1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
#!/usr/bin/env python
"""clustal_run.py
Example code to show how to create a clustalw command line, run clustalw
and parse the results into an object that can be dealt with easily."""
# standard library
from __future__ import print_function
import sys
import subprocess
# biopython
from Bio.Alphabet import Gapped, IUPAC
from Bio.Align.Applications import ClustalwCommandline
from Bio import AlignIO
from Bio.Align import AlignInfo
from Bio.SubsMat import FreqTable
# create the command line to run clustalw
# this assumes you've got clustalw somewhere on your path, otherwise
# you need to pass the full path of the executable to this via cmd="..."
cline = ClustalwCommandline(infile='opuntia.fasta', outfile='test.aln')
# actually perform the alignment
return_code = subprocess.call(str(cline), shell=(sys.platform != "win32"))
assert return_code == 0, "Calling ClustalW failed"
# Parse the output
alignment = AlignIO.read("test.aln", "clustal",
alphabet=Gapped(IUPAC.unambiguous_dna))
print(alignment)
print('first description: %s' % alignment[0].description)
print('first sequence: %s' % alignment[0].seq)
# get the length of the alignment
print('length %i' % alignment.get_alignment_length())
print(alignment)
# print out interesting information about the alignment
summary_align = AlignInfo.SummaryInfo(alignment)
consensus = summary_align.dumb_consensus()
print('consensus %s' % consensus)
my_pssm = summary_align.pos_specific_score_matrix(consensus,
chars_to_ignore=['N'])
print(my_pssm)
expect_freq = {
'A': .3,
'G': .2,
'T': .3,
'C': .2}
freq_table_info = FreqTable.FreqTable(expect_freq, FreqTable.FREQ,
IUPAC.unambiguous_dna)
info_content = summary_align.information_content(5, 30,
chars_to_ignore=['N'],
e_freq_table=freq_table_info)
print("relative info content: %f" % info_content)
|