1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
Chapter XXX Codon Alignment
==============================================
This chapter is about Codon Alignments, which is a special case of nucleotide
alignment in which the trinucleotides correspond directly to amino acids in
the translated protein product. Codon Alignment carries information that can
be used for many evolutionary analysis.
This chapter has been divided into four parts to explain the codon alignment
support in Biopython. First, a general introduction about the basic classes
in ``Bio.CodonAlign`` will be given. Then, a typical procedure of how to
obtain a codon alignment within Biopython is then discussed. Next, some
simple applications of codon alignment, such as dN/dS ratio estimation and
neutrality test and so forth will be covered. Finally, IO support of codon
alignment will help user to conduct analysis that cannot be done within
Biopython.
X.1 ``CodonSeq`` Class
-------------------------------------------
``Bio.CodonAlign.CodonSeq`` object is the base object in Codon Alignment. It
is similar to ``Bio.Seq`` but with some extra attributes. To obtain a simple
``CodonSeq`` object, you just need to give a ``str`` object of nucleotide
sequence whose length is a multiple of 3 (This can be violated if you have
``rf_table`` argument). For example:
.. code:: verbatim
>>> from Bio.CodonAlign import CodonSeq
>>> codon_seq = CodonSeq("AAATTTCCCGGG")
>>> codon_seq
CodonSeq('AAATTTCCCGGG', Gapped(CodonAlphabet(), '-'))
An error will raise up if the input sequence is not a multiple of 3.
.. code:: verbatim
>>> codon_seq = CodonSeq("AAATTTCCCGG")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/biopython/Bio/CodonAlign/CodonSeq.py", line 81, in __init__
assert len(self) % 3 == 0, "Sequence length is not a triple number"
AssertionError: Sequence length is not a triple number
By default, ``Bio.CodonAlign.default_codon_alphabet`` will be assigned to
``CodonSeq`` object if you don't specify any Alphabet. This
``default_codon_alphabet`` is gapped universal genetic code, which will work
in most cases. However, if you are analyzing data from mitochondria, for
instance, and are in need of assigning an special codon alphabet by yourself,
``Bio.CodonAlign.CodonAlphabet`` also provides you an easy solution. All you
need is to pick up a ``CodonTable`` object that is correct for your data.
For example:
.. code:: verbatim
>>> from Bio.CodonAlign import CodonSeq
>>> from Bio.CodonAlign.CodonAlphabet import get_codon_alphabet
>>> from Bio.Data.CodonTable import generic_by_id
# vertebrate mitochondria alphabet
>>> codon_alphabet = get_codon_alphabet(generic_by_id[2], gap_char="-")
>>> codon_seq1 = CodonSeq("AAA---CCCGGG", alphabet=codon_alphabet)
>>> codon_seq1
CodonSeq('AAA---CCCGGG', CodonAlphabet(Vertebrate Mitochondrial))
The slice of ``CodonSeq`` is exactly the same with ``Seq`` and it will always
return a ``Seq`` object if you sliced a ``CodonSeq``. For example:
.. code:: verbatim
>>> codon_seq1
CodonSeq('AAA---CCCGGG', CodonAlphabet(Vertebrate Mitochondrial))
>>> codon_seq1[:6]
Seq('AAA---', DNAAlphabet())
>>> codon_seq1[1:5]
Seq('AA--', DNAAlphabet())
As you might imagine, ``CodonSeq`` is able to be translated into amino acid
sequence based on the ``CodonAlphabet`` within it. In fact, ``CodonSeq`` does
more than this. ``CodonSeq`` object has a ``rf_table`` attribute that dictates
how the ``CodonSeq`` will be translated (``rf_table`` will indicate the
starting position of each codon in the sequence). This is useful if you
sequence is known to have frameshift events or pseudogene that has insertion
or deletion. You might notice that in the previous example, you haven't
specify the ``rf_table`` when initiate a ``CodonSeq`` object. In fact,
``CodonSeq`` object will automatically assign a ``rf_table`` to the
``CodonSeq`` if you don't say anything about it.
.. code:: verbatim
>>> codon_seq1 = CodonSeq("AAACCCGGG")
>>> codon_seq1
CodonSeq('AAACCCGGG', CodonAlphabet(Standard))
>>> codon_seq1.rf_table
[0, 3, 6]
>>> codon_seq1.translate()
'KPG'
>>> codon_seq2 = CodonSeq("AAACCCGG", rf_table=[0, 3, 5])
>>> codon_seq2.rf_table
[0, 3, 5]
>>> codon_seq2.translate()
'KPR'
In the example, we didn't assign ``rf_table`` to ``codon_seq1``. By default,
``CodonSeq`` will automatically generate a ``rf_table`` to the coding sequence
assuming no frameshift events. In this case, it is ``[0, 3, 6]``, which means
the first codon in the sequence starts at position 0, the second codon in the
sequence starts at position 3, and the third codon in the sequence starts at
position 6. In ``codon_seq2``, we only have 8 nucleotides in the sequence, but
with ``rf_table`` option specified. In this case, the third codon starts at
the 5th position of the sequence rather than the 6th. And the ``translate()``
function will use the ``rf_table`` to get the translated amino acid sequence.
Another thing to keep in mind is that ``rf_table`` will only be applied to
ungapped nucleotide sequence. This makes ``rf_table`` to be interchangeable
between ``CodonSeq`` with the same sequence but different gaps inserted. For
example,
.. code:: verbatim
>>> codon_seq1 = CodonSeq("AAACCC---GGG")
>>> codon_seq1.rf_table
[0, 3, 6]
>>> codon_seq1.translate()
'KPG'
>>> codon_seq1.full_translate()
'KP-G'
We can see that the ``rf_table`` of ``codon_seq1`` is still ``[0, 3, 6]``,
even though we have gaps added. The ``translate()`` function will skip the
gaps and return the ungapped amino acid sequence. If gapped protein sequence
is what you need, ``full_translate()`` comes to help.
It is also easy to convert ``Seq`` object to ``CodonSeq`` object, but it is
the user's responsibility to ensure all the necessary information is correct
for a ``CodonSeq`` (mainly ``rf_table``).
.. code:: verbatim
>>> from Bio.Seq import Seq
>>> codon_seq = CodonSeq()
>>> seq = Seq('AAAAAA')
>>> codon_seq.from_seq(seq)
CodonSeq('AAAAAA', CodonAlphabet(Standard))
>>> seq = Seq('AAAAA')
>>> codon_seq.from_seq(seq)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/biopython/Bio/CodonAlign/CodonSeq.py", line 264, in from_seq
return cls(seq._data, alphabet=alphabet)
File "/biopython/Bio/CodonAlign/CodonSeq.py", line 80, in __init__
assert len(self) % 3 == 0, "Sequence length is not a triple number"
AssertionError: Sequence length is not a triple number
>>> codon_seq.from_seq(seq, rf_table=(0, 2))
CodonSeq('AAAAA', CodonAlphabet(Standard))
X.2 ``CodonAlignment`` Class
-------------------------------------------
The ``CodonAlignment`` class is another new class in ``Codon.Align``. It's
aim is to store codon alignment data and apply various analysis upon it.
Similar to ``MultipleSeqAlignment``, you can use numpy style slice to a
``CodonAlignment``. However, once you sliced, the returned result will
always be a ``MultipleSeqAlignment`` object.
.. code:: verbatim
>>> from Bio.CodonAlign import default_codon_alphabet, CodonSeq, CodonAlignment
>>> from Bio.Alphabet import generic_dna
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Alphabet import IUPAC, Gapped
>>> a = SeqRecord(CodonSeq("AAAACGTCG", alphabet=default_codon_alphabet), id="Alpha")
>>> b = SeqRecord(CodonSeq("AAA---TCG", alphabet=default_codon_alphabet), id="Beta")
>>> c = SeqRecord(CodonSeq("AAAAGGTGG", alphabet=default_codon_alphabet), id="Gamma")
>>> codon_aln = CodonAlignment([a, b, c])
>>> print codon_aln
CodonAlphabet(Standard) CodonAlignment with 3 rows and 9 columns (3 codons)
AAAACGTCG Alpha
AAA---TCG Beta
AAAAGGTGG Gamma
>>> codon_aln[0]
ID: Alpha
Name: <unknown name>
Description: <unknown description>
Number of features: 0
CodonSeq('AAAACGTCG', CodonAlphabet(Standard))
>>> print codon_aln[:, 3]
A-A
>>> print codon_aln[1:, 3:10]
CodonAlphabet(Standard) alignment with 2 rows and 6 columns
---TCG Beta
AGGTGG Gamma
You can write out ``CodonAlignment`` object just as what you do with
``MultipleSeqAlignment``.
.. code:: verbatim
>>> from Bio import AlignIO
>>> AlignIO.write(codon_aln, 'example.aln', 'clustal')
An alignment file called ``example.aln`` can then be found in your current
working directory. You can write ``CodonAlignment`` out in any MSA format
that Biopython supports.
Currently, you are not able to read MSA data as a ``CodonAlignment`` object
directly (because of dealing with ``rf_table`` issue for each sequence).
However, you can read the alignment data in as a ``MultipleSeqAlignment``
object and convert them into ``CodonAlignment`` object using ``from_msa()``
class method. For example,
.. code:: verbatim
>>> aln = AlignIO.read('example.aln', 'clustal')
>>> codon_aln = CodonAlignment()
>>> print codon_aln.from_msa(aln)
CodonAlphabet(Standard) CodonAlignment with 3 rows and 9 columns (3 codons)
AAAACGTCG Alpha
AAA---TCG Beta
AAAAGGTGG Gamma
Note, the ``from_msa()`` method assume there is no frameshift events occurs
in your alignment. Its behavior is not guaranteed if your sequence contain
frameshift events!!
There is a couple of methods that can be applied to ``CodonAlignment`` class
for evolutionary analysis. We will cover them more in X.4.
X.3 Build a Codon Alignment
-------------------------------------------
Building a codon alignment is the first step of many evolutionary anaysis.
But how to do that? ``Bio.CodonAlign`` provides you an easy funciton
``build()`` to achieve all. The data you need to prepare in advance is a
protein alignment and a set of DNA sequences that can be translated into the
protein sequences in the alignment.
``CodonAlign.build`` method requires two mandatory arguments. The first one
should be a protein ``MultipleSeqAlignment`` object and the second one is a
list of nucleotide ``SeqRecord`` object. By default, ``CodonAlign.build``
assumes the order of the alignment and nucleotide sequences are in the same.
For example:
.. code:: verbatim
>>> from Bio import CodonAlign
>>> from Bio.Alphabet import IUPAC
>>> from Bio.Align import MultipleSeqAlignment
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Seq import Seq
>>> nucl1 = SeqRecord(Seq('AAATTTCCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl1')
>>> nucl2 = SeqRecord(Seq('AAATTACCCGCG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl2')
>>> nucl3 = SeqRecord(Seq('ATATTACCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl3')
>>> prot1 = SeqRecord(nucl1.seq.translate(), id='prot1')
>>> prot2 = SeqRecord(nucl2.seq.translate(), id='prot2')
>>> prot3 = SeqRecord(nucl3.seq.translate(), id='prot3')
>>> aln = MultipleSeqAlignment([prot1, prot2, prot3])
>>> codon_aln = CodonAlign.build(aln, [nucl1, nucl2, nucl3])
>>> print codon_aln
CodonAlphabet(Standard) CodonAlignment with 3 rows and 12 columns (4 codons)
AAATTTCCCGGG nucl1
AAATTACCCGCG nucl2
ATATTACCCGGG nucl3
In the above example, ``CodonAlign.build`` will try to match ``nucl1`` with
``prot1``, ``nucl2`` with ``prot2`` and ``nucl3`` with ``prot3``, i.e.,
assuming the order of records in ``aln`` and ``[nucl1, nucl2, nucl3]`` is the
same.
``CodonAlign.build`` method is also able to handle key match. In this case,
records with same id are paired. For example:
.. code:: verbatim
>>> nucl1 = SeqRecord(Seq('AAATTTCCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl1')
>>> nucl2 = SeqRecord(Seq('AAATTACCCGCG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl2')
>>> nucl3 = SeqRecord(Seq('ATATTACCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl3')
>>> prot1 = SeqRecord(nucl1.seq.translate(), id='prot1')
>>> prot2 = SeqRecord(nucl2.seq.translate(), id='prot2')
>>> prot3 = SeqRecord(nucl3.seq.translate(), id='prot3')
>>> aln = MultipleSeqAlignment([prot1, prot2, prot3])
>>> nucl = {'prot1': nucl1, 'prot2': nucl2, 'prot3': nucl3}
>>> codon_aln = CodonAlign.build(aln, nucl)
>>> print codon_aln
CodonAlphabet(Standard) CodonAlignment with 3 rows and 12 columns (4 codons)
AAATTTCCCGGG nucl1
AAATTACCCGCG nucl2
ATATTACCCGGG nucl3
This option is handleful if you read nucleotide sequences using ``SeqIO.index``
method, in which case the nucleotide dict with be generated automatically.
Sometimes, you are neither not able to ensure the same order or the same id.
``CodonAlign.build`` method provides you an manual approach to tell the
program nucleotide sequence and protein sequence correspondance by generating
a ``corr_dict``. ``corr_dict`` should be a dictionary that uses protein record
id as key and nucleotide record id as item. Let's look at an example:
.. code:: verbatim
>>> nucl1 = SeqRecord(Seq('AAATTTCCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl1')
>>> nucl2 = SeqRecord(Seq('AAATTACCCGCG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl2')
>>> nucl3 = SeqRecord(Seq('ATATTACCCGGG', alphabet=IUPAC.IUPACUnambiguousDNA()), id='nucl3')
>>> prot1 = SeqRecord(nucl1.seq.translate(), id='prot1')
>>> prot2 = SeqRecord(nucl2.seq.translate(), id='prot2')
>>> prot3 = SeqRecord(nucl3.seq.translate(), id='prot3')
>>> aln = MultipleSeqAlignment([prot1, prot2, prot3])
>>> corr_dict = {'prot1': 'nucl1', 'prot2': 'nucl2', 'prot3': 'nucl3'}
>>> codon_aln = CodonAlign.build(aln, [nucl3, nucl1, nucl2], corr_dict=corr_dict)
>>> print codon_aln
CodonAlphabet(Standard) CodonAlignment with 3 rows and 12 columns (4 codons)
AAATTTCCCGGG nucl1
AAATTACCCGCG nucl2
ATATTACCCGGG nucl3
We can see, even though the second argument of ``CodonAlign.build`` is not in
the same order with ``aln`` in the above example, the ``corr_dict`` tells the
program to pair protein records and nucleotide records. And we are still able
to obtain the correct ``CodonAlignment`` object.
The underlying algorithm of ``CodonAlign.build`` method is very similar to
``pal2nal`` (a very famous perl script to build codon alignment).
``CodonAlign.build`` will first translate protein sequences into a long
degenerate regular expression and tries to find a match in its corresponding
nucleotide sequence. When translation fails, it divide protein sequence into
several small anchors and tries to match each anchor to the nucleotide sequence
to figure out where the mismatch and frameshift events lie. Other options
available for ``CodonAlign.build`` includes ``anchor_len`` (default 10) and
``max_score`` (maximum tolerance of unexpected events, default 10). You may
want to refer the Biopython build-in help to get more information about these
options.
Now let's look at a real example of building codon alignment. Here we will use
epidermal growth factor (EGFR) gene to demonstrate how to obtain codon
alignment. To reduce your effort, we have already collected EGFR sequences for
`Homo sapiens`, `Bos taurus`, `Rattus norvegicus`, `Sus scrofa` and
`Drosophila melanogaster`. You can download them from
`here <http://zruanweb.com/egfr.zip>`_.
Uncomressing the ``.zip``, you will see three files. ``egfr_nucl.fa`` is
nucleotide sequences of EGFR and ``egfr_pro.aln`` is EGFR protein sequence
alignment in ``clustal`` format. The ``egfr_id`` contains id correspondance
between protein records and nucleotide records. You can then try the following
code (make sure the files are in your current python working directory):
.. code:: verbatim
>>> from Bio import SeqIO, AlignIO
>>> nucl = SeqIO.parse('egfr_nucl.fa', 'fasta', alphabet=IUPAC.IUPACUnambiguousDNA())
>>> prot = AlignIO.read('egfr_pro.aln', 'clustal', alphabet=IUPAC.protein)
>>> id_corr = {i.split()[0]: i.split()[1] for i in open('egfr_id').readlines()}
>>> aln = CodonAlign.build(prot, nucl, corr_dict=id_corr, alphabet=CodonAlign.default_codon_alphabet)
/biopython/Bio/CodonAlign/__init__.py:568: UserWarning: gi|47522840|ref|NP_999172.1|(L 449) does not correspond to gi|47522839|ref|NM_214007.1|(ATG)
% (pro.id, aa, aa_num, nucl.id, this_codon))
>>> print aln
CodonAlphabet(Standard) CodonAlignment with 6 rows and 4446 columns (1482 codons)
ATGATGATTATCAGCATGTGGATGAGCATATCGCGAGGATTGTGGGACAGCAGCTCC...GTG gi|24657088|ref|NM_057410.3|
---------------------ATGCTGCTGCGACGGCGCAACGGCCCCTGCCCCTTC...GTG gi|24657104|ref|NM_057411.3|
------------------------------ATGAAAAAGCACGAG------------...GCC gi|302179500|gb|HM749883.1|
------------------------------ATGCGACGCTCCTGGGCGGGCGGCGCC...GCA gi|47522839|ref|NM_214007.1|
------------------------------ATGCGACCCTCCGGGACGGCCGGGGCA...GCA gi|41327737|ref|NM_005228.3|
------------------------------ATGCGACCCTCAGGGACTGCGAGAACC...GCA gi|6478867|gb|M37394.2|RATEGFR
We can see, while building the codon alignment a mismatch event is found. And
this is shown as a UserWarning.
X.4 Codon Alignment Application
-------------------------------------------
The most important application of codon alignment is to estimate
nonsynonymous substitutions per site (dN) and synonymous substitutions per
site (dS). ``CodonAlign`` currently support three counting based methods
(NG86, LWL85, YN00) and maximum likelihood method to estimate dN and dS.
The function to conduct dN, dS estimation is called ``cal_dn_ds``. When you
obtained a codon alignment, it is quite easy to calculate dN and dS. For
example (assuming you have EGFR codon alignmnet in the python working
space):
.. code:: verbatim
>>> from Bio.CodonAlign.CodonSeq import cal_dn_ds
>>> print aln
CodonAlphabet(Standard) CodonAlignment with 6 rows and 4446 columns (1482 codons)
ATGATGATTATCAGCATGTGGATGAGCATATCGCGAGGATTGTGGGACAGCAGCTCC...GTG gi|24657088|ref|NM_057410.3|
---------------------ATGCTGCTGCGACGGCGCAACGGCCCCTGCCCCTTC...GTG gi|24657104|ref|NM_057411.3|
------------------------------ATGAAAAAGCACGAG------------...GCC gi|302179500|gb|HM749883.1|
------------------------------ATGCGACGCTCCTGGGCGGGCGGCGCC...GCA gi|47522839|ref|NM_214007.1|
------------------------------ATGCGACCCTCCGGGACGGCCGGGGCA...GCA gi|41327737|ref|NM_005228.3|
------------------------------ATGCGACCCTCAGGGACTGCGAGAACC...GCA gi|6478867|gb|M37394.2|RATEGFR
>>> dN, dS = cal_dn_ds(aln[0], aln[1], method='NG86')
>>> print dN, dS
0.0209078305058 0.0178371876389
>>> dN, dS = cal_dn_ds(aln[0], aln[1], method='LWL95')
>>> print dN, dS
0.0203061425453 0.0163935691992
>>> dN, dS = cal_dn_ds(aln[0], aln[1], method='YN00')
>>> print dN, dS
0.0198195580321 0.0221560648799
>>> dN, dS = cal_dn_ds(aln[0], aln[1], method='ML')
>>> print dN, dS
0.0193877676103 0.0217247139962
If you are using maximum likelihood methdo to estimate dN and dS, you are
also able to specify equilibrium codon frequency to ``cfreq`` argument.
Available options include ``F1x4``, ``F3x4`` and ``F61``.
It is also possible to get dN and dS matrix or a tree from a ``CodonAlignment`` object.
.. code:: verbatim
>>> dn_matrix, ds_matrix = aln.get_dn_ds_matrxi()
>>> print dn_matrix
gi|24657088|ref|NM_057410.3| 0
gi|24657104|ref|NM_057411.3| 0.0209078305058 0
gi|302179500|gb|HM749883.1| 0.611523924924 0.61022032668 0
gi|47522839|ref|NM_214007.1| 0.614035083563 0.60401686212 0.0411803504059 0
gi|41327737|ref|NM_005228.3| 0.61415325314 0.60182631356 0.0670105144563 0.0614703609541 0
gi|6478867|gb|M37394.2|RATEGFR 0.61870883409 0.606868724887 0.0738690303483 0.0735789092792 0.0517984707257 0
gi|24657088|ref|NM_057410.3| gi|24657104|ref|NM_057411.3| gi|302179500|gb|HM749883.1| gi|47522839|ref|NM_214007.1| gi|41327737|ref|NM_005228.3| gi|6478867|gb|M37394.2|RATEGFR
>>> dn_tree, ds_tree = aln.get_dn_ds_tree()
>>> print dn_tree
Tree(rooted=True)
Clade(branch_length=0, name='Inner5')
Clade(branch_length=0.279185347322, name='Inner4')
Clade(branch_length=0.00859186651689, name='Inner3')
Clade(branch_length=0.0258992353629, name='gi|6478867|gb|M37394.2|RATEGFR')
Clade(branch_length=0.0258992353629, name='gi|41327737|ref|NM_005228.3|')
Clade(branch_length=0.0139009266768, name='Inner2')
Clade(branch_length=0.020590175203, name='gi|47522839|ref|NM_214007.1|')
Clade(branch_length=0.020590175203, name='gi|302179500|gb|HM749883.1|')
Clade(branch_length=0.294630667432, name='Inner1')
Clade(branch_length=0.0104539152529, name='gi|24657104|ref|NM_057411.3|')
Clade(branch_length=0.0104539152529, name='gi|24657088|ref|NM_057410.3|')
Another application of codon alignment that ``CodonAlign`` supports is
Mcdonald-Kreitman test. This test compares the within species synonymous
substitutions and nonsynonymous substitutions and between species synonymous
substitutions and nonsynonymous substitutions to see if they are from the same
evolutionary process. The test requires gene sequences sampled from different
individuals of the same species. In the following example, we will use `Adh`
gene from fluit fly to demonstrate how to conduct the test. The data includes
11 individuals from `D. melanogaster`, 4 individuals from `D. simulans` and
12 individuals from `D. yakuba`. The data is available from
`here <http://zruanweb.com/adh.zip>`_. A function called ``mktest`` will be
used for the test.
.. code:: verbatim
>>> from Bio import SeqIO, AlignIO
>>> from Bio.Alphabet import IUPAC
>>> from Bio.CodonAlign import build
>>> from Bio.CodonAlign.CodonAlignment import mktest
>>> pro_aln = AlignIO.read('adh.aln', 'clustal', alphabet=IUPAC.protein)
>>> p = SeqIO.index('drosophilla.fasta', 'fasta', alphabet=IUPAC.IUPACUnambiguousDNA())
>>> codon_aln = build(pro_aln, p)
>>> print codon_aln
CodonAlphabet(Standard) CodonAlignment with 27 rows and 768 columns (256 codons)
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9217|emb|X57365.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9219|emb|X57366.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9221|emb|X57367.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9223|emb|X57368.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9225|emb|X57369.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9227|emb|X57370.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9229|emb|X57371.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9231|emb|X57372.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9233|emb|X57373.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9235|emb|X57374.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9237|emb|X57375.1|
ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|9239|emb|X57376.1|
ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|9097|emb|X57361.1|
ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|9099|emb|X57362.1|
ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|9101|emb|X57363.1|
ATGGCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATC...ATC gi|9103|emb|X57364.1|
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156879|gb|M17837.1|DROADHCK
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156877|gb|M17836.1|DROADHCJ
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156875|gb|M17835.1|DROADHCI
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156873|gb|M17834.1|DROADHCH
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156871|gb|M17833.1|DROADHCG
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156863|gb|M19547.1|DROADHCC
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156869|gb|M17832.1|DROADHCF
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTGGCCGGTCTGGGAGGCATT...ATC gi|156867|gb|M17831.1|DROADHCE
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156865|gb|M17830.1|DROADHCD
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156861|gb|M17828.1|DROADHCB
ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATT...ATC gi|156859|gb|M17827.1|DROADHCA
>>> print mktest([codon_aln[1:12], codon_aln[12:16], codon_aln[16:]])
0.00206457257254
In the above example, ``codon_aln[1:12]`` belongs to `D. melanogaster`,
``codon_aln[12:16]`` belongs to `D. simulans` and ``codon_aln[16:]`` belongs
to `D. yakuba`. ``mktest`` will return the p-value of the test. We can see
in this case, 0.00206 << 0.01, therefore, the gene is under strong negative
selection according to MK test.
X.4 Future Development
-------------------------------------------
Because of the limited time frame for Google Summer of Code project, some of
the functions in ``CodonAlign`` is not tested comprehensively. In the
following days, I will continue perfect the code and several new features
will be added. I am always welcome to hear your suggestions and feature
request. You are also highly encouraged to contribute to the existing code.
Please do not hesitable to email me (zruan1991 at gmail dot com) when you have
novel ideas that can make the code better.
|