File: doc.rst

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 46,856 kB
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (508 lines) | stat: -rw-r--r-- 26,196 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

Chapter XXX  Codon Alignment
==============================================

This chapter is about Codon Alignments, which is a special case of nucleotide
alignment in which the trinucleotides correspond directly to amino acids in
the translated protein product. Codon Alignment carries information that can
be used for many evolutionary analysis.

This chapter has been divided into four parts to explain the codon alignment
support in Biopython. First, a general introduction about the basic classes
in ``Bio.CodonAlign`` will be given. Then, a typical procedure of how to
obtain a codon alignment within Biopython is then discussed. Next, some
simple applications of codon alignment, such as dN/dS ratio estimation and
neutrality test and so forth will be covered. Finally, IO support of codon
alignment will help user to conduct analysis that cannot be done within
Biopython.


X.1  ``CodonSeq`` Class
-------------------------------------------

``Bio.CodonAlign.CodonSeq`` object is the base object in Codon Alignment. It
is similar to ``Bio.Seq`` but with some extra attributes. To obtain a simple
``CodonSeq`` object, you just need to give a ``str`` object of nucleotide
sequence whose length is a multiple of 3 (This can be violated if you have
``rf_table`` argument). For example:

.. code:: verbatim

    >>> from Bio.CodonAlign import CodonSeq
    >>> codon_seq = CodonSeq("AAATTTCCCGGG")
    >>> codon_seq
    CodonSeq('AAATTTCCCGGG', Gapped(CodonAlphabet(), '-'))

An error will raise up if the input sequence is not a multiple of 3.

.. code:: verbatim

    >>> codon_seq = CodonSeq("AAATTTCCCGG")
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/biopython/Bio/CodonAlign/CodonSeq.py", line 81, in __init__
        assert len(self) % 3 == 0, "Sequence length is not a triple number"
    AssertionError: Sequence length is not a triple number

By default, ``Bio.CodonAlign.default_codon_alphabet`` will be assigned to
``CodonSeq`` object if you don't specify any Alphabet. This
``default_codon_alphabet`` is gapped universal genetic code, which will work
in most cases. However, if you are analyzing data from mitochondria, for
instance, and are in need of assigning an special codon alphabet by yourself,
``Bio.CodonAlign.CodonAlphabet`` also provides you an easy solution. All you
need is to pick up a ``CodonTable`` object that is correct for your data.
For example:

.. code:: verbatim
    
    >>> from Bio.CodonAlign import CodonSeq
    >>> from Bio.CodonAlign.CodonAlphabet import get_codon_alphabet
    >>> from Bio.Data.CodonTable import generic_by_id
    # vertebrate mitochondria alphabet
    >>> codon_alphabet = get_codon_alphabet(generic_by_id[2], gap_char="-")
    >>> codon_seq1 = CodonSeq("AAA---CCCGGG", alphabet=codon_alphabet)
    >>> codon_seq1
    CodonSeq('AAA---CCCGGG', CodonAlphabet(Vertebrate Mitochondrial))

The slice of ``CodonSeq`` is exactly the same with ``Seq`` and it will always
return a ``Seq`` object if you sliced a ``CodonSeq``. For example:

.. code:: verbatim

    >>> codon_seq1
    CodonSeq('AAA---CCCGGG', CodonAlphabet(Vertebrate Mitochondrial))
    >>> codon_seq1[:6]
    Seq('AAA---', DNAAlphabet())
    >>> codon_seq1[1:5]
    Seq('AA--', DNAAlphabet())

As you might imagine, ``CodonSeq`` is able to be translated into amino acid
sequence based on the ``CodonAlphabet`` within it. In fact, ``CodonSeq`` does
more than this. ``CodonSeq`` object has a ``rf_table`` attribute that dictates
how the ``CodonSeq`` will be translated (``rf_table`` will indicate the
starting position of each codon in the sequence). This is useful if you
sequence is known to have frameshift events or pseudogene that has insertion
or deletion. You might notice that in the previous example, you haven't
specify the ``rf_table`` when initiate a ``CodonSeq`` object. In fact,
``CodonSeq`` object will automatically assign a ``rf_table`` to the
``CodonSeq`` if you don't say anything about it.

.. code:: verbatim

    >>> codon_seq1 = CodonSeq("AAACCCGGG")
    >>> codon_seq1
    CodonSeq('AAACCCGGG', CodonAlphabet(Standard))
    >>> codon_seq1.rf_table
    [0, 3, 6]
    >>> codon_seq1.translate()
    'KPG'
    >>> codon_seq2 = CodonSeq("AAACCCGG", rf_table=[0, 3, 5])
    >>> codon_seq2.rf_table
    [0, 3, 5]
    >>> codon_seq2.translate()
    'KPR'

In the example, we didn't assign ``rf_table`` to ``codon_seq1``. By default,
``CodonSeq`` will automatically generate a ``rf_table`` to the coding sequence
assuming no frameshift events. In this case, it is ``[0, 3, 6]``, which means
the first codon in the sequence starts at position 0, the second codon in the
sequence starts at position 3, and the third codon in the sequence starts at
position 6. In ``codon_seq2``, we only have 8 nucleotides in the sequence, but
with ``rf_table`` option specified. In this case, the third codon starts at
the 5th position of the sequence rather than the 6th. And the ``translate()``
function will use the ``rf_table`` to get the translated amino acid sequence.

Another thing to keep in mind is that ``rf_table`` will only be applied to
ungapped nucleotide sequence. This makes ``rf_table`` to be interchangeable
between ``CodonSeq`` with the same sequence but different gaps inserted. For
example,

.. code:: verbatim

    >>> codon_seq1 = CodonSeq("AAACCC---GGG")
    >>> codon_seq1.rf_table
    [0, 3, 6]
    >>> codon_seq1.translate()
    'KPG'
    >>> codon_seq1.full_translate()
    'KP-G'

We can see that the ``rf_table`` of ``codon_seq1`` is still ``[0, 3, 6]``,
even though we have gaps added. The ``translate()`` function will skip the
gaps and return the ungapped amino acid sequence. If gapped protein sequence
is what you need, ``full_translate()`` comes to help.

It is also easy to convert ``Seq`` object to ``CodonSeq`` object, but it is
the user's responsibility to ensure all the necessary information is correct
for a ``CodonSeq`` (mainly ``rf_table``).

.. code:: verbatim

    >>> from Bio.Seq import Seq
    >>> codon_seq = CodonSeq()
    >>> seq = Seq('AAAAAA')
    >>> codon_seq.from_seq(seq)
    CodonSeq('AAAAAA', CodonAlphabet(Standard))
    >>> seq = Seq('AAAAA')
    >>> codon_seq.from_seq(seq)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/biopython/Bio/CodonAlign/CodonSeq.py", line 264, in from_seq
        return cls(seq._data, alphabet=alphabet)
      File "/biopython/Bio/CodonAlign/CodonSeq.py", line 80, in __init__
        assert len(self) % 3 == 0, "Sequence length is not a triple number"
    AssertionError: Sequence length is not a triple number
    >>> codon_seq.from_seq(seq, rf_table=(0, 2))
    CodonSeq('AAAAA', CodonAlphabet(Standard))


X.2  ``CodonAlignment`` Class
-------------------------------------------

The ``CodonAlignment`` class is another new class in ``Codon.Align``. It's
aim is to store codon alignment data and apply various analysis upon it.
Similar to ``MultipleSeqAlignment``, you can use numpy style slice to a
``CodonAlignment``. However, once you sliced, the returned result will
always be a ``MultipleSeqAlignment`` object.

.. code:: verbatim

    >>> from Bio.CodonAlign import default_codon_alphabet, CodonSeq, CodonAlignment
    >>> from Bio.Alphabet import generic_dna
    >>> from Bio.SeqRecord import SeqRecord
    >>> from Bio.Alphabet import IUPAC, Gapped
    >>> a = SeqRecord(CodonSeq("AAAACGTCG", alphabet=default_codon_alphabet), id="Alpha")
    >>> b = SeqRecord(CodonSeq("AAA---TCG", alphabet=default_codon_alphabet), id="Beta")
    >>> c = SeqRecord(CodonSeq("AAAAGGTGG", alphabet=default_codon_alphabet), id="Gamma")
    >>> codon_aln = CodonAlignment([a, b, c])
    >>> print codon_aln
    CodonAlphabet(Standard) CodonAlignment with 3 rows and 9 columns (3 codons)
    AAAACGTCG Alpha
    AAA---TCG Beta
    AAAAGGTGG Gamma
    >>> codon_aln[0]
    ID: Alpha
    Name: <unknown name>
    Description: <unknown description>
    Number of features: 0
    CodonSeq('AAAACGTCG', CodonAlphabet(Standard))
    >>> print codon_aln[:, 3]
    A-A
    >>> print codon_aln[1:, 3:10]
    CodonAlphabet(Standard) alignment with 2 rows and 6 columns
    ---TCG Beta
    AGGTGG Gamma

You can write out ``CodonAlignment`` object just as what you do with
``MultipleSeqAlignment``.

.. code:: verbatim

    >>> from Bio import AlignIO
    >>> AlignIO.write(codon_aln, 'example.aln', 'clustal')

An alignment file called ``example.aln`` can then be found in your current
working directory. You can write ``CodonAlignment`` out in any MSA format
that Biopython supports.

Currently, you are not able to read MSA data as a ``CodonAlignment`` object
directly (because of dealing with ``rf_table`` issue for each sequence).
However, you can read the alignment data in as a ``MultipleSeqAlignment``
object and convert them into ``CodonAlignment`` object using ``from_msa()``
class method. For example,

.. code:: verbatim

    >>> aln = AlignIO.read('example.aln', 'clustal')
    >>> codon_aln = CodonAlignment()
    >>> print codon_aln.from_msa(aln)
    CodonAlphabet(Standard) CodonAlignment with 3 rows and 9 columns (3 codons)
    AAAACGTCG Alpha
    AAA---TCG Beta
    AAAAGGTGG Gamma

Note, the ``from_msa()`` method assume there is no frameshift events occurs
in your alignment. Its behavior is not guaranteed if your sequence contain
frameshift events!!

There is a couple of methods that can be applied to ``CodonAlignment`` class
for evolutionary analysis. We will cover them more in X.4.


X.3  Build a Codon Alignment
-------------------------------------------

Building a codon alignment is the first step of many evolutionary anaysis.
But how to do that?  ``Bio.CodonAlign`` provides you an easy funciton
``build()`` to achieve all. The data you need to prepare in advance is a
protein alignment and a set of DNA sequences that can be translated into the
protein sequences in the alignment.

``CodonAlign.build`` method requires two mandatory arguments. The first one
should be a protein ``MultipleSeqAlignment`` object and the second one is a
list of nucleotide ``SeqRecord`` object. By default, ``CodonAlign.build``
assumes the order of the alignment and nucleotide sequences are in the same.
For example:

.. code:: verbatim

    >>> from Bio import CodonAlign
    >>> from Bio.Alphabet import IUPAC
    >>> from Bio.Align import MultipleSeqAlignment
    >>> from Bio.SeqRecord import SeqRecord
    >>> from Bio.Seq import Seq
    >>> nucl1 = SeqRecord(Seq('AAATTTCCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl1')
    >>> nucl2 = SeqRecord(Seq('AAATTACCCGCG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl2')
    >>> nucl3 = SeqRecord(Seq('ATATTACCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl3')
    >>> prot1 = SeqRecord(nucl1.seq.translate(), id='prot1')
    >>> prot2 = SeqRecord(nucl2.seq.translate(), id='prot2')
    >>> prot3 = SeqRecord(nucl3.seq.translate(), id='prot3')
    >>> aln = MultipleSeqAlignment([prot1, prot2, prot3])
    >>> codon_aln = CodonAlign.build(aln, [nucl1, nucl2, nucl3])
    >>> print codon_aln
    CodonAlphabet(Standard) CodonAlignment with 3 rows and 12 columns (4 codons)
    AAATTTCCCGGG nucl1
    AAATTACCCGCG nucl2
    ATATTACCCGGG nucl3

In the above example, ``CodonAlign.build`` will try to match ``nucl1`` with
``prot1``, ``nucl2`` with ``prot2`` and ``nucl3`` with ``prot3``, i.e.,
assuming the order of records in ``aln`` and ``[nucl1, nucl2, nucl3]`` is the
same.

``CodonAlign.build`` method is also able to handle key match. In this case,
records with same id are paired. For example:

.. code:: verbatim

    >>> nucl1 = SeqRecord(Seq('AAATTTCCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl1')
    >>> nucl2 = SeqRecord(Seq('AAATTACCCGCG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl2')
    >>> nucl3 = SeqRecord(Seq('ATATTACCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl3')
    >>> prot1 = SeqRecord(nucl1.seq.translate(), id='prot1')
    >>> prot2 = SeqRecord(nucl2.seq.translate(), id='prot2')
    >>> prot3 = SeqRecord(nucl3.seq.translate(), id='prot3')
    >>> aln = MultipleSeqAlignment([prot1, prot2, prot3])
    >>> nucl = {'prot1': nucl1, 'prot2': nucl2, 'prot3': nucl3}
    >>> codon_aln = CodonAlign.build(aln, nucl)
    >>> print codon_aln
    CodonAlphabet(Standard) CodonAlignment with 3 rows and 12 columns (4 codons)
    AAATTTCCCGGG nucl1
    AAATTACCCGCG nucl2
    ATATTACCCGGG nucl3

This option is handleful if you read nucleotide sequences using ``SeqIO.index``
method, in which case the nucleotide dict with be generated automatically.

Sometimes, you are neither not able to ensure the same order or the same id.
``CodonAlign.build`` method provides you an manual approach to tell the
program nucleotide sequence and protein sequence correspondance by generating
a ``corr_dict``. ``corr_dict`` should be a dictionary that uses protein record
id as key and nucleotide record id as item. Let's look at an example:

.. code:: verbatim

    >>> nucl1 = SeqRecord(Seq('AAATTTCCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl1')
    >>> nucl2 = SeqRecord(Seq('AAATTACCCGCG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl2')
    >>> nucl3 = SeqRecord(Seq('ATATTACCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl3')
    >>> prot1 = SeqRecord(nucl1.seq.translate(), id='prot1')
    >>> prot2 = SeqRecord(nucl2.seq.translate(), id='prot2')
    >>> prot3 = SeqRecord(nucl3.seq.translate(), id='prot3')
    >>> aln = MultipleSeqAlignment([prot1, prot2, prot3])
    >>> corr_dict = {'prot1': 'nucl1', 'prot2': 'nucl2', 'prot3': 'nucl3'}
    >>> codon_aln = CodonAlign.build(aln, [nucl3, nucl1, nucl2], corr_dict=corr_dict)
    >>> print codon_aln
    CodonAlphabet(Standard) CodonAlignment with 3 rows and 12 columns (4 codons)
    AAATTTCCCGGG nucl1
    AAATTACCCGCG nucl2
    ATATTACCCGGG nucl3

We can see, even though the second argument of ``CodonAlign.build`` is not in
the same order with ``aln`` in the above example, the ``corr_dict`` tells the
program to pair protein records and nucleotide records. And we are still able
to obtain the correct ``CodonAlignment`` object.

The underlying algorithm of ``CodonAlign.build`` method is very similar to
``pal2nal`` (a very famous perl script to build codon alignment).
``CodonAlign.build`` will first translate protein sequences into a long
degenerate regular expression and tries to find a match in its corresponding
nucleotide sequence. When translation fails, it divide protein sequence into
several small anchors and tries to match each anchor to the nucleotide sequence
to figure out where the mismatch and frameshift events lie. Other options
available for ``CodonAlign.build`` includes ``anchor_len`` (default 10) and
``max_score`` (maximum tolerance of unexpected events, default 10). You may
want to refer the Biopython build-in help to get more information about these
options.

Now let's look at a real example of building codon alignment. Here we will use
epidermal growth factor (EGFR) gene to demonstrate how to obtain codon
alignment. To reduce your effort, we have already collected EGFR sequences for
`Homo sapiens`, `Bos taurus`, `Rattus norvegicus`, `Sus scrofa` and
`Drosophila melanogaster`. You can download them from
`here <http://zruanweb.com/egfr.zip>`_.
Uncomressing the ``.zip``, you will see three files. ``egfr_nucl.fa`` is
nucleotide sequences of EGFR and ``egfr_pro.aln`` is EGFR protein sequence
alignment in ``clustal`` format. The ``egfr_id`` contains id correspondance
between protein records and nucleotide records. You can then try the following
code (make sure the files are in your current python working directory):

.. code:: verbatim

    >>> from Bio import SeqIO, AlignIO
    >>> nucl = SeqIO.parse('egfr_nucl.fa', 'fasta', alphabet=IUPAC.IUPACUnambiguousDNA())
    >>> prot = AlignIO.read('egfr_pro.aln', 'clustal', alphabet=IUPAC.protein)
    >>> id_corr = {i.split()[0]: i.split()[1] for i in open('egfr_id').readlines()}
    >>> aln = CodonAlign.build(prot, nucl, corr_dict=id_corr, alphabet=CodonAlign.default_codon_alphabet)
    /biopython/Bio/CodonAlign/__init__.py:568: UserWarning: gi|47522840|ref|NP_999172.1|(L 449) does not correspond to gi|47522839|ref|NM_214007.1|(ATG)
      % (pro.id, aa, aa_num, nucl.id, this_codon))
    >>> print aln
    CodonAlphabet(Standard) CodonAlignment with 6 rows and 4446 columns (1482 codons)
    ATGATGATTATCAGCATGTGGATGAGCATATCGCGAGGATTGTGGGACAGCAGCTCC...GTG gi|24657088|ref|NM_057410.3|
    ---------------------ATGCTGCTGCGACGGCGCAACGGCCCCTGCCCCTTC...GTG gi|24657104|ref|NM_057411.3|
    ------------------------------ATGAAAAAGCACGAG------------...GCC gi|302179500|gb|HM749883.1|
    ------------------------------ATGCGACGCTCCTGGGCGGGCGGCGCC...GCA gi|47522839|ref|NM_214007.1|
    ------------------------------ATGCGACCCTCCGGGACGGCCGGGGCA...GCA gi|41327737|ref|NM_005228.3|
    ------------------------------ATGCGACCCTCAGGGACTGCGAGAACC...GCA gi|6478867|gb|M37394.2|RATEGFR

We can see, while building the codon alignment a mismatch event is found. And
this is shown as a UserWarning.


X.4  Codon Alignment Application
-------------------------------------------

The most important application of codon alignment is to estimate
nonsynonymous substitutions per site (dN) and synonymous substitutions per
site (dS). ``CodonAlign`` currently support three counting based methods
(NG86, LWL85, YN00) and maximum likelihood method to estimate dN and dS.
The function to conduct dN, dS estimation is called ``cal_dn_ds``. When you
obtained a codon alignment, it is quite easy to calculate dN and dS. For
example (assuming you have EGFR codon alignmnet in the python working
space):

.. code:: verbatim

    >>> from Bio.CodonAlign.CodonSeq import cal_dn_ds
    >>> print aln
    CodonAlphabet(Standard) CodonAlignment with 6 rows and 4446 columns (1482 codons)
    ATGATGATTATCAGCATGTGGATGAGCATATCGCGAGGATTGTGGGACAGCAGCTCC...GTG gi|24657088|ref|NM_057410.3|
    ---------------------ATGCTGCTGCGACGGCGCAACGGCCCCTGCCCCTTC...GTG gi|24657104|ref|NM_057411.3|
    ------------------------------ATGAAAAAGCACGAG------------...GCC gi|302179500|gb|HM749883.1|
    ------------------------------ATGCGACGCTCCTGGGCGGGCGGCGCC...GCA gi|47522839|ref|NM_214007.1|
    ------------------------------ATGCGACCCTCCGGGACGGCCGGGGCA...GCA gi|41327737|ref|NM_005228.3|
    ------------------------------ATGCGACCCTCAGGGACTGCGAGAACC...GCA gi|6478867|gb|M37394.2|RATEGFR
    >>> dN, dS = cal_dn_ds(aln[0], aln[1], method='NG86')
    >>> print dN, dS
    0.0209078305058 0.0178371876389
    >>> dN, dS = cal_dn_ds(aln[0], aln[1], method='LWL95')
    >>> print dN, dS
    0.0203061425453 0.0163935691992
    >>> dN, dS = cal_dn_ds(aln[0], aln[1], method='YN00')
    >>> print dN, dS
    0.0198195580321 0.0221560648799
    >>> dN, dS = cal_dn_ds(aln[0], aln[1], method='ML')
    >>> print dN, dS
    0.0193877676103 0.0217247139962

If you are using maximum likelihood methdo to estimate dN and dS, you are
also able to specify equilibrium codon frequency to ``cfreq`` argument.
Available options include ``F1x4``, ``F3x4`` and ``F61``.

It is also possible to get dN and dS matrix or a tree from a ``CodonAlignment`` object.

.. code:: verbatim

    >>> dn_matrix, ds_matrix = aln.get_dn_ds_matrxi()
    >>> print dn_matrix
    gi|24657088|ref|NM_057410.3|    0
    gi|24657104|ref|NM_057411.3|    0.0209078305058 0
    gi|302179500|gb|HM749883.1|     0.611523924924  0.61022032668   0
    gi|47522839|ref|NM_214007.1|    0.614035083563  0.60401686212   0.0411803504059 0
    gi|41327737|ref|NM_005228.3|    0.61415325314   0.60182631356   0.0670105144563 0.0614703609541 0
    gi|6478867|gb|M37394.2|RATEGFR  0.61870883409   0.606868724887  0.0738690303483 0.0735789092792 0.0517984707257 0
    gi|24657088|ref|NM_057410.3|    gi|24657104|ref|NM_057411.3|    gi|302179500|gb|HM749883.1| gi|47522839|ref|NM_214007.1|    gi|41327737|ref|NM_005228.3|    gi|6478867|gb|M37394.2|RATEGFR
    >>> dn_tree, ds_tree = aln.get_dn_ds_tree()
    >>> print dn_tree
    Tree(rooted=True)
        Clade(branch_length=0, name='Inner5')
            Clade(branch_length=0.279185347322, name='Inner4')
                Clade(branch_length=0.00859186651689, name='Inner3')
                    Clade(branch_length=0.0258992353629, name='gi|6478867|gb|M37394.2|RATEGFR')
                    Clade(branch_length=0.0258992353629, name='gi|41327737|ref|NM_005228.3|')
                Clade(branch_length=0.0139009266768, name='Inner2')
                    Clade(branch_length=0.020590175203, name='gi|47522839|ref|NM_214007.1|')
                    Clade(branch_length=0.020590175203, name='gi|302179500|gb|HM749883.1|')
            Clade(branch_length=0.294630667432, name='Inner1')
                Clade(branch_length=0.0104539152529, name='gi|24657104|ref|NM_057411.3|')
                Clade(branch_length=0.0104539152529, name='gi|24657088|ref|NM_057410.3|')

Another application of codon alignment that ``CodonAlign`` supports is
Mcdonald-Kreitman test. This test compares the within species synonymous
substitutions and nonsynonymous substitutions and between species synonymous
substitutions and nonsynonymous substitutions to see if they are from the same
evolutionary process. The test requires gene sequences sampled from different
individuals of the same species. In the following example, we will use `Adh`
gene from fluit fly to demonstrate how to conduct the test. The data includes
11 individuals from `D. melanogaster`, 4 individuals from `D. simulans` and
12 individuals from `D. yakuba`. The data is available from 
`here <http://zruanweb.com/adh.zip>`_. A function called ``mktest`` will be
used for the test.

.. code:: verbatim

    >>> from Bio import SeqIO, AlignIO
    >>> from Bio.Alphabet import IUPAC
    >>> from Bio.CodonAlign import build
    >>> from Bio.CodonAlign.CodonAlignment import mktest

    >>> pro_aln = AlignIO.read('adh.aln', 'clustal', alphabet=IUPAC.protein)
    >>> p = SeqIO.index('drosophilla.fasta', 'fasta', alphabet=IUPAC.IUPACUnambiguousDNA())
    >>> codon_aln = build(pro_aln, p)
    >>> print codon_aln
    CodonAlphabet(Standard) CodonAlignment with 27 rows and 768 columns (256 codons)
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9217|emb|X57365.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9219|emb|X57366.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9221|emb|X57367.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9223|emb|X57368.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9225|emb|X57369.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9227|emb|X57370.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9229|emb|X57371.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9231|emb|X57372.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9233|emb|X57373.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9235|emb|X57374.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9237|emb|X57375.1|
    ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9239|emb|X57376.1|
    ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|9097|emb|X57361.1|
    ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|9099|emb|X57362.1|
    ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|9101|emb|X57363.1|
    ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATC...ATC gi|9103|emb|X57364.1|
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156879|gb|M17837.1|DROADHCK
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156877|gb|M17836.1|DROADHCJ
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156875|gb|M17835.1|DROADHCI
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156873|gb|M17834.1|DROADHCH
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156871|gb|M17833.1|DROADHCG
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156863|gb|M19547.1|DROADHCC
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156869|gb|M17832.1|DROADHCF
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156867|gb|M17831.1|DROADHCE
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156865|gb|M17830.1|DROADHCD
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156861|gb|M17828.1|DROADHCB
    ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156859|gb|M17827.1|DROADHCA

    >>> print mktest([codon_aln[1:12], codon_aln[12:16], codon_aln[16:]])
    0.00206457257254

In the above example, ``codon_aln[1:12]`` belongs to `D. melanogaster`,
``codon_aln[12:16]`` belongs to `D. simulans` and ``codon_aln[16:]`` belongs
to `D. yakuba`. ``mktest`` will return the p-value of the test. We can see
in this case, 0.00206 << 0.01, therefore, the gene is under strong negative
selection according to MK test.

X.4  Future Development
-------------------------------------------

Because of the limited time frame for Google Summer of Code project, some of
the functions in ``CodonAlign`` is not tested comprehensively. In the
following days, I will continue perfect the code and several new features
will be added. I am always welcome to hear your suggestions and feature
request. You are also highly encouraged to contribute to the existing code.
Please do not hesitable to email me (zruan1991 at gmail dot com) when you have
novel ideas that can make the code better.