Auwera \textit{et al.} (2009) \cite{vanderauwera2009}
(shown with additional manual editing).

This module is easiest to use if you have your genome loaded as a \verb|SeqRecord|
object containing lots of \verb|SeqFeature| objects - for example as loaded from a
GenBank file (see Chapters~\ref{chapter:SeqRecord} and~\ref{chapter:Bio.SeqIO}).

\subsection{Diagrams, tracks, feature-sets and features}

GenomeDiagram uses a nested set of objects.  At the top level, you have a diagram
object representing a sequence (or sequence region) along the horizontal axis (or
circle).  A diagram can contain one or more tracks, shown stacked vertically (or
radially on circular diagrams).  These will typically all have the same length
and represent the same sequence region.  You might use one track to show the gene
locations, another to show regulatory regions, and a third track to show the GC
percentage. %Talk about cross-links here? Maybe better later...

The most commonly used type of track will contain features, bundled together in
feature-sets.  You might choose to use one feature-set for all your CDS features,
and another for tRNA features.  This isn't required - they can all go in the same
feature-set, but it makes it easier to update the properties of just selected
features (e.g. make all the tRNA features red).

There are two main ways to build up a complete diagram.  Firstly, the top down
approach where you create a diagram object, and then using its methods add
track(s), and use the track methods to add feature-set(s), and use their
methods to add the features.  Secondly, you can create the individual objects
separately (in whatever order suits your code), and then combine them.

\subsection{A top down example}
\label{sec:gd_top_down}

We're going to draw a whole genome from a \verb|SeqRecord| object read in from
a GenBank file (see Chapter~\ref{chapter:Bio.SeqIO}).  This example uses the
pPCP1 plasmid from \textit{Yersinia pestis biovar Microtus}, the file is
included with the Biopython unit tests under the GenBank folder, or online
\href{http://biopython.org/SRC/biopython/Tests/GenBank/NC_005816.gb}
{\texttt{NC\_005816.gb}} from our website.

\begin{verbatim}
from reportlab.lib import colors
from reportlab.lib.units import cm
from Bio.Graphics import GenomeDiagram
from Bio import SeqIO
record = SeqIO.read("NC_005816.gb", "genbank")
\end{verbatim}

We're using a top down approach, so after loading in our sequence we next
create an empty diagram, then add an (empty) track, and to that add an
(empty) feature set:

\begin{verbatim}
gd_diagram = GenomeDiagram.Diagram("Yersinia pestis biovar Microtus plasmid pPCP1")
gd_track_for_features = gd_diagram.new_track(1, name="Annotated Features")
gd_feature_set = gd_track_for_features.new_set()
\end{verbatim}

Now the fun part - we take each gene \verb|SeqFeature| object in our
\verb|SeqRecord|, and use it to generate a feature on the diagram. We're
going to color them blue, alternating between a dark blue and a light blue.
\begin{verbatim}
for feature in record.features:
    if feature.type != "gene":
        #Exclude this feature
        continue
    if len(gd_feature_set) % 2 == 0:
        color = colors.blue
    else:
        color = colors.lightblue
    gd_feature_set.add_feature(feature, color=color, label=True)
\end{verbatim}

Now we come to actually making the output file.  This happens in two steps,
first we call the \verb|draw| method, which creates all the shapes using
ReportLab objects.  Then we call the \verb|write| method which renders these
to the requested file format.  Note you can output in multiple file formats:

\begin{verbatim}
gd_diagram.draw(format="linear", orientation="landscape", pagesize='A4',
                fragments=4, start=0, end=len(record))
gd_diagram.write("plasmid_linear.pdf", "PDF")
gd_diagram.write("plasmid_linear.eps", "EPS")
gd_diagram.write("plasmid_linear.svg", "SVG")
\end{verbatim}

Also, provided you have the dependencies installed, you can also do bitmaps,
for example:

\begin{verbatim}
gd_diagram.write("plasmid_linear.png", "PNG")
\end{verbatim}

\begin{htmlonly}
%The blank line below is important to start a new paragraph
\imgsrc[width=550, height=400]{images/plasmid_linear.png}

\end{htmlonly}
\begin{latexonly}
The expected output is shown in Figure~\ref{fig:plasmid_linear}.
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{images/plasmid_linear.png}
\caption{Simple linear diagram for \textit{Yersinia pestis biovar Microtus} plasmid pPCP1.}
\label{fig:plasmid_linear}
\end{figure}
\end{latexonly}
Notice that the \verb|fragments| argument which we set to four controls how
many pieces the genome gets broken up into.

If you want to do a circular figure, then try this:

\begin{verbatim}
gd_diagram.draw(format="circular", circular=True, pagesize=(20*cm,20*cm),
                start=0, end=len(record), circle_core=0.7)
gd_diagram.write("plasmid_circular.pdf", "PDF")
\end{verbatim}

\begin{htmlonly}
%The blank line below is important to start a new paragraph
\imgsrc[width=400, height=400]{images/plasmid_circular.png}

\end{htmlonly}
\begin{latexonly}
The expected output is shown in Figure~\ref{fig:plasmid_circular}.
\begin{figure}[htbp]
\centering
\includegraphics[width=8cm,height=8cm]{images/plasmid_circular.png}
\caption{Simple circular diagram for \textit{Yersinia pestis biovar Microtus} plasmid pPCP1.}
\label{fig:plasmid_circular}
\end{figure}
\end{latexonly}
These figures are not very exciting, but we've only just got started.

\subsection{A bottom up example}
Now let's produce exactly the same figures, but using the bottom up approach.
This means we create the different objects directly (and this can be done in
almost any order) and then combine them.

\begin{verbatim}
from reportlab.lib import colors
from reportlab.lib.units import cm
from Bio.Graphics import GenomeDiagram
from Bio import SeqIO
record = SeqIO.read("NC_005816.gb", "genbank")

#Create the feature set and its feature objects,
gd_feature_set = GenomeDiagram.FeatureSet()
for feature in record.features:
    if feature.type != "gene":
        #Exclude this feature
        continue
    if len(gd_feature_set) % 2 == 0:
        color = colors.blue
    else:
        color = colors.lightblue
    gd_feature_set.add_feature(feature, color=color, label=True)
#(this for loop is the same as in the previous example)

#Create a track, and a diagram
gd_track_for_features = GenomeDiagram.Track(name="Annotated Features")
gd_diagram = GenomeDiagram.Diagram("Yersinia pestis biovar Microtus plasmid pPCP1")

#Now have to glue the bits together...
gd_track_for_features.add_set(gd_feature_set)
gd_diagram.add_track(gd_track_for_features, 1)
\end{verbatim}

You can now call the \verb|draw| and \verb|write| methods as before to produce
a linear or circular diagram, using the code at the end of the top-down example
above.  The figures should be identical.

\subsection{Features without a SeqFeature}
\label{sec:gd_features_without_seqfeatures}

In the above example we used a \verb|SeqRecord|'s \verb|SeqFeature| objects
to build our diagram (see also Section~\ref{sec:seq_features}).
Sometimes you won't have \verb|SeqFeature| objects,
but just the coordinates for a feature you want to draw.  You have to create
minimal \verb|SeqFeature| object, but this is easy:

\begin{verbatim}
from Bio.SeqFeature import SeqFeature, FeatureLocation
my_seq_feature = SeqFeature(FeatureLocation(50,100),strand=+1)
\end{verbatim}

For strand, use \texttt{+1} for the forward strand, \texttt{-1} for the
reverse strand, and \texttt{None} for both.  Here is a short self contained
example:

\begin{verbatim}
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Graphics import GenomeDiagram
from reportlab.lib.units import cm

gdd = GenomeDiagram.Diagram('Test Diagram')
gdt_features = gdd.new_track(1, greytrack=False)
gds_features = gdt_features.new_set()

#Add three features to show the strand options,
feature = SeqFeature(FeatureLocation(25, 125), strand=+1)
gds_features.add_feature(feature, name="Forward", label=True)
feature = SeqFeature(FeatureLocation(150, 250), strand=None)
gds_features.add_feature(feature, name="Strandless", label=True)
feature = SeqFeature(FeatureLocation(275, 375), strand=-1)
gds_features.add_feature(feature, name="Reverse", label=True)

gdd.draw(format='linear', pagesize=(15*cm,4*cm), fragments=1,
         start=0, end=400)
gdd.write("GD_labels_default.pdf", "pdf")
\end{verbatim}

\begin{htmlonly}
The top part of the image in the next subsection shows the output
\end{htmlonly}
\begin{latexonly}
The output is shown at the top of Figure~\ref{fig:gd_sigil_labels}
\end{latexonly}
(in the default feature color, pale green).

Notice that we have used the \texttt{name} argument here to specify the
caption text for these features.  This is discussed in more detail next.

\subsection{Feature captions}
\label{sec:gd_feature_captions}

Recall we used the following (where \texttt{feature} was a
\verb|SeqFeature| object) to add a feature to the diagram:

\begin{verbatim}
gd_feature_set.add_feature(feature, color=color, label=True)
\end{verbatim}

In the example above the \verb|SeqFeature| annotation was used to pick a
sensible caption for the features.  By default the following possible entries
under the \verb|SeqFeature| object's qualifiers dictionary are used:
\texttt{gene}, \texttt{label}, \texttt{name}, \texttt{locus\_tag}, and
\texttt{product}.  More simply, you can specify a name directly:

\begin{verbatim}
gd_feature_set.add_feature(feature, color=color, label=True, name="My Gene")
\end{verbatim}

In addition to the caption text for each feature's label, you can also choose
the font, position (this defaults to the start of the sigil, you can also
choose the middle or at the end) and orientation (for linear diagrams only,
where this defaults to rotated by $45$ degrees):

\begin{verbatim}
#Large font, parallel with the track
gd_feature_set.add_feature(feature, label=True, color="green",
                           label_size=25, label_angle=0)

#Very small font, perpendicular to the track (towards it)
gd_feature_set.add_feature(feature, label=True, color="purple",
                           label_position="end",
                           label_size=4, label_angle=90)

#Small font, perpendicular to the track (away from it)
gd_feature_set.add_feature(feature, label=True, color="blue",
                           label_position="middle",
                           label_size=6, label_angle=-90)
\end{verbatim}

\noindent Combining each of these three fragments with the complete example
in the previous section should give something like
\begin{htmlonly}
this:

%The blank lines above and below are important to trigger paragraph breaks
\imgsrc[width=600, height=700]{images/GD_sigil_labels.png}
\label{fig:gd_sigil_labels}

\end{htmlonly}
\begin{latexonly}
the tracks in Figure~\ref{fig:gd_sigil_labels}.
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{images/GD_sigil_labels.png}
\caption{Simple GenomeDiagram showing label options.
The top plot in pale green shows the default label settings (see
Section~\ref{sec:gd_features_without_seqfeatures}) while the rest show
variations in the label size, position and orientation (see
Section~\ref{sec:gd_feature_captions}).
}
\label{fig:gd_sigil_labels}
\end{figure}
\end{latexonly}

We've not shown it here, but you can also set \texttt{label\_color} to
control the label's color (used in Section~\ref{sec:gd_nice_example}).

You'll notice the default font is quite small - this makes sense because
you will usually be drawing many (small) features on a page, not just a
few large ones as shown here.

\subsection{Feature sigils}
\label{sec:gd_sigils}

The examples above have all just used the default sigil for the feature, a
plain box, which was all that was available in the last publicly released standalone version of GenomeDiagram. Arrow sigils were included when
GenomeDiagram was added to Biopython 1.50:

\begin{verbatim}
#Default uses a BOX sigil
gd_feature_set.add_feature(feature)

#You can make this explicit:
gd_feature_set.add_feature(feature, sigil="BOX")

#Or opt for an arrow:
gd_feature_set.add_feature(feature, sigil="ARROW")
\end{verbatim}

\noindent
Biopython 1.61 added three more sigils,

\begin{verbatim}
#Box with corners cut off (making it an octagon)
gd_feature_set.add_feature(feature, sigil="OCTO")

#Box with jagged edges (useful for showing breaks in contains)
gd_feature_set.add_feature(feature, sigil="JAGGY")

#Arrow which spans the axis with strand used only for direction
gd_feature_set.add_feature(feature, sigil="BIGARROW")
\end{verbatim}

These are shown
\begin{htmlonly}
below.
\end{htmlonly}
\begin{latexonly}in Figure~\ref{fig:gd_sigils}.
\end{latexonly}
Most sigils fit into a bounding box (as given by the default BOX sigil),
either above or below the axis for the forward or reverse strand, or
straddling it (double the height) for strand-less features.
The BIGARROW sigil is different, always straddling the axis with the
direction taken from the feature's stand.

\begin{htmlonly}
\imgsrc[width=425, height=600]{images/GD_sigils.png}
\end{htmlonly}
\begin{latexonly}
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{images/GD_sigils.png}
\caption{Simple GenomeDiagram showing different sigils
(see Section~\ref{sec:gd_sigils})}
\label{fig:gd_sigils}
\end{figure}
\end{latexonly}

\subsection{Arrow sigils}
\label{sec:gd_arrow_sigils}

We introduced the arrow sigils in the previous section.
There are two additional options to adjust the shapes of the arrows, firstly
the thickness of the arrow shaft, given as a proportion of the height of the
bounding box:

\begin{verbatim}
#Full height shafts, giving pointed boxes:
gd_feature_set.add_feature(feature, sigil="ARROW", color="brown",
                           arrowshaft_height=1.0)
#Or, thin shafts:
gd_feature_set.add_feature(feature, sigil="ARROW", color="teal",
                           arrowshaft_height=0.2)
#Or, very thin shafts:
gd_feature_set.add_feature(feature, sigil="ARROW", color="darkgreen",
                           arrowshaft_height=0.1)
\end{verbatim}

\begin{htmlonly}
\noindent The results are shown below:

\imgsrc[width=600, height=700]{images/GD_sigil_arrow_shafts.png}

\end{htmlonly}
\begin{latexonly}
\noindent The results are shown in Figure~\ref{fig:gd_sigil_arrow_shafts}.
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{images/GD_sigil_arrow_shafts.png}
\caption{Simple GenomeDiagram showing arrow shaft options
(see Section~\ref{sec:gd_arrow_sigils})}
\label{fig:gd_sigil_arrow_shafts}
\end{figure}
\end{latexonly}

Secondly, the length of the arrow head - given as a proportion of the height
of the bounding box (defaulting to $0.5$, or $50\%$):

\begin{verbatim}
#Short arrow heads:
gd_feature_set.add_feature(feature, sigil="ARROW", color="blue",
                           arrowhead_length=0.25)
#Or, longer arrow heads:
gd_feature_set.add_feature(feature, sigil="ARROW", color="orange",
                           arrowhead_length=1)
#Or, very very long arrow heads (i.e. all head, no shaft, so triangles):
gd_feature_set.add_feature(feature, sigil="ARROW", color="red",
                           arrowhead_length=10000)
\end{verbatim}

\begin{htmlonly}
\noindent The results are shown below:

\imgsrc[width=600, height=700]{images/GD_sigil_arrow_heads.png}

\end{htmlonly}
\begin{latexonly}
\noindent The results are shown in Figure~\ref{fig:gd_sigil_arrow_heads}.
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{images/GD_sigil_arrow_heads.png}
\caption{Simple GenomeDiagram showing arrow head options
(see Section~\ref{sec:gd_arrow_sigils})}
\label{fig:gd_sigil_arrow_heads}
\end{figure}
\end{latexonly}

Biopython 1.61 adds a new \verb|BIGARROW| sigil which always stradles
the axis, pointing left for the reverse strand or right otherwise:

\begin{verbatim}
#A large arrow straddling the axis:
gd_feature_set.add_feature(feature, sigil="BIGARROW")
\end{verbatim}

\noindent All the shaft and arrow head options shown above for the
\verb|ARROW| sigil can be used for the \verb|BIGARROW| sigil too.

\subsection{A nice example}
\label{sec:gd_nice_example}

Now let's return to the pPCP1 plasmid from \textit{Yersinia pestis biovar
Microtus}, and the top down approach used in Section~\ref{sec:gd_top_down},
but take advantage of the sigil options we've now discussed.  This time
we'll use arrows for the genes, and overlay them with strand-less features
(as plain boxes) showing the position of some restriction digest sites.

%NOTE - This *just* fits on one page in the PDF output :)
\begin{verbatim}
from reportlab.lib import colors
from reportlab.lib.units import cm
from Bio.Graphics import GenomeDiagram
from Bio import SeqIO
from Bio.SeqFeature import SeqFeature, FeatureLocation

record = SeqIO.read("NC_005816.gb", "genbank")

gd_diagram = GenomeDiagram.Diagram(record.id)
gd_track_for_features = gd_diagram.new_track(1, name="Annotated Features")
gd_feature_set = gd_track_for_features.new_set()

for feature in record.features:
    if feature.type != "gene":
        #Exclude this feature
        continue
    if len(gd_feature_set) % 2 == 0:
        color = colors.blue
    else:
        color = colors.lightblue
    gd_feature_set.add_feature(feature, sigil="ARROW",
                               color=color, label=True,
                               label_size = 14, label_angle=0)

#I want to include some strandless features, so for an example
#will use EcoRI recognition sites etc.
for site, name, color in [("GAATTC","EcoRI",colors.green),
                          ("CCCGGG","SmaI",colors.orange),
                          ("AAGCTT","HindIII",colors.red),
                          ("GGATCC","BamHI",colors.purple)]:
    index = 0
    while True:
        index  = record.seq.find(site, start=index)
        if index == -1 : break
        feature = SeqFeature(FeatureLocation(index, index+len(site)))
        gd_feature_set.add_feature(feature, color=color, name=name,
                                   label=True, label_size = 10,
                                   label_color=color)
        index += len(site)

gd_diagram.draw(format="linear", pagesize='A4', fragments=4,
                start=0, end=len(record))
gd_diagram.write("plasmid_linear_nice.pdf", "PDF")
gd_diagram.write("plasmid_linear_nice.eps", "EPS")
gd_diagram.write("plasmid_linear_nice.svg", "SVG")

gd_diagram.draw(format="circular", circular=True, pagesize=(20*cm,20*cm),
                start=0, end=len(record), circle_core = 0.5)
gd_diagram.write("plasmid_circular_nice.pdf", "PDF")
gd_diagram.write("plasmid_circular_nice.eps", "EPS")
gd_diagram.write("plasmid_circular_nice.svg", "SVG")
\end{verbatim}

\begin{htmlonly}
\noindent And the output:

\imgsrc[width=550, height=400]{images/plasmid_linear_nice.png}

\imgsrc[width=591, height=591]{images/plasmid_circular_nice.png}

\end{htmlonly}
\begin{latexonly}
\noindent The expected output is shown in Figures~\ref{fig:plasmid_linear_nice}
and~\ref{fig:plasmid_circular_nice}.
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{images/plasmid_linear_nice.png}
\caption{Linear diagram for \textit{Yersinia pestis biovar Microtus} plasmid
pPCP1 showing selected restriction digest sites (see
Section~\ref{sec:gd_nice_example}).}
\label{fig:plasmid_linear_nice}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{images/plasmid_circular_nice.png}
\caption{Circular diagram for \textit{Yersinia pestis biovar Microtus} plasmid
pPCP1 showing selected restriction digest sites (see
Section~\ref{sec:gd_nice_example}).}
\label{fig:plasmid_circular_nice}
\end{figure}
\end{latexonly}

\subsection{Multiple tracks}
\label{sec:gd_multiple_tracks}

All the examples so far have used a single track, but you can have more than
one track -- for example show the genes on one, and repeat regions on another.
In this example we're going to show three phage genomes side by side to scale,
inspired by Figure 6 in Proux {\textit et al.} (2002) \cite{proux2002}.
We'll need the GenBank files for the following three phage:
\begin{itemize}
\item \verb|NC_002703| -- Lactococcus phage Tuc2009, complete genome ($38347$ bp)
\item \verb|AF323668| -- Bacteriophage bIL285, complete genome ($35538$ bp)
\item \verb|NC_003212| -- \textit{Listeria innocua} Clip11262, complete genome,
of which we are focussing only on integrated prophage 5 (similar length).
\end{itemize}

You can download these using Entrez if you like, see Section~\ref{sec:efetch}
for more details. For the third record we've worked out where the phage is
integrated into the genome, and slice the record to extract it (with the
features preserved, see Section~\ref{sec:SeqRecord-slicing}), and must also
reverse complement to match the orientation of the first two phage (again
preserving the features, see Section~\ref{sec:SeqRecord-reverse-complement}):

\begin{verbatim}
from Bio import SeqIO

A_rec = SeqIO.read("NC_002703.gbk", "gb")
B_rec = SeqIO.read("AF323668.gbk", "gb")
C_rec = SeqIO.read("NC_003212.gbk", "gb")[2587879:2625807].reverse_complement(name=True)
\end{verbatim}

The figure we are imitating used different colors for different gene functions.
One way to do this is to edit the GenBank file to record color preferences for
each feature - something \href{http://www.sanger.ac.uk/resources/software/artemis/}
{Sanger's Artemis editor} does, and which GenomeDiagram should understand. Here
however, we'll just hard code three lists of colors.

Note that the annotation in the GenBank files doesn't exactly match that shown
in Proux \textit{et al.}, they have drawn some unannotated genes.

\begin{verbatim}
from reportlab.lib.colors import red, grey, orange, green, brown, blue, lightblue, purple

A_colors = [red]*5 + [grey]*7 + [orange]*2 + [grey]*2 + [orange] + [grey]*11 + [green]*4 \
         + [grey] + [green]*2 + [grey, green] + [brown]*5 + [blue]*4 + [lightblue]*5 \
         + [grey, lightblue] + [purple]*2 + [grey]
B_colors = [red]*6 + [grey]*8 + [orange]*2 + [grey] + [orange] + [grey]*21 + [green]*5 \
         + [grey] + [brown]*4 + [blue]*3 + [lightblue]*3 + [grey]*5 + [purple]*2
C_colors = [grey]*30 + [green]*5 + [brown]*4 + [blue]*2 + [grey, blue] + [lightblue]*2 \
         + [grey]*5
\end{verbatim}

Now to draw them -- this time we add three tracks to the diagram, and also notice they
are given different start/end values to reflect their different lengths (this requires
Biopython 1.59 or later).

\begin{verbatim}
from Bio.Graphics import GenomeDiagram

name = "Proux Fig 6"
gd_diagram = GenomeDiagram.Diagram(name)
max_len = 0
for record, gene_colors in zip([A_rec, B_rec, C_rec], [A_colors, B_colors, C_colors]):
    max_len = max(max_len, len(record))
    gd_track_for_features = gd_diagram.new_track(1,
                            name=record.name,
                            greytrack=True,
                            start=0, end=len(record))
    gd_feature_set = gd_track_for_features.new_set()

    i = 0
    for feature in record.features:
        if feature.type != "gene":
            #Exclude this feature
            continue
        gd_feature_set.add_feature(feature, sigil="ARROW",
                                   color=gene_colors[i], label=True,
                                   name = str(i+1),
                                   label_position="start",
                                   label_size = 6, label_angle=0)
        i+=1

gd_diagram.draw(format="linear", pagesize='A4', fragments=1,
                start=0, end=max_len)
gd_diagram.write(name + ".pdf", "PDF")
gd_diagram.write(name + ".eps", "EPS")
gd_diagram.write(name + ".svg", "SVG")
\end{verbatim}

\begin{htmlonly}
\noindent The result:

\imgsrc[width=565, height=400]{images/three_track_simple.png}

\end{htmlonly}
\begin{latexonly}
\noindent The expected output is shown in Figure~\ref{fig:three_track_simple}.
\begin{figure}[htbp]
\centering
\includegraphics[width=\textwidth]{images/three_track_simple.png}
\caption{Linear diagram with three tracks for Lactococcus phage Tuc2009
(NC\_002703), bacteriophage bIL285 (AF323668), and prophage 5 from
\textit{Listeria innocua} Clip11262 (NC\_003212)
(see Section~\ref{sec:gd_multiple_tracks}).}
\label{fig:three_track_simple}
\end{figure}
\end{latexonly}
I did wonder why in the original manuscript there were no red or orange genes
marked in the bottom phage. Another important point is here the phage are
shown with different lengths - this is because they are all drawn to the same
scale (they \emph{are} different lengths).

The key difference from the published figure is they have color-coded links
between similar proteins -- which is what we will do in the next section.

\subsection{Cross-Links between tracks}
\label{sec:gd_cross_links}

Biopython 1.59 added the ability to draw cross links between tracks - both
simple linear diagrams as we will show here, but also linear diagrams split
into fragments and circular diagrams.

Continuing the example from the previous section inspired by Figure 6 from
Proux \textit{et al.} 2002 \cite{proux2002},
we would need a list of cross links between pairs of genes, along with a score
or color to use. Realistically you might extract this from a BLAST file
computationally, but here I have manually typed them in.

My naming convention continues to refer to the three phage as A, B and C.
Here are the links we want to show between A and B, given as a list of
tuples (percentage similarity score, gene in A, gene in B).

\begin{verbatim}
#Tuc2009 (NC_002703) vs bIL285 (AF323668)
A_vs_B = [
    (99, "Tuc2009_01", "int"),
    (33, "Tuc2009_03", "orf4"),
    (94, "Tuc2009_05", "orf6"),
    (100,"Tuc2009_06", "orf7"),
    (97, "Tuc2009_07", "orf8"),
    (98, "Tuc2009_08", "orf9"),
    (98, "Tuc2009_09", "orf10"),
    (100,"Tuc2009_10", "orf12"),
    (100,"Tuc2009_11", "orf13"),
    (94, "Tuc2009_12", "orf14"),
    (87, "Tuc2009_13", "orf15"),
    (94, "Tuc2009_14", "orf16"),
    (94, "Tuc2009_15", "orf17"),
    (88, "Tuc2009_17", "rusA"),
    (91, "Tuc2009_18", "orf20"),
    (93, "Tuc2009_19", "orf22"),
    (71, "Tuc2009_20", "orf23"),
    (51, "Tuc2009_22", "orf27"),
    (97, "Tuc2009_23", "orf28"),
    (88, "Tuc2009_24", "orf29"),
    (26, "Tuc2009_26", "orf38"),
    (19, "Tuc2009_46", "orf52"),
    (77, "Tuc2009_48", "orf54"),
    (91, "Tuc2009_49", "orf55"),
    (95, "Tuc2009_52", "orf60"),
]
\end{verbatim}

Likewise for B and C:

\begin{verbatim}
#bIL285 (AF323668) vs Listeria innocua prophage 5 (in NC_003212)
B_vs_C = [
    (42, "orf39", "lin2581"),
    (31, "orf40", "lin2580"),
    (49, "orf41", "lin2579"), #terL
    (54, "orf42", "lin2578"), #portal
    (55, "orf43", "lin2577"), #protease
    (33, "orf44", "lin2576"), #mhp
    (51, "orf46", "lin2575"),
    (33, "orf47", "lin2574"),
    (40, "orf48", "lin2573"),
    (25, "orf49", "lin2572"),
    (50, "orf50", "lin2571"),
    (48, "orf51", "lin2570"),
    (24, "orf52", "lin2568"),
    (30, "orf53", "lin2567"),
    (28, "orf54", "lin2566"),
]
\end{verbatim}

For the first and last phage these identifiers are locus tags, for the middle
phage there are no locus tags so I've used gene names instead. The following
little helper function lets us lookup a feature using either a locus tag or
gene name:

\begin{verbatim}
def get_feature(features, id, tags=["locus_tag", "gene"]):
    """Search list of SeqFeature objects for an identifier under the given tags."""
    for f in features:
        for key in tags:
            #tag may not be present in this feature
            for x in f.qualifiers.get(key, []):
                if x == id:
                     return f
    raise KeyError(id)
\end{verbatim}

We can now turn those list of identifier pairs into SeqFeature pairs, and thus
find their location co-ordinates. We can now add all that code and the following
snippet to the previous example (just before the \verb|gd_diagram.draw(...)|
line -- see the finished example script
\href{http://biopython.org/SRC/biopython/Doc/examples/Proux_et_al_2002_Figure_6.py}{Proux\_et\_al\_2002\_Figure\_6.py}
included in the \texttt{Doc/examples} folder of the Biopython source code)
to add cross links to the figure:

\begin{verbatim}
from Bio.Graphics.GenomeDiagram import CrossLink
from reportlab.lib import colors
#Note it might have been clearer to assign the track numbers explicitly...
for rec_X, tn_X, rec_Y, tn_Y, X_vs_Y in [(A_rec, 3, B_rec, 2, A_vs_B),
                                         (B_rec, 2, C_rec, 1, B_vs_C)]:
    track_X = gd_diagram.tracks[tn_X]
    track_Y = gd_diagram.tracks[tn_Y]
    for score, id_X, id_Y in X_vs_Y:
        feature_X = get_feature(rec_X.features, id_X)
        feature_Y = get_feature(rec_Y.features, id_Y)
        color = colors.linearlyInterpolatedColor(colors.white, colors.firebrick, 0, 100, score)
        link_xy = CrossLink((track_X, feature_X.location.start, feature_X.location.end),
                            (track_Y, feature_Y.location.start, feature_Y.location.end),
                            color, colors.lightgrey)
        gd_diagram.cross_track_links.append(link_xy)
\end{verbatim}

There are several important pieces to this code. First the \verb|GenomeDiagram| object
has a \verb|cross_track_links| attribute which is just a list of \verb|CrossLink| objects.
Each \verb|CrossLink| object takes two sets of track-specific co-ordinates (here given
as tuples, you can alternatively use a \verb|GenomeDiagram.Feature| object instead).
You can optionally supply a colour, border color, and say if this link should be drawn
flipped (useful for showing inversions).

You can also see how we turn the BLAST percentage identity score into a colour,
interpolating between white ($0\%$) and a dark red ($100\%$). In this example
we don't have any problems with overlapping cross-links. One way to tackle that
is to use transparency in ReportLab, by using colors with their alpha channel set.
However, this kind of shaded color scheme combined with overlap transparency
would be difficult to interpret.
%Again, HTML and PDF versions for the figure
\begin{htmlonly}
\noindent The result:

\imgsrc[width=565, height=400]{images/three_track_cl.png}

\end{htmlonly}
\begin{latexonly}
\noindent The expected output is shown in Figure~\ref{fig:three_track_cl}.
\begin{figure}[htbp]
\centering
\includegraphics[width=\textwidth]{images/three_track_cl.png}
\caption{Linear diagram with three tracks for Lactococcus phage Tuc2009
(NC\_002703), bacteriophage bIL285 (AF323668), and prophage 5 from
\textit{Listeria innocua} Clip11262 (NC\_003212) plus basic cross-links
shaded by percentage identity (see Section~\ref{sec:gd_cross_links}).}
\label{fig:three_track_cl}
\end{figure}
\end{latexonly}

There is still a lot more that can be done within Biopython to help
improve this figure. First of all, the cross links in this case are
between proteins which are drawn in a strand specific manor. It can
help to add a background region (a feature using the `BOX' sigil) on the
feature track to extend the cross link. Also, we could reduce the vertical
height of the feature tracks to allocate more to the links instead -- one
way to do that is to allocate space for empty tracks. Furthermore,
in cases like this where there are no large gene overlaps, we can use
the axis-straddling \verb|BIGARROW| sigil, which allows us to further
reduce the vertical space needed for the track. These improvements
are demonstrated in the example script
\href{http://biopython.org/SRC/biopython/Doc/examples/Proux_et_al_2002_Figure_6.py}{Proux\_et\_al\_2002\_Figure\_6.py}
included in the \texttt{Doc/examples} folder of the Biopython source code.
%TODO - Add a link get the file directly (for Windows users etc).
\begin{htmlonly}
\noindent The result:

\imgsrc[width=565, height=400]{images/three_track_cl2a.png}

\end{htmlonly}
\begin{latexonly}
\noindent The expected output is shown in Figure~\ref{fig:three_track_cl2}.
\begin{figure}[htbp]
\centering
\includegraphics[width=\textwidth]{images/three_track_cl2a.png}
\caption{Linear diagram with three tracks for Lactococcus phage Tuc2009
(NC\_002703), bacteriophage bIL285 (AF323668), and prophage 5 from
\textit{Listeria innocua} Clip11262 (NC\_003212) plus cross-links
shaded by percentage identity (see Section~\ref{sec:gd_cross_links}).}
\label{fig:three_track_cl2}
\end{figure}
\end{latexonly}

Beyond that, finishing touches you might want to do manually in a vector
image editor include fine tuning the placement of gene labels, and adding
other custom annotation such as highlighting particular regions.

Although not really necessary in this example since none of the cross-links
overlap, using a transparent color in ReportLab is a very useful technique
for superimposing multiple links. However, in this case a shaded color
scheme should be avoided.

\subsection{Further options}

You can control the tick marks to show the scale -- after all every graph
should show its units, and the number of the grey-track labels.

Also, we have only used the \verb|FeatureSet| so far. GenomeDiagram also has
a \verb|GraphSet| which can be used for show line graphs, bar charts and heat
plots (e.g. to show plots of GC\% on a track parallel to the features).

These options are not covered here yet, so for now we refer you to the
\href{http://biopython.org/DIST/docs/GenomeDiagram/userguide.pdf}
{User Guide (PDF)} included with the standalone version of GenomeDiagram (but
please read the next section first), and the docstrings.

\subsection{Converting old code}

If you have old code written using the standalone version of GenomeDiagram, and
you want to switch it over to using the new version included with Biopython then
you will have to make a few changes - most importantly to your import statements.

Also, the older version of GenomeDiagram used only the UK spellings of color and
center (colour and centre).  You will need to change to the American spellings,
although for several years the Biopython version of GenomeDiagram supported both.

For example, if you used to have:
\begin{verbatim}
from GenomeDiagram import GDFeatureSet, GDDiagram
gdd = GDDiagram("An example")
...
\end{verbatim}
you could just switch the import statements like this:
\begin{verbatim}
from Bio.Graphics.GenomeDiagram import FeatureSet as GDFeatureSet, Diagram as GDDiagram
gdd = GDDiagram("An example")
...
\end{verbatim}
and hopefully that should be enough.  In the long term you might want to
switch to the new names, but you would have to change more of your code:
\begin{verbatim}
from Bio.Graphics.GenomeDiagram import FeatureSet, Diagram
gdd = Diagram("An example")
...
\end{verbatim}
or:
\begin{verbatim}
from Bio.Graphics import GenomeDiagram
gdd = GenomeDiagram.Diagram("An example")
...
\end{verbatim}

If you run into difficulties, please ask on the Biopython mailing list for
advice. One catch is that we have not included the old module
\verb|GenomeDiagram.GDUtilities| yet.  This included a number of
GC\% related functions, which will probably be merged under
\verb|Bio.SeqUtils| later on.
%TODO - Deal with GenomeDiagram.GDUtilities

\section{Chromosomes}

The \verb|Bio.Graphics.BasicChromosome| module allows drawing of chromosomes.
There is an example in Jupe \textit{et al.} (2012) \cite{jupe2012}
(open access) using colors to highlight different gene families.

\subsection{Simple Chromosomes}
Here is a very simple example - for which we'll use \textit{Arabidopsis thaliana}.

\begin{latexonly}
\begin{figure}[p]
\centering
\includegraphics[scale=0.45]{images/simple_chrom.pdf}
\caption{Simple chromosome diagram for \textit{Arabidopsis thaliana}.}
\label{fig:simplechromosome}
\end{figure}
\begin{figure}[p]
\centering
\includegraphics[scale=0.45]{images/tRNA_chrom.pdf}
\caption{Chromosome diagram for \textit{Arabidopsis thaliana} showing tRNA genes.}
\label{fig:trnachromosome}
\end{figure}
\end{latexonly}

You can skip this bit, but first I downloaded the five sequenced chromosomes
from the NCBI's FTP site
\url{ftp://ftp.ncbi.nlm.nih.gov/genomes/Arabidopsis_thaliana} and then parsed
them with \verb|Bio.SeqIO| to find out their lengths.  You could use the
GenBank files for this, but it is faster to use the FASTA files for the
whole chromosomes:

\begin{verbatim}
from Bio import SeqIO
entries = [("Chr I", "CHR_I/NC_003070.fna"),
           ("Chr II", "CHR_II/NC_003071.fna"),
           ("Chr III", "CHR_III/NC_003074.fna"),
           ("Chr IV", "CHR_IV/NC_003075.fna"),
           ("Chr V", "CHR_V/NC_003076.fna")]
for (name, filename) in entries:
   record = SeqIO.read(filename,"fasta")
   print(name, len(record))
\end{verbatim}

\noindent This gave the lengths of the five chromosomes, which we'll now use in
the following short demonstration of the \verb|BasicChromosome| module:

\begin{verbatim}
from reportlab.lib.units import cm
from Bio.Graphics import BasicChromosome

entries = [("Chr I", 30432563),
           ("Chr II", 19705359),
           ("Chr III", 23470805),
           ("Chr IV", 18585042),
           ("Chr V", 26992728)]

max_len = 30432563 #Could compute this
telomere_length = 1000000 #For illustration

chr_diagram = BasicChromosome.Organism()
chr_diagram.page_size = (29.7*cm, 21*cm) #A4 landscape

for name, length in entries:
    cur_chromosome = BasicChromosome.Chromosome(name)
    #Set the scale to the MAXIMUM length plus the two telomeres in bp,
    #want the same scale used on all five chromosomes so they can be
    #compared to each other
    cur_chromosome.scale_num = max_len + 2 * telomere_length

    #Add an opening telomere
    start = BasicChromosome.TelomereSegment()
    start.scale = telomere_length
    cur_chromosome.add(start)

    #Add a body - using bp as the scale length here.
    body = BasicChromosome.ChromosomeSegment()
    body.scale = length
    cur_chromosome.add(body)

    #Add a closing telomere
    end = BasicChromosome.TelomereSegment(inverted=True)
    end.scale = telomere_length
    cur_chromosome.add(end)

    #This chromosome is done
    chr_diagram.add(cur_chromosome)

chr_diagram.draw("simple_chrom.pdf", "Arabidopsis thaliana")
\end{verbatim}

This should create a very simple PDF file, shown
\begin{htmlonly}
here:

%The blank lines above and below are important to trigger paragraph breaks
\imgsrc[width=650, height=460]{images/simple_chrom.png}

\end{htmlonly}
\begin{latexonly}
in Figure~\ref{fig:simplechromosome}.
\end{latexonly}
This example is deliberately short and sweet. The next example shows the
location of features of interest.

\subsection{Annotated Chromosomes}

Continuing from the previous example, let's also show the tRNA genes.
We'll get their locations by parsing the GenBank files for the five
\textit{Arabidopsis thaliana} chromosomes. You'll need to download these
files from the NCBI FTP site
\url{ftp://ftp.ncbi.nlm.nih.gov/genomes/Arabidopsis_thaliana},
and preserve the subdirectory names or edit the paths below:

\begin{verbatim}
from reportlab.lib.units import cm
from Bio import SeqIO
from Bio.Graphics import BasicChromosome

entries = [("Chr I", "CHR_I/NC_003070.gbk"),
           ("Chr II", "CHR_II/NC_003071.gbk"),
           ("Chr III", "CHR_III/NC_003074.gbk"),
           ("Chr IV", "CHR_IV/NC_003075.gbk"),
           ("Chr V", "CHR_V/NC_003076.gbk")]

max_len = 30432563 #Could compute this
telomere_length = 1000000 #For illustration

chr_diagram = BasicChromosome.Organism()
chr_diagram.page_size = (29.7*cm, 21*cm) #A4 landscape

for index, (name, filename) in enumerate(entries):
    record = SeqIO.read(filename,"genbank")
    length = len(record)
    features = [f for f in record.features if f.type=="tRNA"]
    #Record an Artemis style integer color in the feature's qualifiers,
    #1 = Black, 2 = Red, 3 = Green, 4 = blue, 5 =cyan, 6 = purple
    for f in features: f.qualifiers["color"] = [index+2]

    cur_chromosome = BasicChromosome.Chromosome(name)
    #Set the scale to the MAXIMUM length plus the two telomeres in bp,
    #want the same scale used on all five chromosomes so they can be
    #compared to each other
    cur_chromosome.scale_num = max_len + 2 * telomere_length

    #Add an opening telomere
    start = BasicChromosome.TelomereSegment()
    start.scale = telomere_length
    cur_chromosome.add(start)

    #Add a body - again using bp as the scale length here.
    body = BasicChromosome.AnnotatedChromosomeSegment(length, features)
    body.scale = length
    cur_chromosome.add(body)

    #Add a closing telomere
    end = BasicChromosome.TelomereSegment(inverted=True)
    end.scale = telomere_length
    cur_chromosome.add(end)

    #This chromosome is done
    chr_diagram.add(cur_chromosome)

chr_diagram.draw("tRNA_chrom.pdf", "Arabidopsis thaliana")
\end{verbatim}

It might warn you about the labels being too close together - have a look
at the forward strand (right hand side) of Chr I, but it should create a
colorful PDF file, shown
\begin{htmlonly}
here:

%The blank lines above and below are important to trigger paragraph breaks
\imgsrc[width=650, height=460]{images/tRNA_chrom.png}

\end{htmlonly}
\begin{latexonly}
in Figure~\ref{fig:simplechromosome}.
\end{latexonly}