File: test_MarkovModel.py

package info (click to toggle)
python-biopython 1.68%2Bdfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 46,856 kB
  • sloc: python: 160,306; xml: 93,216; ansic: 9,118; sql: 1,208; makefile: 155; sh: 63
file content (240 lines) | stat: -rw-r--r-- 11,532 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

try:
    from numpy import array
    from numpy import random  # missing in PyPy's micronumpy
except ImportError:
    from Bio import MissingPythonDependencyError
    raise MissingPythonDependencyError(
        "Install NumPy if you want to use Bio.MarkovModel.")

import unittest

import warnings

with warnings.catch_warnings():
    # Silence this warning:
    # For optimal speed, please update to Numpy version 1.3 or later
    warnings.simplefilter("ignore", UserWarning)
    from Bio import MarkovModel


class TestMarkovModel(unittest.TestCase):

    def test_train_visible(self):
        states = ["0", "1", "2", "3"]
        alphabet = ["A", "C", "G", "T"]
        training_data = [
            ("AACCCGGGTTTTTTT", "001112223333333"),
            ("ACCGTTTTTTT", "01123333333"),
            ("ACGGGTTTTTT", "01222333333"),
            ("ACCGTTTTTTTT", "011233333333"),
            ]
        markov_model = MarkovModel.train_visible(states, alphabet, training_data)
        states = MarkovModel.find_states(markov_model, "AACGTT")
        self.assertEqual(len(states), 1)
        state_list, state_float = states[0]
        self.assertEqual(state_list, ['0', '0', '1', '2', '3', '3'])
        self.assertAlmostEqual(state_float, 0.0082128906)
        self.assertEqual(markov_model.states, ['0', '1', '2', '3'])
        self.assertEqual(markov_model.alphabet, ['A', 'C', 'G', 'T'])
        self.assertEqual(len(markov_model.p_initial), 4)
        self.assertAlmostEqual(markov_model.p_initial[0], 1.0)
        self.assertAlmostEqual(markov_model.p_initial[1], 0.0)
        self.assertAlmostEqual(markov_model.p_initial[2], 0.0)
        self.assertAlmostEqual(markov_model.p_initial[3], 0.0)
        self.assertEqual(len(markov_model.p_transition), 4)
        self.assertEqual(len(markov_model.p_transition[0]), 4)
        self.assertEqual(len(markov_model.p_transition[1]), 4)
        self.assertEqual(len(markov_model.p_transition[2]), 4)
        self.assertEqual(len(markov_model.p_transition[3]), 4)
        self.assertAlmostEqual(markov_model.p_transition[0][0], 0.2)
        self.assertAlmostEqual(markov_model.p_transition[0][1], 0.8)
        self.assertAlmostEqual(markov_model.p_transition[0][2], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[0][3], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[1][0], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[1][1], 0.5)
        self.assertAlmostEqual(markov_model.p_transition[1][2], 0.5)
        self.assertAlmostEqual(markov_model.p_transition[1][3], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[2][0], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[2][1], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[2][2], 0.5)
        self.assertAlmostEqual(markov_model.p_transition[2][3], 0.5)
        self.assertAlmostEqual(markov_model.p_transition[3][0], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[3][1], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[3][2], 0.0)
        self.assertAlmostEqual(markov_model.p_transition[3][3], 1.0)
        self.assertEqual(len(markov_model.p_emission), 4)
        self.assertEqual(len(markov_model.p_emission[0]), 4)
        self.assertEqual(len(markov_model.p_emission[1]), 4)
        self.assertEqual(len(markov_model.p_emission[2]), 4)
        self.assertEqual(len(markov_model.p_emission[3]), 4)
        self.assertAlmostEqual(markov_model.p_emission[0][0], 0.666667,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[0][1], 0.111111,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[0][2], 0.111111,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[0][3], 0.111111,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[1][0], 0.083333,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[1][1], 0.750000,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[1][2], 0.083333,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[1][3], 0.083333,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[2][0], 0.083333,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[2][1], 0.083333,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[2][2], 0.750000,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[2][3], 0.083333,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[3][0], 0.031250,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[3][1], 0.031250,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[3][2], 0.031250,
                               places=4)
        self.assertAlmostEqual(markov_model.p_emission[3][3], 0.906250,
                               places=4)

    def test_baum_welch(self):
        states = ["CP", "IP"]
        alphabet = ["cola", "ice_t", "lem"]
        outputs = [
            (2, 1, 0)
            ]
        p_initial = [1.0, 0.0000001]
        p_transition = [[0.7, 0.3],
                        [0.5, 0.5]]
        p_emission = [[0.6, 0.1, 0.3],
                      [0.1, 0.7, 0.2]]
        N, M = len(states), len(alphabet)
        x = MarkovModel._baum_welch(N, M, outputs,
                                    p_initial=p_initial,
                                    p_transition=p_transition,
                                    p_emission=p_emission
                                    )
        p_initial, p_transition, p_emission = x
        markov_model = MarkovModel.MarkovModel(states, alphabet,
                                     p_initial, p_transition, p_emission)
        self.assertEqual(markov_model.states, ['CP', 'IP'])
        self.assertEqual(markov_model.alphabet, ['cola', 'ice_t', 'lem'])
        self.assertEqual(len(markov_model.p_initial), 2)
        self.assertAlmostEqual(markov_model.p_initial[0], 1.0,
                               places=4)
        self.assertAlmostEqual(markov_model.p_initial[1], 0.0,
                               places=4)
        self.assertEqual(len(markov_model.p_transition), 2)
        self.assertEqual(len(markov_model.p_transition[0]), 2)
        self.assertEqual(len(markov_model.p_transition[1]), 2)
        self.assertAlmostEqual(markov_model.p_transition[0][0], 0.02460365,
                               places=4)
        self.assertAlmostEqual(markov_model.p_transition[0][1], 0.97539634,
                               places=4)
        self.assertAlmostEqual(markov_model.p_transition[1][0], 1.0,
                               places=4)
        self.assertAlmostEqual(markov_model.p_transition[1][1], 0.0,
                               places=4)
        self.assertEqual(len(markov_model.p_emission), 2)
        self.assertEqual(len(markov_model.p_emission[0]), 3)
        self.assertEqual(len(markov_model.p_emission[1]), 3)
        self.assertAlmostEqual(markov_model.p_emission[0][0], 0.5)
        self.assertAlmostEqual(markov_model.p_emission[0][1], 0.0)
        self.assertAlmostEqual(markov_model.p_emission[0][2], 0.5)
        self.assertAlmostEqual(markov_model.p_emission[1][0], 0.0)
        self.assertAlmostEqual(markov_model.p_emission[1][1], 1.0)
        self.assertAlmostEqual(markov_model.p_emission[1][2], 0.0)

    # Do some tests from the topcoder competition.

    def test_topcoder1(self):
        # NNNN
        states = "NR"
        alphabet = "AGTC"
        p_initial = array([1.0, 0.0])
        p_transition = array([[0.90, 0.10],
                              [0.20, 0.80]])
        p_emission = array([[0.30, 0.20, 0.30, 0.20],
                            [0.10, 0.40, 0.10, 0.40]])
        markov_model = MarkovModel.MarkovModel(
            states, alphabet, p_initial, p_transition, p_emission)
        states = MarkovModel.find_states(markov_model, "TGCC")
        self.assertEqual(len(states), 1)
        state_list, state_float = states[0]
        self.assertEqual(state_list, ['N', 'N', 'N', 'N'])

    def test_topcoder2(self):
        # NNNRRRNNRRNRRN
        states = "NR"
        alphabet = "AGTC"
        p_initial = array([1.0, 0.0])
        p_transition = array([[0.56, 0.44],
                              [0.25, 0.75]])
        p_emission = array([[0.04, 0.14, 0.62, 0.20],
                            [0.39, 0.15, 0.04, 0.42]])
        markov_model = MarkovModel.MarkovModel(
            states, alphabet, p_initial, p_transition, p_emission)
        states = MarkovModel.find_states(markov_model, "CCTGAGTTAGTCGT")
        self.assertEqual(len(states), 1)
        state_list, state_float = states[0]
        self.assertEqual(state_list, ['N', 'N', 'N', 'R', 'R', 'R', 'N', 'N', 'R', 'R', 'N', 'R', 'R', 'N'])

    def test_topcoder3(self):
        # NRRRRRRRRRRRNNNNRRRRRRRRR
        states = "NR"
        alphabet = "AGTC"
        p_initial = array([1.0, 0.0])
        p_transition = array([[0.75, 0.25],
                              [0.25, 0.75]])
        p_emission = array([[0.45, 0.36, 0.06, 0.13],
                            [0.24, 0.18, 0.12, 0.46]])
        markov_model = MarkovModel.MarkovModel(
            states, alphabet, p_initial, p_transition, p_emission)
        states = MarkovModel.find_states(markov_model, "CCGTACTTACCCAGGACCGCAGTCC")
        self.assertEqual(len(states), 1)
        state_list, state_float = states[0]
        self.assertEqual(state_list, ['N', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'N', 'N', 'N', 'N', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R'])

    def test_topcoder4(self):
        # NRRRRRRRRRR
        states = "NR"
        alphabet = "AGTC"
        p_initial = array([1.0, 0.0])
        p_transition = array([[0.55, 0.45],
                              [0.15, 0.85]])
        p_emission = array([[0.75, 0.03, 0.01, 0.21],
                            [0.34, 0.11, 0.39, 0.16]])
        markov_model = MarkovModel.MarkovModel(
            states, alphabet, p_initial, p_transition, p_emission)
        states = MarkovModel.find_states(markov_model, "TTAGCAGTGCG")
        self.assertEqual(len(states), 1)
        state_list, state_float = states[0]
        self.assertEqual(state_list, ['N', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R'])

    def test_topcoder5(self):
        # N
        states = "NR"
        alphabet = "AGTC"
        p_initial = array([1.0, 0.0])
        p_transition = array([[0.84, 0.16],
                              [0.25, 0.75]])
        p_emission = array([[0.26, 0.37, 0.08, 0.29],
                            [0.31, 0.13, 0.33, 0.23]])
        markov_model = MarkovModel.MarkovModel(
            states, alphabet, p_initial, p_transition, p_emission)
        states = MarkovModel.find_states(markov_model, "T")
        self.assertEqual(len(states), 1)
        state_list, state_float = states[0]
        self.assertEqual(state_list, ["N"])


if __name__ == '__main__':
    runner = unittest.TextTestRunner(verbosity=2)
    unittest.main(testRunner=runner)