1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
# Copyright 2014-2016 Marco Galardini. All rights reserved.
# Adapted from test_Mymodule.py by Jeff Chang
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
try:
import numpy
except ImportError:
from Bio import MissingExternalDependencyError
raise MissingExternalDependencyError(
"Install NumPy if you want to use Bio.phenotype.")
import json
import unittest
from Bio._py3k import StringIO
from Bio import BiopythonExperimentalWarning
import warnings
with warnings.catch_warnings():
warnings.simplefilter('ignore', BiopythonExperimentalWarning)
from Bio import phenotype
# Example plate files
SMALL_JSON_PLATE = 'phenotype/SmallPlate.json'
SMALL_JSON_PLATE_2 = 'phenotype/SmallPlate_2.json'
JSON_PLATE = 'phenotype/Plate.json'
JSON_PLATE_2 = 'phenotype/Plate_2.json'
JSON_PLATE_3 = 'phenotype/Plate_3.json'
JSON_BAD = 'phenotype/BadPlate.json'
SMALL_CSV_PLATES = 'phenotype/SmallPlates.csv'
CSV_PLATES = 'phenotype/Plates.csv'
class TestPhenoMicro(unittest.TestCase):
def test_phenotype_IO_errors(self):
'''Test bad arguments to phenotype IO methods'''
self.assertRaises(ValueError, phenotype.read, CSV_PLATES, 'pm-csv')
self.assertRaises(ValueError, phenotype.read, CSV_PLATES, 'pm-json')
self.assertRaises(
ValueError,
phenotype.read,
CSV_PLATES,
'pm-noformat')
self.assertRaises(ValueError, phenotype.read, CSV_PLATES, 'PM-CSV')
self.assertRaises(TypeError, phenotype.read, CSV_PLATES, 1)
self.assertRaises(KeyError, phenotype.read, JSON_BAD, 'pm-json')
def test_phenotype_IO(self):
'''Test basic functionalities of phenotype IO methods'''
p1 = phenotype.read(SMALL_JSON_PLATE, 'pm-json')
p2 = next(phenotype.parse(SMALL_CSV_PLATES, 'pm-csv'))
handle = StringIO()
c = phenotype.write([p1, p2], handle, 'pm-json')
self.assertEqual(c, 2)
handle.flush()
handle.seek(0)
# Now ready to read back from the handle...
try:
records = list(phenotype.parse(handle, 'pm-json'))
except ValueError as e:
# This is BAD. We can't read our own output.
# I want to see the output when called from the test harness,
# run_tests.py (which can be funny about new lines on Windows)
handle.seek(0)
raise ValueError("%s\n\n%s\n\n%s"
% (str(e), repr(handle.read()), repr(records)))
self.assertEqual(p1, records[0])
handle.close()
handle = StringIO()
self.assertRaises(TypeError, phenotype.write, p1, handle, 1)
self.assertRaises(ValueError, phenotype.write, p1, handle, 'PM-JSON')
self.assertRaises(ValueError, phenotype.write, p1, handle, 'pm-csv')
handle.close()
def test_PlateRecord_errors(self):
'''Test bad arguments with PlateRecord objects'''
self.assertRaises(ValueError,
phenotype.phen_micro.PlateRecord, 'test', [1, 2, 3])
self.assertRaises(TypeError,
phenotype.phen_micro.PlateRecord, 'test', 1)
def test_PlateRecord(self):
'''Test basic functionalities of PlateRecord objects'''
with open(SMALL_JSON_PLATE) as handle:
j = json.load(handle)
p = phenotype.phen_micro.PlateRecord(j['csv_data']['Plate Type'])
times = j['measurements']['Hour']
for k in j['measurements']:
if k == 'Hour':
continue
p[k] = phenotype.phen_micro.WellRecord(k,
signals=dict([(times[i], j['measurements'][k][i])
for i in range(len(times))]))
del j['measurements']
p.qualifiers = j
self.assertEqual(p.id, 'PM01')
self.assertEqual(len(p), 24)
self.assertEqual(p.qualifiers, j)
self.assertRaises(ValueError, p._is_well, 'a')
self.assertEqual(p['A01'].id, 'A01')
self.assertRaises(KeyError, p.__getitem__, 'test')
self.assertEqual(len(p[1]), 12)
self.assertEqual(len(p[1:2:2]), 12)
self.assertEqual(p[1, 2], p['B03'])
self.assertEqual(len(p[:, 1]), 2)
self.assertEqual(len(p[:, 1:4:2]), 4)
self.assertRaises(TypeError, p.__getitem__, 1, 2, 3)
self.assertRaises(IndexError, p.__getitem__, 13)
self.assertRaises(ValueError, p.__setitem__, 'A02', p['A01'])
self.assertRaises(ValueError, p.__setitem__, 'A02', 'a')
p['A02'] = p['A02']
for w in p:
pass
self.assertEqual('A01' in p, True)
self.assertEqual('test' in p, False)
self.assertRaises(ValueError, next, p.get_row('test'))
self.assertEqual(next(p.get_row('A')), p['A01'])
self.assertRaises(ValueError, next, p.get_column('test'))
self.assertEqual(next(p.get_column('12')), p['A12'])
self.assertEqual(next(p.get_column('1')), p['A01'])
self.assertRaises(ValueError, p.subtract_control, 'A121')
self.assertRaises(ValueError, p.subtract_control, wells=['A121'])
p2 = p.subtract_control()
self.assertEqual(p2.id, p.id)
self.assertEqual(p2['A02'], p['A02'] - p['A01'])
self.assertEqual(repr(p), "PlateRecord('WellRecord['A01'], WellRecord" +
"['A02'], WellRecord['A03'], ..., WellRecord['B12']')")
self.assertEqual(str(p), "Plate ID: PM01\nWell: 24\nRows: 2\nColumns: " +
"12\nPlateRecord('WellRecord['A01'], WellRecord['A02'], WellRecord" +
"['A03'], ..., WellRecord['B12']')")
with open(SMALL_JSON_PLATE_2) as handle:
j = json.load(handle)
p1 = phenotype.phen_micro.PlateRecord(j['csv_data']['Plate Type'])
times = j['measurements']['Hour']
for k in j['measurements']:
if k == 'Hour':
continue
p1[k] = phenotype.phen_micro.WellRecord(k,
signals=dict([(times[i], j['measurements'][k][i])
for i in range(len(times))]))
del j['measurements']
p1.qualifiers = j
self.assertRaises(TypeError, p.__add__, 'a')
self.assertRaises(TypeError, p.__sub__, 'a')
p3 = p + p1
self.assertEqual(p3['A02'], p['A02'] + p1['A02'])
p3 = p - p1
self.assertEqual(p3['A02'], p['A02'] - p1['A02'])
del p['A02']
self.assertRaises(ValueError, p.__add__, p1)
self.assertRaises(ValueError, p.__sub__, p1)
def test_bad_fit_args(self):
"""Test error handling of the fit method."""
with open(JSON_PLATE) as handle:
p = json.load(handle)
times = p['measurements']['Hour']
w = phenotype.phen_micro.WellRecord('A10',
signals=dict([(times[i], p['measurements']['A10'][i])
for i in range(len(times))]))
self.assertRaises(ValueError, w.fit, "wibble")
self.assertRaises(ValueError, w.fit, ["wibble"])
self.assertRaises(ValueError, w.fit, ("logistic", "wibble"))
self.assertRaises(ValueError, w.fit, ("wibble", "logistic"))
self.assertRaises(ValueError, w.fit, "logistic") # should be a list/tuple!
def test_WellRecord(self):
'''Test basic functionalities of WellRecord objects'''
with open(JSON_PLATE) as handle:
p = json.load(handle)
times = p['measurements']['Hour']
w = phenotype.phen_micro.WellRecord('A10',
signals=dict([(times[i], p['measurements']['A10'][i])
for i in range(len(times))]))
w1 = phenotype.phen_micro.WellRecord('H12',
signals=dict([(times[i], p['measurements']['H12'][i])
for i in range(len(times))]))
# self.assertIsInstance(w.plate,
# phenotype.phen_micro.PlateRecord)
self.assertTrue(isinstance(w.plate, phenotype.phen_micro.PlateRecord))
self.assertEqual(w.id, 'A10')
self.assertEqual(len(w), len(times))
self.assertEqual(len(w), 384)
self.assertEqual(max(w), (95.75, 217.0))
self.assertEqual(min(w), (0.0, 37.0))
self.assertEqual(max(w, key=lambda x: x[1]),
(16.75, 313.0))
self.assertEqual(min(w, key=lambda x: x[1]),
(0.25, 29.0))
self.assertEqual(len(w[:]), 96)
self.assertEqual(w[1], 29.)
self.assertEqual(w[12], 272.)
self.assertEqual(w[1:5], [29., 35., 39., 43.])
self.assertRaises(ValueError, w.__getitem__, 'a')
self.assertAlmostEqual(w[1:2:.25][0], 29.)
self.assertAlmostEqual(w[1.3567], 33.7196)
self.assertEqual(w.get_raw()[0], (0.0, 37.0))
self.assertEqual(w.get_raw()[-1], (95.75, 217.0))
self.assertEqual(w.get_times()[0], 0.0)
self.assertEqual(w.get_times()[-1], 95.75)
self.assertEqual(w.get_signals()[0], 37.0)
self.assertEqual(w.get_signals()[-1], 217.0)
self.assertEqual(repr(w),
"WellRecord('(0.0, 37.0), (0.25, 29.0), (0.5, 32.0)," +
" (0.75, 30.0), (1.0, 29.0), ..., (95.75, 217.0)')")
self.assertEqual(str(w),
"Well ID: A10\nTime points: 384\nMinum signal 0.25 at " +
"time 29.00\nMaximum signal 16.75 at time " +
"313.00\nWellRecord('(0.0, 37.0), (0.25, 29.0), " +
"(0.5, 32.0), (0.75, 30.0), " +
"(1.0, 29.0), ..., (95.75, 217.0)')")
w.fit(None)
self.assertEqual(w.area, None)
self.assertEqual(w.model, None)
self.assertEqual(w.lag, None)
self.assertEqual(w.plateau, None)
self.assertEqual(w.slope, None)
self.assertEqual(w.v, None)
self.assertEqual(w.y0, None)
self.assertEqual(w.max, 313.0)
self.assertEqual(w.min, 29.0)
self.assertEqual(w.average_height, 217.82552083333334)
self.assertRaises(TypeError, w.__add__, 'a')
w2 = w + w1
self.assertEqual(w2.id, 'A10')
self.assertEqual(len(w2), len(times))
self.assertEqual(len(w2), 384)
self.assertEqual(max(w2), (95.75, 327.0))
self.assertEqual(min(w2), (0.0, 63.0))
self.assertEqual(max(w2, key=lambda x: x[1]),
(18.25, 357.0))
self.assertEqual(min(w2, key=lambda x: x[1]),
(0.25, 55.0))
self.assertEqual(w2[1], 71.)
self.assertEqual(w2[12], 316.)
self.assertEqual(w2[1:5], [71.0, 88.0, 94.0, 94.0])
self.assertAlmostEqual(w2[1:2:.25][0], 71.0)
self.assertAlmostEqual(w2[1.3567], 77.7196)
self.assertEqual(w2.get_raw()[0], (0.0, 63.0))
self.assertEqual(w2.get_raw()[-1], (95.75, 327.0))
self.assertEqual(w2.get_times()[0], 0.0)
self.assertEqual(w2.get_times()[-1], 95.75)
self.assertEqual(w2.get_signals()[0], 63.0)
self.assertEqual(w2.get_signals()[-1], 327.0)
self.assertRaises(TypeError, w.__sub__, 'a')
w2 = w - w1
self.assertEqual(w2.id, 'A10')
self.assertEqual(len(w2), len(times))
self.assertEqual(len(w2), 384)
self.assertEqual(max(w2), (95.75, 107.0))
self.assertEqual(min(w2), (0.0, 11.0))
self.assertEqual(max(w2, key=lambda x: x[1]),
(15.75, 274.0))
self.assertEqual(min(w2, key=lambda x: x[1]),
(3.25, -20.0))
self.assertEqual(w2[1], -13.)
self.assertEqual(w2[12], 228.)
self.assertEqual(w2[1:5], [-13.0, -18.0, -16.0, -8.0])
self.assertAlmostEqual(w2[1:2:.25][0], -13.0)
self.assertAlmostEqual(w2[1.3567], -10.2804)
self.assertEqual(w2.get_raw()[0], (0.0, 11.0))
self.assertEqual(w2.get_raw()[-1], (95.75, 107.0))
self.assertEqual(w2.get_times()[0], 0.0)
self.assertEqual(w2.get_times()[-1], 95.75)
self.assertEqual(w2.get_signals()[0], 11.0)
self.assertEqual(w2.get_signals()[-1], 107.0)
w[1] = 1
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|