File: chapter_motifs.tex

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 46,856 kB
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (1502 lines) | stat: -rw-r--r-- 56,164 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
\chapter{Sequence motif analysis using Bio.motifs}

This chapter gives an overview of the functionality of the
\verb|Bio.motifs| package included in Biopython. It is intended
for people who are involved in the analysis of sequence motifs, so I'll
assume that you are familiar with basic notions of motif analysis. In
case something is unclear, please look at Section~\ref{sec:links}
for some relevant links.

Most of this chapter describes the new \verb|Bio.motifs| package included
in Biopython 1.61 onwards, which is replacing the older \verb|Bio.Motif| package
introduced with Biopython 1.50, which was in turn based on two older former
Biopython modules, \verb|Bio.AlignAce| and \verb|Bio.MEME|. It provides
most of their functionality with a unified motif object implementation.

Speaking of other libraries, if you are reading this you might be
interested in \href{http://fraenkel.mit.edu/TAMO/}{TAMO}, another python library
designed to deal with sequence motifs. It supports more \emph{de-novo}
motif finders, but it is not a part of Biopython and has some restrictions
on commercial use.

\section{Motif objects}
\label{sec:object}

Since we are interested in motif analysis, we need to take a look at
\verb|Motif| objects in the first place. For that we need to import
the Bio.motifs library:
%doctest ../Tests/Motif
\begin{verbatim}
>>> from Bio import motifs
\end{verbatim}
and we can start creating our first motif objects. We can either create
a \verb+Motif+ object from a list of instances of the motif, or we can
obtain a \verb+Motif+ object by parsing a file from a motif database
or motif finding software.

\subsection{Creating a motif from instances}

Suppose we have these instances of a DNA motif:
%cont-doctest
\begin{verbatim}
>>> from Bio.Seq import Seq
>>> instances = [Seq("TACAA"),
...              Seq("TACGC"),
...              Seq("TACAC"),
...              Seq("TACCC"),
...              Seq("AACCC"),
...              Seq("AATGC"),
...              Seq("AATGC"),
...             ]
\end{verbatim}
then we can create a Motif object as follows:
%cont-doctest
\begin{verbatim}
>>> m = motifs.create(instances)
\end{verbatim}
The instances are saved in an attribute \verb+m.instances+, which is essentially a Python list with some added functionality, as described below.
Printing out the Motif object shows the instances from which it was constructed:
%cont-doctest
\begin{verbatim}
>>> print(m)
TACAA
TACGC
TACAC
TACCC
AACCC
AATGC
AATGC
<BLANKLINE>
\end{verbatim}
The length of the motif is defined as the sequence length, which should be the same for all instances:
%cont-doctest
\begin{verbatim}
>>> len(m)
5
\end{verbatim}
The Motif object has an attribute \verb+.counts+ containing the counts of each
nucleotide at each position. Printing this counts matrix shows it in an easily readable format:
%cont-doctest
\begin{verbatim}
>>> print(m.counts)
        0      1      2      3      4
A:   3.00   7.00   0.00   2.00   1.00
C:   0.00   0.00   5.00   2.00   6.00
G:   0.00   0.00   0.00   3.00   0.00
T:   4.00   0.00   2.00   0.00   0.00
<BLANKLINE>
\end{verbatim}

You can access these counts as a dictionary:
%cont-doctest
\begin{verbatim}
>>> m.counts['A']
[3, 7, 0, 2, 1]
\end{verbatim}
but you can also think of it as a 2D array with the nucleotide as the first
dimension and the position as the second dimension:
%cont-doctest
\begin{verbatim}
>>> m.counts['T', 0]
4
>>> m.counts['T', 2]
2
>>> m.counts['T', 3]
0
\end{verbatim}
You can also directly access columns of the counts matrix
%Don't doctest this as dictionary order is platform dependent:
\begin{verbatim}
>>> m.counts[:, 3]
{'A': 2, 'C': 2, 'T': 0, 'G': 3}
\end{verbatim}
Instead of the nucleotide itself, you can also use the index of the nucleotide
in the sorted letters in the alphabet of the motif:
%cont-doctest
\begin{verbatim}
>>> m.alphabet
IUPACUnambiguousDNA()
>>> m.alphabet.letters
'GATC'
>>> sorted(m.alphabet.letters)
['A', 'C', 'G', 'T']
>>> m.counts['A',:]
(3, 7, 0, 2, 1)
>>> m.counts[0,:]
(3, 7, 0, 2, 1)
\end{verbatim}
The motif has an associated consensus sequence, defined as the sequence of
letters along the positions of the motif for which the largest value in the
corresponding columns of the \verb+.counts+ matrix is obtained:
%cont-doctest
\begin{verbatim}
>>> m.consensus
Seq('TACGC', IUPACUnambiguousDNA())
\end{verbatim}
as well as an anticonsensus sequence, corresponding to the smallest values in
the columns of the \verb+.counts+ matrix:
%cont-doctest
\begin{verbatim}
>>> m.anticonsensus
Seq('GGGTG', IUPACUnambiguousDNA())
\end{verbatim}
You can also ask for a degenerate consensus sequence, in which ambiguous
nucleotides are used for positions where there are multiple nucleotides with
high counts:
%cont-doctest
\begin{verbatim}
>>> m.degenerate_consensus
Seq('WACVC', IUPACAmbiguousDNA())
\end{verbatim}
Here, W and R follow the IUPAC nucleotide ambiguity codes: W is either A or T,
and V is A, C, or G \cite{cornish1985}. The degenerate consensus sequence is
constructed following the rules specified by Cavener \cite{cavener1987}.

We can also get the reverse complement of a motif:
%cont-doctest
\begin{verbatim}
>>> r = m.reverse_complement()
>>> r.consensus
Seq('GCGTA', IUPACUnambiguousDNA())
>>> r.degenerate_consensus
Seq('GBGTW', IUPACAmbiguousDNA())
>>> print(r)
TTGTA
GCGTA
GTGTA
GGGTA
GGGTT
GCATT
GCATT
<BLANKLINE>
\end{verbatim}

The reverse complement and the degenerate consensus sequence are
only defined for DNA motifs.

\subsection{Creating a sequence logo}
If we have internet access, we can create a \href{http://weblogo.berkeley.edu}{weblogo}:
\begin{verbatim}
>>> m.weblogo("mymotif.png")
\end{verbatim}
We should get our logo saved as a PNG in the specified file.

\section{Reading motifs}
\label{sec:io}

Creating motifs from instances by hand is a bit boring, so it's
useful to have some I/O functions for reading and writing
motifs. There are not any really well established standards for storing
motifs, but there are a couple of formats that are more used than
others.

\subsection{JASPAR}
One of the most popular motif databases is \href{http://jaspar.genereg.net}{JASPAR}. In addition to the motif sequence information, the JASPAR database stores a lot of meta-information for each motif. The module \verb+Bio.motifs+ contains a specialized class \verb+jaspar.Motif+ in which this meta-information is represented as attributes:
\begin{itemize}
    \item \verb+matrix_id+ - the unique JASPAR motif ID, e.g. 'MA0004.1'
    \item \verb+name+ - the name of the TF, e.g. 'Arnt'
    \item \verb+collection+ - the JASPAR collection to which the motif belongs, e.g. 'CORE'
    \item \verb+tf_class+ - the structual class of this TF, e.g. 'Zipper-Type'
    \item \verb+tf_family+ - the family to which this TF belongs, e.g. 'Helix-Loop-Helix'
    \item \verb+species+ - the species to which this TF belongs, may have multiple values, these are specified as taxonomy IDs, e.g. 10090
    \item \verb+tax_group+ - the taxonomic supergroup to which this motif belongs, e.g. 'vertebrates'
    \item \verb+acc+ - the accession number of the TF protein, e.g. 'P53762'
    \item \verb+data_type+ - the type of data used to construct this motif, e.g. 'SELEX'
    \item \verb+medline+ - the Pubmed ID of literature supporting this motif, may be multiple values, e.g. 7592839
    \item \verb+pazar_id+ - external reference to the TF in the \href{http://pazar.info}{PAZAR} database, e.g. 'TF0000003'
    \item \verb+comment+ - free form text containing notes about the construction of the motif
\end{itemize}

The \verb+jaspar.Motif+ class inherits from the generic \verb+Motif+ class and therefore provides all the facilities of any of the motif formats --- reading motifs, writing motifs, scanning sequences for motif instances etc.

JASPAR stores motifs in several different ways including three different flat file formats and as an SQL database. All of these formats facilitate the construction of a counts matrix. However, the amount of meta information described above that is available varies with the format.

\subsubsection*{The JASPAR \texttt{sites} format}

The first of the three flat file formats contains a list of instances. As an example, these are the beginning and ending lines of the JASPAR \verb+Arnt.sites+ file showing known binding sites of the mouse helix-loop-helix transcription factor Arnt.
\begin{verbatim}
>MA0004 ARNT 1
CACGTGatgtcctc
>MA0004 ARNT 2
CACGTGggaggtac
>MA0004 ARNT 3
CACGTGccgcgcgc
...
>MA0004 ARNT 18
AACGTGacagccctcc
>MA0004 ARNT 19
AACGTGcacatcgtcc
>MA0004 ARNT 20
aggaatCGCGTGc
\end{verbatim}
The parts of the sequence in capital letters are the motif instances that were found to align to each other.

We can create a \verb+Motif+ object from these instances as follows:
%cont-doctest
\begin{verbatim}
>>> from Bio import motifs
>>> with open("Arnt.sites") as handle:
...     arnt = motifs.read(handle, "sites")
...
\end{verbatim}
The instances from which this motif was created is stored in the \verb+.instances+ property:
%cont-doctest
\begin{verbatim}
>>> print(arnt.instances[:3])
[Seq('CACGTG', IUPACUnambiguousDNA()), Seq('CACGTG', IUPACUnambiguousDNA()), Seq('CACGTG', IUPACUnambiguousDNA())]
>>> for instance in arnt.instances:
...     print(instance)
...
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
CACGTG
AACGTG
AACGTG
AACGTG
AACGTG
CGCGTG
\end{verbatim}
The counts matrix of this motif is automatically calculated from the instances:
%cont-doctest
\begin{verbatim}
>>> print(arnt.counts)
        0      1      2      3      4      5
A:   4.00  19.00   0.00   0.00   0.00   0.00
C:  16.00   0.00  20.00   0.00   0.00   0.00
G:   0.00   1.00   0.00  20.00   0.00  20.00
T:   0.00   0.00   0.00   0.00  20.00   0.00
<BLANKLINE>
\end{verbatim}
This format does not store any meta information.

\subsubsection*{The JASPAR \texttt{pfm} format}

JASPAR also makes motifs available directly as a count matrix,
without the instances from which it was created. This \verb+pfm+ format only
stores the counts matrix for a single motif.
For example, this is the JASPAR file \verb+SRF.pfm+ containing the counts matrix for the human SRF transcription factor:
\begin{verbatim}
 2 9 0 1 32 3 46 1 43 15 2 2
 1 33 45 45 1 1 0 0 0 1 0 1
39 2 1 0 0 0 0 0 0 0 44 43
 4 2 0 0 13 42 0 45 3 30 0 0
\end{verbatim}
We can create a motif for this count matrix as follows:
%cont-doctest
\begin{verbatim}
>>> with open("SRF.pfm") as handle:
...     srf = motifs.read(handle, "pfm")
...
>>> print(srf.counts)
        0      1      2      3      4      5      6      7      8      9     10     11
A:   2.00   9.00   0.00   1.00  32.00   3.00  46.00   1.00  43.00  15.00   2.00   2.00
C:   1.00  33.00  45.00  45.00   1.00   1.00   0.00   0.00   0.00   1.00   0.00   1.00
G:  39.00   2.00   1.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00  44.00  43.00
T:   4.00   2.00   0.00   0.00  13.00  42.00   0.00  45.00   3.00  30.00   0.00   0.00
<BLANKLINE>
\end{verbatim}
As this motif was created from the counts matrix directly, it has no instances associated with it:
%cont-doctest
\begin{verbatim}
>>> print(srf.instances)
None
\end{verbatim}
We can now ask for the consensus sequence of these two motifs:
%cont-doctest
\begin{verbatim}
>>> print(arnt.counts.consensus)
CACGTG
>>> print(srf.counts.consensus)
GCCCATATATGG
\end{verbatim}

As with the instances file, no meta information is stored in this format.

\subsubsection*{The JASPAR format \texttt{jaspar}}

The \verb+jaspar+ file format allows multiple motifs to be specified in a single file. In this format each of the motif records consist of a header line followed by four lines defining the counts matrix. The header line begins with a \verb+>+ character (similar to the Fasta file format) and is followed by the unique JASPAR matrix ID and the TF name. The following example shows a \verb+jaspar+ formatted file containing the three motifs Arnt, RUNX1 and MEF2A:
\begin{verbatim}
>MA0004.1 Arnt
A  [ 4 19  0  0  0  0 ]
C  [16  0 20  0  0  0 ]
G  [ 0  1  0 20  0 20 ]
T  [ 0  0  0  0 20  0 ]
>MA0002.1 RUNX1
A  [10 12  4  1  2  2  0  0  0  8 13 ]
C  [ 2  2  7  1  0  8  0  0  1  2  2 ]
G  [ 3  1  1  0 23  0 26 26  0  0  4 ]
T  [11 11 14 24  1 16  0  0 25 16  7 ]
>MA0052.1 MEF2A
A  [ 1  0 57  2  9  6 37  2 56  6 ]
C  [50  0  1  1  0  0  0  0  0  0 ]
G  [ 0  0  0  0  0  0  0  0  2 50 ]
T  [ 7 58  0 55 49 52 21 56  0  2 ]
\end{verbatim}
The motifs are read as follows:
\begin{verbatim}
>>> fh = open("jaspar_motifs.txt")
>>> for m in motifs.parse(fh, "jaspar"))
...     print(m)
TF name	 Arnt
Matrix ID	MA0004.1
Matrix:
        0      1      2      3      4      5
A:   4.00  19.00   0.00   0.00   0.00   0.00
C:  16.00   0.00  20.00   0.00   0.00   0.00
G:   0.00   1.00   0.00  20.00   0.00  20.00
T:   0.00   0.00   0.00   0.00  20.00   0.00



TF name	 RUNX1
Matrix ID	MA0002.1
Matrix:
        0      1      2      3      4      5      6      7      8      9     10
A:  10.00  12.00   4.00   1.00   2.00   2.00   0.00   0.00   0.00   8.00  13.00
C:   2.00   2.00   7.00   1.00   0.00   8.00   0.00   0.00   1.00   2.00   2.00
G:   3.00   1.00   1.00   0.00  23.00   0.00  26.00  26.00   0.00   0.00   4.00
T:  11.00  11.00  14.00  24.00   1.00  16.00   0.00   0.00  25.00  16.00   7.00



TF name	 MEF2A
Matrix ID	MA0052.1
Matrix:
        0      1      2      3      4      5      6      7      8      9
A:   1.00   0.00  57.00   2.00   9.00   6.00  37.00   2.00  56.00   6.00
C:  50.00   0.00   1.00   1.00   0.00   0.00   0.00   0.00   0.00   0.00
G:   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   2.00  50.00
T:   7.00  58.00   0.00  55.00  49.00  52.00  21.00  56.00   0.00   2.00
\end{verbatim}

Note that printing a JASPAR motif yields both the counts data and the available meta-information.

\subsubsection*{Accessing the JASPAR database}

In addition to parsing these flat file formats, we can also retrieve motifs from a JASPAR SQL database. Unlike the flat file formats, a JASPAR database allows storing of all possible meta information defined in the JASPAR \verb+Motif+ class. It is beyond the scope of this document to describe how to set up a JASPAR database (please see the main \href{http://jaspar.genereg.net}{JASPAR} website). Motifs are read from a JASPAR database using the \verb+Bio.motifs.jaspar.db+ module.  First connect to the JASPAR database using the JASPAR5 class which models the the latest JASPAR schema:
\begin{verbatim}
>>> from Bio.motifs.jaspar.db import JASPAR5
>>>
>>> JASPAR_DB_HOST = <hostname>
>>> JASPAR_DB_NAME = <db_name>
>>> JASPAR_DB_USER = <user>
>>> JASPAR_DB_PASS = <passord>
>>>
>>> jdb = JASPAR5(
...     host=JASPAR_DB_HOST,
...     name=JASPAR_DB_NAME,
...     user=JASPAR_DB_USER,
...     password=JASPAR_DB_PASS
... )
\end{verbatim}

Now we can fetch a single motif by its unique JASPAR ID with the \verb+fetch_motif_by_id+ method. Note that a JASPAR ID conists of a base ID and a version number seperated by a decimal point, e.g. 'MA0004.1'. The \verb+fetch_motif_by_id+ method allows you to use either the fully specified ID or just the base ID. If only the base ID is provided, the latest version of the motif is returned.
\begin{verbatim}
>>> arnt = jdb.fetch_motif_by_id("MA0004")
\end{verbatim}
Printing the motif reveals that the JASPAR SQL database stores much more meta-information than the flat files:
\begin{verbatim}
>>> print(arnt)
TF name	Arnt
Matrix ID	MA0004.1
Collection	CORE
TF class	Zipper-Type
TF family	Helix-Loop-Helix
Species	10090
Taxonomic group	vertebrates
Accession	['P53762']
Data type used	SELEX
Medline	7592839
PAZAR ID	TF0000003
Comments	-
Matrix:
	0      1      2      3      4      5
A:   4.00  19.00   0.00   0.00   0.00   0.00
C:  16.00   0.00  20.00   0.00   0.00   0.00
G:   0.00   1.00   0.00  20.00   0.00  20.00
T:   0.00   0.00   0.00   0.00  20.00   0.00


\end{verbatim}

We can also fetch motifs by name. The name must be an exact match (partial matches or database wildcards are not currently supported). Note that as the name is not guaranteed to be unique, the \verb+fetch_motifs_by_name+ method actually returns a list.
\begin{verbatim}
>>> motifs = jdb.fetch_motifs_by_name("Arnt")
>>> print(motifs[0])
TF name	Arnt
Matrix ID	MA0004.1
Collection	CORE
TF class	Zipper-Type
TF family	Helix-Loop-Helix
Species	10090
Taxonomic group	vertebrates
Accession	['P53762']
Data type used	SELEX
Medline	7592839
PAZAR ID	TF0000003
Comments	-
Matrix:
	0      1      2      3      4      5
A:   4.00  19.00   0.00   0.00   0.00   0.00
C:  16.00   0.00  20.00   0.00   0.00   0.00
G:   0.00   1.00   0.00  20.00   0.00  20.00
T:   0.00   0.00   0.00   0.00  20.00   0.00


\end{verbatim}

The \verb+fetch_motifs+ method allows you to fetch motifs which match a specified set of criteria. These criteria include any of the above described meta information as well as certain matrix properties such as the minimum information content (\verb+min_ic+ in the example below), the minimum length of the matrix or the minimum number of sites used to construct the matrix. Only motifs which pass ALL the specified criteria are returned. Note that selection criteria which correspond to meta information which allow for multiple values may be specified as either a single value or a list of values, e.g. \verb+tax_group+ and \verb+tf_family+ in the example below.
\begin{verbatim}
>>> motifs = jdb.fetch_motifs(
...     collection = 'CORE',
...     tax_group = ['vertebrates', 'insects'],
...     tf_class = 'Winged Helix-Turn-Helix',
...     tf_family = ['Forkhead', 'Ets'],
...     min_ic = 12
... )
>>> for motif in motifs:
...     pass # do something with the motif
\end{verbatim}

\subsubsection*{Compatibility with Perl TFBS modules}

An important thing to note is that the JASPAR \verb+Motif+ class was designed to be compatible with the popular \href{http://tfbs.genereg.net/}{Perl TFBS modules}. Therefore some specifics about the choice of defaults for background and pseudocounts as well as how information content is computed and sequences searched for instances is based on this compatibility criteria. These choices are noted in the specific subsections below.

\begin{itemize}
\item{\bf Choice of background:} \\
The Perl \verb+TFBS+ modules appear to allow a choice of custom background probabilities (although the documentation states that uniform background is assumed). However the default is to use a uniform background. Therefore it is recommended that you use a uniform background for computing the position-specific scoring matrix (PSSM). This is the default when using the Biopython \verb+motifs+ module.
\item{\bf Choice of pseudocounts:} \\
By default, the Perl \verb+TFBS+ modules use a pseudocount equal to $\sqrt{N} * \textrm{bg}[\textrm{nucleotide}]$, where $N$ represents the total number of sequences used to construct the matrix. To apply this same pseudocount formula, set the motif \verb+pseudocounts+ attribute using the \verb+jaspar.calculate\_pseudcounts()+ function:
\begin{verbatim}
>>> motif.pseudocounts = motifs.jaspar.calculate_pseudocounts(motif)
\end{verbatim}
Note that it is possible for the counts matrix to have an unequal number of sequences making up the columns. The pseudocount computation uses the average number of sequences making up the matrix. However, when \verb+normalize+ is called on the counts matrix, each count value in a column is divided by the total number of sequences making up that specific column, not by the average number of sequences. This differs from the Perl \verb+TFBS+ modules because the normalization is not done as a separate step and so the average number of sequences is used throughout the computation of the pssm. Therefore, for matrices with unequal column counts, the PSSM computed by the \verb+motifs+ module will differ somewhat from the pssm computed by the Perl \verb+TFBS+ modules.
\item{\bf Computation of matrix information content:} \\
The information content (IC) or specificity of a matrix is computed using the \verb+mean+ method of the \verb+PositionSpecificScoringMatrix+ class. However of note, in the Perl \verb+TFBS+ modules the default behaviour is to compute the IC without first applying pseudocounts, even though by default the PSSMs are computed using pseudocounts as described above.
\item{\bf Searching for instances:} \\
Searching for instances with the Perl \verb+TFBS+ motifs was usually performed using a relative score threshold, i.e. a score in the range 0 to 1. In order to compute the absolute PSSM score corresponding to a relative score one can use the equation:
\begin{verbatim}
>>> abs_score =  (pssm.max - pssm.min) * rel_score + pssm.min
\end{verbatim}
To convert the absolute score of an instance back to a relative score, one can use the equation:
\begin{verbatim}
>>> rel_score = (abs_score - pssm.min) / (pssm.max - pssm.min)
\end{verbatim}
For example, using the Arnt motif before, let's search a sequence with a relative score threshold of 0.8.
%TODO - Check missing ... lines, make into a doctest?
\begin{verbatim}
>>> test_seq=Seq("TAAGCGTGCACGCGCAACACGTGCATTA", unambiguous_dna)
>>> arnt.pseudocounts = motifs.jaspar.calculate_pseudocounts(arnt)
>>> pssm = arnt.pssm
>>> max_score = pssm.max
>>> min_score = pssm.min
>>> abs_score_threshold = (max_score - min_score) * 0.8 + min_score
>>> for position, score in pssm.search(test_seq,
                                       threshold=abs_score_threshold):
...     rel_score = (score - min_score) / (max_score - min_score)
...     print("Position %d: score = %5.3f, rel. score = %5.3f" % (
            position, score, rel_score))
...
Position 2: score = 5.362, rel. score = 0.801
Position 8: score = 6.112, rel. score = 0.831
Position -20: score = 7.103, rel. score = 0.870
Position 17: score = 10.351, rel. score = 1.000
Position -11: score = 10.351, rel. score = 1.000
\end{verbatim}
\end{itemize}

\subsection{MEME}

MEME \cite{bailey1994} is a tool for discovering motifs in a group of related
DNA or protein sequences. It takes as input a group of DNA or protein sequences
and outputs as many motifs as requested. Therefore, in contrast to JASPAR
files, MEME output files typically contain multiple motifs. This is an example.

At the top of an output file generated by MEME shows some background information
about the MEME and the version of MEME used:
\begin{verbatim}
********************************************************************************
MEME - Motif discovery tool
********************************************************************************
MEME version 3.0 (Release date: 2004/08/18 09:07:01)
...
\end{verbatim}
Further down, the input set of training sequences is recapitulated:
\begin{verbatim}
********************************************************************************
TRAINING SET
********************************************************************************
DATAFILE= INO_up800.s
ALPHABET= ACGT
Sequence name            Weight Length  Sequence name            Weight Length
-------------            ------ ------  -------------            ------ ------
CHO1                     1.0000    800  CHO2                     1.0000    800
FAS1                     1.0000    800  FAS2                     1.0000    800
ACC1                     1.0000    800  INO1                     1.0000    800
OPI3                     1.0000    800
********************************************************************************
\end{verbatim}
and the exact command line that was used:
\begin{verbatim}
********************************************************************************
COMMAND LINE SUMMARY
********************************************************************************
This information can also be useful in the event you wish to report a
problem with the MEME software.

command: meme -mod oops -dna -revcomp -nmotifs 2 -bfile yeast.nc.6.freq INO_up800.s
...
\end{verbatim}
Next is detailed information on each motif that was found:
\begin{verbatim}
********************************************************************************
MOTIF  1        width =   12   sites =   7   llr = 95   E-value = 2.0e-001
********************************************************************************
--------------------------------------------------------------------------------
        Motif 1 Description
--------------------------------------------------------------------------------
Simplified        A  :::9:a::::3:
pos.-specific     C  ::a:9:11691a
probability       G  ::::1::94:4:
matrix            T  aa:1::9::11:
\end{verbatim}
To parse this file (stored as \verb+meme.dna.oops.txt+), use
%cont-doctest
\begin{verbatim}
>>> handle = open("meme.dna.oops.txt")
>>> record = motifs.parse(handle, "meme")
>>> handle.close()
\end{verbatim}
The \verb+motifs.parse+ command reads the complete file directly, so you can
close the file after calling \verb+motifs.parse+.
The header information is stored in attributes:
%cont-doctest
\begin{verbatim}
>>> record.version
'3.0'
>>> record.datafile
'INO_up800.s'
>>> record.command
'meme -mod oops -dna -revcomp -nmotifs 2 -bfile yeast.nc.6.freq INO_up800.s'
>>> record.alphabet
IUPACUnambiguousDNA()
>>> record.sequences
['CHO1', 'CHO2', 'FAS1', 'FAS2', 'ACC1', 'INO1', 'OPI3']
\end{verbatim}
The record is an object of the \verb+Bio.motifs.meme.Record+ class.
The class inherits from list, and you can think of \verb+record+ as a list of Motif objects:
%cont-doctest
\begin{verbatim}
>>> len(record)
2
>>> motif = record[0]
>>> print(motif.consensus)
TTCACATGCCGC
>>> print(motif.degenerate_consensus)
TTCACATGSCNC
\end{verbatim}
In addition to these generic motif attributes, each motif also stores its
specific information as calculated by MEME. For example,
%cont-doctest
\begin{verbatim}
>>> motif.num_occurrences
7
>>> motif.length
12
>>> evalue = motif.evalue
>>> print("%3.1g" % evalue)
0.2
>>> motif.name
'Motif 1'
\end{verbatim}
In addition to using an index into the record, as we did above,
you can also find it by its name:
%cont-doctest
\begin{verbatim}
>>> motif = record['Motif 1']
\end{verbatim}
Each motif has an attribute \verb+.instances+ with the sequence instances
in which the motif was found, providing some information on each instance:
%cont-doctest
\begin{verbatim}
>>> len(motif.instances)
7
>>> motif.instances[0]
Instance('TTCACATGCCGC', IUPACUnambiguousDNA())
>>> motif.instances[0].motif_name
'Motif 1'
>>> motif.instances[0].sequence_name
'INO1'
>>> motif.instances[0].start
620
>>> motif.instances[0].strand
'-'
>>> motif.instances[0].length
12
>>> pvalue = motif.instances[0].pvalue
>>> print("%5.3g" % pvalue)
1.85e-08
\end{verbatim}

\subsubsection*{MAST}

\subsection{TRANSFAC}

TRANSFAC is a manually curated database of transcription factors, together
with their genomic binding sites and DNA binding profiles \cite{matys2003}.
While the file format used in the TRANSFAC database is nowadays also used
by others, we will refer to it as the TRANSFAC file format.

A minimal file in the TRANSFAC format looks as follows:
\begin{verbatim}
ID  motif1
P0      A      C      G      T
01      1      2      2      0      S
02      2      1      2      0      R
03      3      0      1      1      A
04      0      5      0      0      C
05      5      0      0      0      A
06      0      0      4      1      G
07      0      1      4      0      G
08      0      0      0      5      T
09      0      0      5      0      G
10      0      1      2      2      K
11      0      2      0      3      Y
12      1      0      3      1      G
//
\end{verbatim}
This file shows the frequency matrix of motif \verb+motif1+ of 12 nucleotides.
In general, one file in the TRANSFAC format can contain multiple motifs. For
example, this is the contents of the example TRANSFAC file \verb+transfac.dat+:
\begin{verbatim}
VV  EXAMPLE January 15, 2013
XX
//
ID  motif1
P0      A      C      G      T
01      1      2      2      0      S
02      2      1      2      0      R
03      3      0      1      1      A
...
11      0      2      0      3      Y
12      1      0      3      1      G
//
ID  motif2
P0      A      C      G      T
01      2      1      2      0      R
02      1      2      2      0      S
...
09      0      0      0      5      T
10      0      2      0      3      Y
//
\end{verbatim}
To parse a TRANSFAC file, use
%cont-doctest
\begin{verbatim}
>>> handle = open("transfac.dat")
>>> record = motifs.parse(handle, "TRANSFAC")
>>> handle.close()
\end{verbatim}
The overall version number, if available, is stored as \verb+record.version+:
%cont-doctest
\begin{verbatim}
>>> record.version
'EXAMPLE January 15, 2013'
\end{verbatim}

Each motif in \verb+record+ is in instance of the \verb+Bio.motifs.transfac.Motif+
class, which inherits both from the \verb+Bio.motifs.Motif+ class and
from a Python dictionary. The dictionary uses the two-letter keys to
store any additional information about the motif:
%cont-doctest
\begin{verbatim}
>>> motif = record[0]
>>> motif.degenerate_consensus # Using the Bio.motifs.Motif method
Seq('SRACAGGTGKYG', IUPACAmbiguousDNA())
>>> motif['ID'] # Using motif as a dictionary
'motif1'
\end{verbatim}

TRANSFAC files are typically much more elaborate than this example, containing
lots of additional information about the motif. Table \ref{table:transfaccodes}
lists the two-letter field codes that are commonly found in TRANSFAC files:
\begin{table}[h]
\label{table:transfaccodes}
\begin{center}
\caption{Fields commonly found in TRANSFAC files}
\begin{tabular}{|l|l||}
\verb+AC+ & Accession number \\
\verb+AS+ & Accession numbers, secondary \\
\verb+BA+ & Statistical basis \\
\verb+BF+ & Binding factors \\
\verb+BS+ & Factor binding sites underlying the matrix \\
\verb+CC+ & Comments \\
\verb+CO+ & Copyright notice \\
\verb+DE+ & Short factor description \\
\verb+DR+ & External databases \\
\verb+DT+ & Date created/updated \\
\verb+HC+ & Subfamilies \\
\verb+HP+ & Superfamilies \\
\verb+ID+ & Identifier \\
\verb+NA+ & Name of the binding factor \\
\verb+OC+ & Taxonomic classification \\
\verb+OS+ & Species/Taxon \\
\verb+OV+ & Older version \\
\verb+PV+ & Preferred version \\
\verb+TY+ & Type \\
\verb+XX+ & Empty line; these are not stored in the Record. \\
\end{tabular}
\end{center}
\end{table}

Each motif also has an attribute \verb+.references+ containing the
references associated with the motif, using these two-letter keys:

\begin{table}[h]
\begin{center}
\caption{Fields used to store references in TRANSFAC files}
\begin{tabular}{|l|l||}
\verb+RN+ & Reference number \\
\verb+RA+ & Reference authors \\
\verb+RL+ & Reference data \\
\verb+RT+ & Reference title \\
\verb+RX+ & PubMed ID \\
\end{tabular}
\end{center}
\end{table}

Printing the motifs writes them out in their native TRANSFAC format:
%cont-doctest
\begin{verbatim}
>>> print(record)
VV  EXAMPLE January 15, 2013
XX
//
ID  motif1
XX
P0      A      C      G      T
01      1      2      2      0      S
02      2      1      2      0      R
03      3      0      1      1      A
04      0      5      0      0      C
05      5      0      0      0      A
06      0      0      4      1      G
07      0      1      4      0      G
08      0      0      0      5      T
09      0      0      5      0      G
10      0      1      2      2      K
11      0      2      0      3      Y
12      1      0      3      1      G
XX
//
ID  motif2
XX
P0      A      C      G      T
01      2      1      2      0      R
02      1      2      2      0      S
03      0      5      0      0      C
04      3      0      1      1      A
05      0      0      4      1      G
06      5      0      0      0      A
07      0      1      4      0      G
08      0      0      5      0      G
09      0      0      0      5      T
10      0      2      0      3      Y
XX
//
<BLANKLINE>
\end{verbatim}
You can export the motifs in the TRANSFAC format by capturing this output
in a string and saving it in a file:
\begin{verbatim}
>>> text = str(record)
>>> handle = open("mytransfacfile.dat", 'w')
>>> handle.write(text)
>>> handle.close()
\end{verbatim}

\section{Writing motifs}

Speaking of exporting, let's look at export functions in general.
We can use the \verb+format+ method to write the motif in the simple JASPAR \verb+pfm+ format:
%the tabs in the output confuse doctest; don't test
\begin{verbatim}
>>> print(arnt.format("pfm"))
  4.00  19.00   0.00   0.00   0.00   0.00
 16.00   0.00  20.00   0.00   0.00   0.00
  0.00   1.00   0.00  20.00   0.00  20.00
  0.00   0.00   0.00   0.00  20.00   0.00
\end{verbatim}
Similarly, we can use \verb+format+ to write the motif in the JASPAR \verb+jaspar+ format:
\begin{verbatim}
>>> print(arnt.format("jaspar"))
>MA0004.1  Arnt
A [  4.00  19.00   0.00   0.00   0.00   0.00]
C [ 16.00   0.00  20.00   0.00   0.00   0.00]
G [  0.00   1.00   0.00  20.00   0.00  20.00]
T [  0.00   0.00   0.00   0.00  20.00   0.00]
\end{verbatim}

To write the motif in a TRANSFAC-like matrix format, use
%cont-doctest
\begin{verbatim}
>>> print(m.format("transfac"))
P0      A      C      G      T
01      3      0      0      4      W
02      7      0      0      0      A
03      0      5      0      2      C
04      2      2      3      0      V
05      1      6      0      0      C
XX
//
<BLANKLINE>
\end{verbatim}

To write out multiple motifs, you can use \verb+motifs.write+.
This function can be used regardless of whether the motifs originated from a TRANSFAC file. For example,
%cont-doctest
\begin{verbatim}
>>> two_motifs = [arnt, srf]
>>> print(motifs.write(two_motifs, 'transfac'))
P0      A      C      G      T
01      4     16      0      0      C
02     19      0      1      0      A
03      0     20      0      0      C
04      0      0     20      0      G
05      0      0      0     20      T
06      0      0     20      0      G
XX
//
P0      A      C      G      T
01      2      1     39      4      G
02      9     33      2      2      C
03      0     45      1      0      C
04      1     45      0      0      C
05     32      1      0     13      A
06      3      1      0     42      T
07     46      0      0      0      A
08      1      0      0     45      T
09     43      0      0      3      A
10     15      1      0     30      T
11      2      0     44      0      G
12      2      1     43      0      G
XX
//
<BLANKLINE>
\end{verbatim}

Or, to write multiple motifs in the \verb+jaspar+ format:
\begin{verbatim}
>>> two_motifs = [arnt, mef2a]
>>> print(motifs.write(two_motifs, "jaspar"))
>MA0004.1  Arnt
A [  4.00  19.00   0.00   0.00   0.00   0.00]
C [ 16.00   0.00  20.00   0.00   0.00   0.00]
G [  0.00   1.00   0.00  20.00   0.00  20.00]
T [  0.00   0.00   0.00   0.00  20.00   0.00]
>MA0052.1  MEF2A
A [  1.00   0.00  57.00   2.00   9.00   6.00  37.00   2.00  56.00   6.00]
C [ 50.00   0.00   1.00   1.00   0.00   0.00   0.00   0.00   0.00   0.00]
G [  0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   2.00  50.00]
T [  7.00  58.00   0.00  55.00  49.00  52.00  21.00  56.00   0.00   2.00]
\end{verbatim}

\section{Position-Weight Matrices}

The \verb+.counts+ attribute of a Motif object shows how often each
nucleotide appeared at each position along the alignment. We can
normalize this matrix by dividing by the number of instances in the
alignment, resulting in the probability of each nucleotide at each
position along the alignment. We refer to these probabilities as
the position-weight matrix. However, beware that in the literature
this term may also be used to refer to the position-specific scoring
matrix, which we discuss below.

Usually, pseudocounts are added to each position before normalizing.
This avoids overfitting of the position-weight matrix to the limited
number of motif instances in the alignment, and can also prevent
probabilities from becoming zero. To add a fixed pseudocount to all
nucleotides at all positions, specify a number for the
\verb+pseudocounts+ argument:
%cont-doctest
\begin{verbatim}
>>> pwm = m.counts.normalize(pseudocounts=0.5)
>>> print(pwm)
        0      1      2      3      4
A:   0.39   0.83   0.06   0.28   0.17
C:   0.06   0.06   0.61   0.28   0.72
G:   0.06   0.06   0.06   0.39   0.06
T:   0.50   0.06   0.28   0.06   0.06
<BLANKLINE>
\end{verbatim}
Alternatively, \verb+pseudocounts+ can be a dictionary specifying the
pseudocounts for each nucleotide. For example, as the GC content of
the human genome is about 40\%, you may want to choose the
pseudocounts accordingly:
%cont-doctest
\begin{verbatim}
>>> pwm = m.counts.normalize(pseudocounts={'A':0.6, 'C': 0.4, 'G': 0.4, 'T': 0.6})
>>> print(pwm)
        0      1      2      3      4
A:   0.40   0.84   0.07   0.29   0.18
C:   0.04   0.04   0.60   0.27   0.71
G:   0.04   0.04   0.04   0.38   0.04
T:   0.51   0.07   0.29   0.07   0.07
<BLANKLINE>
\end{verbatim}
The position-weight matrix has its own methods to calculate the
consensus, anticonsensus, and degenerate consensus sequences:
%cont-doctest
\begin{verbatim}
>>> pwm.consensus
Seq('TACGC', IUPACUnambiguousDNA())
>>> pwm.anticonsensus
Seq('GGGTG', IUPACUnambiguousDNA())
>>> pwm.degenerate_consensus
Seq('WACNC', IUPACAmbiguousDNA())
\end{verbatim}
Note that due to the pseudocounts, the degenerate consensus sequence
calculated from the position-weight matrix is slightly different
from the degenerate consensus sequence calculated from the instances
in the motif:
%cont-doctest
\begin{verbatim}
>>> m.degenerate_consensus
Seq('WACVC', IUPACAmbiguousDNA())
\end{verbatim}
The reverse complement of the position-weight matrix can be calculated directly from the \verb+pwm+:
%cont-doctest
\begin{verbatim}
>>> rpwm = pwm.reverse_complement()
>>> print(rpwm)
        0      1      2      3      4
A:   0.07   0.07   0.29   0.07   0.51
C:   0.04   0.38   0.04   0.04   0.04
G:   0.71   0.27   0.60   0.04   0.04
T:   0.18   0.29   0.07   0.84   0.40
<BLANKLINE>
\end{verbatim}

\section{Position-Specific Scoring Matrices}

Using the background distribution and PWM with pseudo-counts added,
it's easy to compute the log-odds ratios, telling us what are the log
odds of a particular symbol to be coming from a motif against the
background. We can use the \verb|.log_odds()| method on the position-weight
matrix:
%cont-doctest
\begin{verbatim}
>>> pssm = pwm.log_odds()
>>> print(pssm)
        0      1      2      3      4
A:   0.68   1.76  -1.91   0.21  -0.49
C:  -2.49  -2.49   1.26   0.09   1.51
G:  -2.49  -2.49  -2.49   0.60  -2.49
T:   1.03  -1.91   0.21  -1.91  -1.91
<BLANKLINE>
\end{verbatim}
Here we can see positive values for symbols more frequent in the motif
than in the background and negative for symbols more frequent in the
background. $0.0$ means that it's equally likely to see a symbol in the
background and in the motif.

This assumes that A, C, G, and T are equally likely in the background. To
calculate the position-specific scoring matrix against a background with
unequal probabilities for A, C, G, T, use the \verb+background+ argument.
For example, against a background with a 40\% GC content, use
%cont-doctest
\begin{verbatim}
>>> background = {'A':0.3,'C':0.2,'G':0.2,'T':0.3}
>>> pssm = pwm.log_odds(background)
>>> print(pssm)
        0      1      2      3      4
A:   0.42   1.49  -2.17  -0.05  -0.75
C:  -2.17  -2.17   1.58   0.42   1.83
G:  -2.17  -2.17  -2.17   0.92  -2.17
T:   0.77  -2.17  -0.05  -2.17  -2.17
<BLANKLINE>
\end{verbatim}

The maximum and minimum score obtainable from the PSSM are stored in the
\verb+.max+ and \verb+.min+ properties:
%cont-doctest
\begin{verbatim}
>>> print("%4.2f" % pssm.max)
6.59
>>> print("%4.2f" % pssm.min)
-10.85
\end{verbatim}

The mean and standard deviation of the PSSM scores with respect to a specific
background are calculated by the \verb+.mean+ and \verb+.std+ methods.
%cont-doctest
\begin{verbatim}
>>> mean = pssm.mean(background)
>>> std = pssm.std(background)
>>> print("mean = %0.2f, standard deviation = %0.2f" % (mean, std))
mean = 3.21, standard deviation = 2.59
\end{verbatim}
A uniform background is used if \verb+background+ is not specified.
The mean is particularly important, as its value is equal to the
Kullback-Leibler divergence or relative entropy, and is a measure for the
information content of the motif compared to the background. As in Biopython
the base-2 logarithm is used in the calculation of the log-odds scores, the
information content has units of bits.

The \verb+.reverse_complement+, \verb+.consensus+, \verb+.anticonsensus+, and
\verb+.degenerate_consensus+ methods can be applied directly to PSSM objects.

\section{Searching for instances}
\label{sec:search}

The most frequent use for a motif is to find its instances in some
sequence. For the sake of this section, we will use an artificial sequence like this:

%cont-doctest
\begin{verbatim}
>>> test_seq=Seq("TACACTGCATTACAACCCAAGCATTA", m.alphabet)
>>> len(test_seq)
26
\end{verbatim}

\subsection{Searching for exact matches}

The simplest way to find instances, is to look for exact matches of
the true instances of the motif:
%cont-doctest
\begin{verbatim}
>>> for pos, seq in m.instances.search(test_seq):
...     print("%i %s" % (pos, seq))
...
0 TACAC
10 TACAA
13 AACCC
\end{verbatim}
We can do the same with the reverse complement (to find instances on the complementary strand):
%cont-doctest
\begin{verbatim}
>>> for pos, seq in r.instances.search(test_seq):
...     print("%i %s" % (pos, seq))
...
6 GCATT
20 GCATT
\end{verbatim}

\subsection{Searching for matches using the PSSM score}

It's just as easy to look for positions, giving rise to high log-odds scores against our motif:
%cont-doctest
\begin{verbatim}
>>> for position, score in pssm.search(test_seq, threshold=3.0):
...     print("Position %d: score = %5.3f" % (position, score))
...
Position 0: score = 5.622
Position -20: score = 4.601
Position 10: score = 3.037
Position 13: score = 5.738
Position -6: score = 4.601
\end{verbatim}
The negative positions refer to instances of the motif found on the
reverse strand of the test sequence, and follow the Python convention
on negative indices. Therefore, the instance of the motif at \verb|pos|
is located at \verb|test_seq[pos:pos+len(m)]| both for positive and for
negative values of \verb|pos|.

You may notice the threshold parameter, here set arbitrarily to
$3.0$. This is in $log_2$, so we are now looking only for words, which
are eight times more likely to occur under the motif model than in the
background. The default threshold is $0.0$, which selects everything
that looks more like the motif than the background.

You can also calculate the scores at all positions along the sequence:
%Don't use a doc test for this as the spacing can differ
\begin{verbatim}
>>> pssm.calculate(test_seq)
array([  5.62230396,  -5.6796999 ,  -3.43177247,   0.93827754,
        -6.84962511,  -2.04066086, -10.84962463,  -3.65614533,
        -0.03370807,  -3.91102552,   3.03734159,  -2.14918518,
        -0.6016975 ,   5.7381525 ,  -0.50977498,  -3.56422281,
        -8.73414803,  -0.09919716,  -0.6016975 ,  -2.39429784,
       -10.84962463,  -3.65614533], dtype=float32)
\end{verbatim}
In general, this is the fastest way to calculate PSSM scores.
The scores returned by \verb+pssm.calculate+ are for the forward strand
only. To obtain the scores on the reverse strand, you can take the reverse
complement of the PSSM:
\begin{verbatim}
>>> rpssm = pssm.reverse_complement()
>>> rpssm.calculate(test_seq)
array([ -9.43458748,  -3.06172252,  -7.18665981,  -7.76216221,
        -2.04066086,  -4.26466274,   4.60124254,  -4.2480607 ,
        -8.73414803,  -2.26503372,  -6.49598789,  -5.64668512,
        -8.73414803, -10.84962463,  -4.82356262,  -4.82356262,
        -5.64668512,  -8.73414803,  -4.15613794,  -5.6796999 ,
         4.60124254,  -4.2480607 ], dtype=float32)
\end{verbatim}

\subsection{Selecting a score threshold}

If you want to use a less arbitrary way of selecting thresholds, you
can explore the distribution of PSSM scores. Since the space for a score
distribution grows exponentially with motif length, we are using an
approximation with a given precision to keep computation cost manageable:
%cont-doctest
\begin{verbatim}
>>> distribution = pssm.distribution(background=background, precision=10**4)
\end{verbatim}
The \verb+distribution+ object can be used to determine a number of different thresholds.
We can specify the requested false-positive rate (probability of ``finding'' a motif instance in background generated sequence):
%cont-doctest
\begin{verbatim}
>>> threshold = distribution.threshold_fpr(0.01)
>>> print("%5.3f" % threshold)
4.009
\end{verbatim}
or the false-negative rate (probability of ``not finding'' an instance generated from the motif):
%cont-doctest
\begin{verbatim}
>>> threshold = distribution.threshold_fnr(0.1)
>>> print("%5.3f" % threshold)
-0.510
\end{verbatim}
or a threshold (approximately) satisfying some relation between the false-positive rate and the false-negative rate ($\frac{\textrm{fnr}}{\textrm{fpr}}\simeq t$):
%cont-doctest
\begin{verbatim}
>>> threshold = distribution.threshold_balanced(1000)
>>> print("%5.3f" % threshold)
6.241
\end{verbatim}
or a threshold satisfying (roughly) the equality between the $-log$ of the
false-positive rate and the information content (as used in patser software by
Hertz and Stormo):
%cont-doctest
\begin{verbatim}
>>> threshold = distribution.threshold_patser()
>>> print("%5.3f" % threshold)
0.346
\end{verbatim}

For example, in case of our motif, you can get the threshold giving
you exactly the same results (for this sequence) as searching for
instances with balanced threshold with rate of $1000$.
%cont-doctest
\begin{verbatim}
>>> threshold = distribution.threshold_fpr(0.01)
>>> print("%5.3f" % threshold)
4.009
>>> for position, score in pssm.search(test_seq, threshold=threshold):
...     print("Position %d: score = %5.3f" % (position, score))
...
Position 0: score = 5.622
Position -20: score = 4.601
Position 13: score = 5.738
Position -6: score = 4.601
\end{verbatim}

\section{Each motif object has an associated Position-Specific Scoring Matrix}

To facilitate searching for potential TFBSs using PSSMs, both the position-weight matrix and the position-specific scoring matrix are associated with each motif. Using the Arnt motif as an example:
%TODO - Start a new doctest here?
%cont-doctest
\begin{verbatim}
>>> from Bio import motifs
>>> with open("Arnt.sites") as handle:
...     motif = motifs.read(handle, 'sites')
...
>>> print(motif.counts)
        0      1      2      3      4      5
A:   4.00  19.00   0.00   0.00   0.00   0.00
C:  16.00   0.00  20.00   0.00   0.00   0.00
G:   0.00   1.00   0.00  20.00   0.00  20.00
T:   0.00   0.00   0.00   0.00  20.00   0.00
<BLANKLINE>
>>> print(motif.pwm)
        0      1      2      3      4      5
A:   0.20   0.95   0.00   0.00   0.00   0.00
C:   0.80   0.00   1.00   0.00   0.00   0.00
G:   0.00   0.05   0.00   1.00   0.00   1.00
T:   0.00   0.00   0.00   0.00   1.00   0.00
<BLANKLINE>
\end{verbatim}
%Can't use next bit in doctest, Windows Python 2.5 and 2.6 put -1.$ not -inf
\begin{verbatim}
>>> print(motif.pssm)
        0      1      2      3      4      5
A:  -0.32   1.93   -inf   -inf   -inf   -inf
C:   1.68   -inf   2.00   -inf   -inf   -inf
G:   -inf  -2.32   -inf   2.00   -inf   2.00
T:   -inf   -inf   -inf   -inf   2.00   -inf
<BLANKLINE>
\end{verbatim}
The negative infinities appear here because the corresponding entry in the frequency matrix is 0, and we are using zero pseudocounts by default:
%cont-doctest
\begin{verbatim}
>>> for letter in "ACGT":
...     print("%s: %4.2f" % (letter, motif.pseudocounts[letter]))
...
A: 0.00
C: 0.00
G: 0.00
T: 0.00
\end{verbatim}
If you change the \verb+.pseudocounts+ attribute, the position-frequency matrix and the position-specific scoring matrix are recalculated automatically:
%cont-doctest
\begin{verbatim}
>>> motif.pseudocounts = 3.0
>>> for letter in "ACGT":
...     print("%s: %4.2f" % (letter, motif.pseudocounts[letter]))
...
A: 3.00
C: 3.00
G: 3.00
T: 3.00
\end{verbatim}
%Can't use this in doctest, Windows Python 2.5 and 2.6 give G/1 as 0.13 not 0.12
%TODO - Check why...
\begin{verbatim}
>>> print(motif.pwm)
        0      1      2      3      4      5
A:   0.22   0.69   0.09   0.09   0.09   0.09
C:   0.59   0.09   0.72   0.09   0.09   0.09
G:   0.09   0.12   0.09   0.72   0.09   0.72
T:   0.09   0.09   0.09   0.09   0.72   0.09
<BLANKLINE>
\end{verbatim}
%cont-doctest
\begin{verbatim}
>>> print(motif.pssm)
        0      1      2      3      4      5
A:  -0.19   1.46  -1.42  -1.42  -1.42  -1.42
C:   1.25  -1.42   1.52  -1.42  -1.42  -1.42
G:  -1.42  -1.00  -1.42   1.52  -1.42   1.52
T:  -1.42  -1.42  -1.42  -1.42   1.52  -1.42
<BLANKLINE>
\end{verbatim}
You can also set the \verb+.pseudocounts+ to a dictionary over the four nucleotides if you want to use different pseudocounts for them. Setting \verb+motif.pseudocounts+ to \verb+None+ resets it to its default value of zero.

The position-specific scoring matrix depends on the background distribution, which is uniform by default:
%cont-doctest
\begin{verbatim}
>>> for letter in "ACGT":
...     print("%s: %4.2f" % (letter, motif.background[letter]))
...
A: 0.25
C: 0.25
G: 0.25
T: 0.25
\end{verbatim}
Again, if you modify the background distribution, the position-specific scoring matrix is recalculated:
%cont-doctest
\begin{verbatim}
>>> motif.background = {'A': 0.2, 'C': 0.3, 'G': 0.3, 'T': 0.2}
>>> print(motif.pssm)
        0      1      2      3      4      5
A:   0.13   1.78  -1.09  -1.09  -1.09  -1.09
C:   0.98  -1.68   1.26  -1.68  -1.68  -1.68
G:  -1.68  -1.26  -1.68   1.26  -1.68   1.26
T:  -1.09  -1.09  -1.09  -1.09   1.85  -1.09
<BLANKLINE>
\end{verbatim}
Setting \verb+motif.background+ to \verb+None+ resets it to a uniform distribution:
%cont-doctest
\begin{verbatim}
>>> motif.background = None
>>> for letter in "ACGT":
...     print("%s: %4.2f" % (letter, motif.background[letter]))
...
A: 0.25
C: 0.25
G: 0.25
T: 0.25
\end{verbatim}
If you set \verb+motif.background+ equal to a single value, it will be interpreted as the GC content:
%cont-doctest
\begin{verbatim}
>>> motif.background = 0.8
>>> for letter in "ACGT":
...     print("%s: %4.2f" % (letter, motif.background[letter]))
...
A: 0.10
C: 0.40
G: 0.40
T: 0.10
\end{verbatim}
Note that you can now calculate the mean of the PSSM scores over the background against which it was computed:
%cont-doctest
\begin{verbatim}
>>> print("%f" % motif.pssm.mean(motif.background))
4.703928
\end{verbatim}
as well as its standard deviation:
%cont-doctest
\begin{verbatim}
>>> print("%f" % motif.pssm.std(motif.background))
3.290900
\end{verbatim}
and its distribution:
%cont-doctest
\begin{verbatim}
>>> distribution = motif.pssm.distribution(background=motif.background)
>>> threshold = distribution.threshold_fpr(0.01)
>>> print("%f" % threshold)
3.854375
\end{verbatim}

Note that the position-weight matrix and the position-specific scoring matrix are recalculated each time you call \verb+motif.pwm+ or \verb+motif.pssm+, respectively. If speed is an issue and you want to use the PWM or PSSM repeatedly, you can save them as a variable, as in
\begin{verbatim}
>>> pssm = motif.pssm
\end{verbatim}

\section{Comparing motifs}
\label{sec:comp}
Once we have more than one motif, we might want to compare them.

Before we start comparing motifs, I should point out that motif
boundaries are usually quite arbitrary. This means we often need
to compare motifs of different lengths, so comparison needs to involve
some kind of alignment.  This means we have to take into account two things:
\begin{itemize}
\item alignment of motifs
\item some function to compare aligned motifs
\end{itemize}
To align the motifs, we use ungapped alignment of PSSMs and substitute zeros
for any missing columns at the beginning and end of the matrices. This means
that effectively we are using the background distribution for columns missing
from the PSSM.
The distance function then returns the minimal distance between motifs, as
well as the corresponding offset in their alignment.

To give an example, let us first load another motif,
which is similar to our test motif \verb|m|:
%TODO - Start a new doctest here?
%cont-doctest
\begin{verbatim}
>>> with open("REB1.pfm") as handle:
...    m_reb1 = motifs.read(handle, "pfm")
...
>>> m_reb1.consensus
Seq('GTTACCCGG', IUPACUnambiguousDNA())
>>> print(m_reb1.counts)
        0      1      2      3      4      5      6      7      8
A:  30.00   0.00   0.00 100.00   0.00   0.00   0.00   0.00  15.00
C:  10.00   0.00   0.00   0.00 100.00 100.00 100.00   0.00  15.00
G:  50.00   0.00   0.00   0.00   0.00   0.00   0.00  60.00  55.00
T:  10.00 100.00 100.00   0.00   0.00   0.00   0.00  40.00  15.00
<BLANKLINE>
\end{verbatim}

To make the motifs comparable, we choose the same values for the pseudocounts and the background distribution as our motif \verb|m|:
%cont-doctest
\begin{verbatim}
>>> m_reb1.pseudocounts = {'A':0.6, 'C': 0.4, 'G': 0.4, 'T': 0.6}
>>> m_reb1.background = {'A':0.3,'C':0.2,'G':0.2,'T':0.3}
>>> pssm_reb1 = m_reb1.pssm
>>> print(pssm_reb1)
        0      1      2      3      4      5      6      7      8
A:   0.00  -5.67  -5.67   1.72  -5.67  -5.67  -5.67  -5.67  -0.97
C:  -0.97  -5.67  -5.67  -5.67   2.30   2.30   2.30  -5.67  -0.41
G:   1.30  -5.67  -5.67  -5.67  -5.67  -5.67  -5.67   1.57   1.44
T:  -1.53   1.72   1.72  -5.67  -5.67  -5.67  -5.67   0.41  -0.97
<BLANKLINE>
\end{verbatim}
We'll compare these motifs using the Pearson correlation.
Since we want it to resemble a distance measure, we actually take
$1-r$, where $r$ is the Pearson correlation coefficient (PCC):
%cont-doctest
\begin{verbatim}
>>> distance, offset = pssm.dist_pearson(pssm_reb1)
>>> print("distance = %5.3g" % distance)
distance = 0.239
>>> print(offset)
-2
\end{verbatim}
This means that the best PCC between motif \verb|m| and  \verb|m_reb1| is obtained with the following alignment:
\begin{verbatim}
m:      bbTACGCbb
m_reb1: GTTACCCGG
\end{verbatim}
where \verb|b| stands for background distribution. The PCC itself is
roughly $1-0.239=0.761$.

\section{\emph{De novo} motif finding}
\label{sec:find}

Currently, Biopython has only limited support for \emph{de novo} motif
finding. Namely, we support running \verb|xxmotif| and also parsing of
MEME. Since the number of motif finding tools is growing rapidly,
contributions of new parsers are welcome.

\subsection{MEME}
\label{sec:meme}

Let's assume, you have run MEME on sequences of your choice with your
favorite parameters and saved the output in the file
\verb|meme.out|. You can retrieve the motifs reported by MEME by
running the following piece of code:

%doctest ../Tests/Motif
\begin{verbatim}
>>> from Bio import motifs
>>> with open("meme.out") as handle:
...     motifsM = motifs.parse(handle, "meme")
...
\end{verbatim}
\begin{verbatim}
>>> motifsM
[<Bio.motifs.meme.Motif object at 0xc356b0>]
\end{verbatim}

Besides the most wanted list of motifs, the result object contains more useful information, accessible through properties with self-explanatory names:
\begin{itemize}
\item \verb|.alphabet|
\item \verb|.datafile|
\item \verb|.sequence_names|
\item \verb|.version|
\item \verb|.command|
\end{itemize}

The motifs returned by the MEME Parser can be treated exactly like regular
Motif objects (with instances), they also provide some extra
functionality, by adding additional information about the instances.

%cont-doctest
\begin{verbatim}
>>> motifsM[0].consensus
Seq('CTCAATCGTA', IUPACUnambiguousDNA())
>>> motifsM[0].instances[0].sequence_name
'SEQ10;'
>>> motifsM[0].instances[0].start
3
>>> motifsM[0].instances[0].strand
'+'
\end{verbatim}
\begin{verbatim}
>>> motifsM[0].instances[0].pvalue
8.71e-07
\end{verbatim}


\section{Useful links}
\label{sec:links}


\begin{itemize}
\item \href{http://en.wikipedia.org/wiki/Sequence_motif}{Sequence motif} in wikipedia
\item \href{http://en.wikipedia.org/wiki/Position_weight_matrix}{PWM} in wikipedia
\item \href{http://en.wikipedia.org/wiki/Consensus_sequence}{Consensus sequence} in wikipedia
\item \href{http://bio.cs.washington.edu/assessment/}{Comparison of different motif finding programs}
\end{itemize}