1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
|
# Copyright 2000, 2004 by Brad Chapman.
# Revisions copyright 2010-2013, 2015-2018 by Peter Cock.
# All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Code for dealing with sequence alignments.
One of the most important things in this module is the MultipleSeqAlignment
class, used in the Bio.AlignIO module.
"""
from __future__ import print_function
import sys # Only needed to check if we are using Python 2 or 3
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord, _RestrictedDict
from Bio import Alphabet
try:
from Bio.Align import _aligners
except ImportError as e:
new_exc = ImportError("{}: you should not import directly from the "
"biopython source directory; please exit the source "
"tree and re-launch your code from there".format(e))
new_exc.__cause__ = None
raise new_exc
class MultipleSeqAlignment(object):
"""Represents a classical multiple sequence alignment (MSA).
By this we mean a collection of sequences (usually shown as rows) which
are all the same length (usually with gap characters for insertions or
padding). The data can then be regarded as a matrix of letters, with well
defined columns.
You would typically create an MSA by loading an alignment file with the
AlignIO module:
>>> from Bio import AlignIO
>>> align = AlignIO.read("Clustalw/opuntia.aln", "clustal")
>>> print(align)
SingleLetterAlphabet() alignment with 7 rows and 156 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
In some respects you can treat these objects as lists of SeqRecord objects,
each representing a row of the alignment. Iterating over an alignment gives
the SeqRecord object for each row:
>>> len(align)
7
>>> for record in align:
... print("%s %i" % (record.id, len(record)))
...
gi|6273285|gb|AF191659.1|AF191 156
gi|6273284|gb|AF191658.1|AF191 156
gi|6273287|gb|AF191661.1|AF191 156
gi|6273286|gb|AF191660.1|AF191 156
gi|6273290|gb|AF191664.1|AF191 156
gi|6273289|gb|AF191663.1|AF191 156
gi|6273291|gb|AF191665.1|AF191 156
You can also access individual rows as SeqRecord objects via their index:
>>> print(align[0].id)
gi|6273285|gb|AF191659.1|AF191
>>> print(align[-1].id)
gi|6273291|gb|AF191665.1|AF191
And extract columns as strings:
>>> print(align[:, 1])
AAAAAAA
Or, take just the first ten columns as a sub-alignment:
>>> print(align[:, :10])
SingleLetterAlphabet() alignment with 7 rows and 10 columns
TATACATTAA gi|6273285|gb|AF191659.1|AF191
TATACATTAA gi|6273284|gb|AF191658.1|AF191
TATACATTAA gi|6273287|gb|AF191661.1|AF191
TATACATAAA gi|6273286|gb|AF191660.1|AF191
TATACATTAA gi|6273290|gb|AF191664.1|AF191
TATACATTAA gi|6273289|gb|AF191663.1|AF191
TATACATTAA gi|6273291|gb|AF191665.1|AF191
Combining this alignment slicing with alignment addition allows you to
remove a section of the alignment. For example, taking just the first
and last ten columns:
>>> print(align[:, :10] + align[:, -10:])
SingleLetterAlphabet() alignment with 7 rows and 20 columns
TATACATTAAGTGTACCAGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAGTGTACCAGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAGTGTACCAGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAGTGTACCAGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAGTGTACCAGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAGTATACCAGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAGTGTACCAGA gi|6273291|gb|AF191665.1|AF191
Note - This object replaced the older Alignment object defined in module
Bio.Align.Generic but is not fully backwards compatible with it.
Note - This object does NOT attempt to model the kind of alignments used
in next generation sequencing with multiple sequencing reads which are
much shorter than the alignment, and where there is usually a consensus or
reference sequence with special status.
"""
def __init__(self, records, alphabet=None,
annotations=None, column_annotations=None):
"""Initialize a new MultipleSeqAlignment object.
Arguments:
- records - A list (or iterator) of SeqRecord objects, whose
sequences are all the same length. This may be an be an
empty list.
- alphabet - The alphabet for the whole alignment, typically a gapped
alphabet, which should be a super-set of the individual
record alphabets. If omitted, a consensus alphabet is
used.
- annotations - Information about the whole alignment (dictionary).
- column_annotations - Per column annotation (restricted dictionary).
This holds Python sequences (lists, strings, tuples)
whose length matches the number of columns. A typical
use would be a secondary structure consensus string.
You would normally load a MSA from a file using Bio.AlignIO, but you
can do this from a list of SeqRecord objects too:
>>> from Bio.Alphabet import generic_dna
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("AAAACGT", generic_dna), id="Alpha")
>>> b = SeqRecord(Seq("AAA-CGT", generic_dna), id="Beta")
>>> c = SeqRecord(Seq("AAAAGGT", generic_dna), id="Gamma")
>>> align = MultipleSeqAlignment([a, b, c],
... annotations={"tool": "demo"},
... column_annotations={"stats": "CCCXCCC"})
>>> print(align)
DNAAlphabet() alignment with 3 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
>>> align.annotations
{'tool': 'demo'}
>>> align.column_annotations
{'stats': 'CCCXCCC'}
"""
if alphabet is not None:
if not isinstance(alphabet, (Alphabet.Alphabet, Alphabet.AlphabetEncoder)):
raise ValueError("Invalid alphabet argument")
self._alphabet = alphabet
else:
# Default while we add sequences, will take a consensus later
self._alphabet = Alphabet.single_letter_alphabet
self._records = []
if records:
self.extend(records)
if alphabet is None:
# No alphabet was given, take a consensus alphabet
self._alphabet = Alphabet._consensus_alphabet(rec.seq.alphabet for
rec in self._records
if rec.seq is not None)
# Annotations about the whole alignment
if annotations is None:
annotations = {}
elif not isinstance(annotations, dict):
raise TypeError("annotations argument should be a dict")
self.annotations = annotations
# Annotations about each colum of the alignment
if column_annotations is None:
column_annotations = {}
# Handle this via the property set function which will validate it
self.column_annotations = column_annotations
def _set_per_column_annotations(self, value):
if not isinstance(value, dict):
raise TypeError("The per-column-annotations should be a "
"(restricted) dictionary.")
# Turn this into a restricted-dictionary (and check the entries)
if len(self):
# Use the standard method to get the length
expected_length = self.get_alignment_length()
self._per_col_annotations = _RestrictedDict(length=expected_length)
self._per_col_annotations.update(value)
else:
# Bit of a problem case... number of columns is undefined
self._per_col_annotations = None
if value:
raise ValueError("Can't set per-column-annotations without an alignment")
def _get_per_column_annotations(self):
if self._per_col_annotations is None:
# This happens if empty at initialisation
if len(self):
# Use the standard method to get the length
expected_length = self.get_alignment_length()
else:
# Should this raise an exception? Compare SeqRecord behaviour...
expected_length = 0
self._per_col_annotations = _RestrictedDict(length=expected_length)
return self._per_col_annotations
column_annotations = property(
fget=_get_per_column_annotations,
fset=_set_per_column_annotations,
doc="""Dictionary of per-letter-annotation for the sequence.""")
def _str_line(self, record, length=50):
"""Return a truncated string representation of a SeqRecord (PRIVATE).
This is a PRIVATE function used by the __str__ method.
"""
if record.seq.__class__.__name__ == "CodonSeq":
if len(record.seq) <= length:
return "%s %s" % (record.seq, record.id)
else:
return "%s...%s %s" \
% (record.seq[:length - 3], record.seq[-3:], record.id)
else:
if len(record.seq) <= length:
return "%s %s" % (record.seq, record.id)
else:
return "%s...%s %s" \
% (record.seq[:length - 6], record.seq[-3:], record.id)
def __str__(self):
"""Return a multi-line string summary of the alignment.
This output is intended to be readable, but large alignments are
shown truncated. A maximum of 20 rows (sequences) and 50 columns
are shown, with the record identifiers. This should fit nicely on a
single screen. e.g.
>>> from Bio.Alphabet import IUPAC, Gapped
>>> from Bio.Align import MultipleSeqAlignment
>>> align = MultipleSeqAlignment([], Gapped(IUPAC.unambiguous_dna, "-"))
>>> align.add_sequence("Alpha", "ACTGCTAGCTAG")
>>> align.add_sequence("Beta", "ACT-CTAGCTAG")
>>> align.add_sequence("Gamma", "ACTGCTAGATAG")
>>> print(align)
Gapped(IUPACUnambiguousDNA(), '-') alignment with 3 rows and 12 columns
ACTGCTAGCTAG Alpha
ACT-CTAGCTAG Beta
ACTGCTAGATAG Gamma
See also the alignment's format method.
"""
rows = len(self._records)
lines = ["%s alignment with %i rows and %i columns"
% (str(self._alphabet), rows, self.get_alignment_length())]
if rows <= 20:
lines.extend(self._str_line(rec) for rec in self._records)
else:
lines.extend(self._str_line(rec) for rec in self._records[:18])
lines.append("...")
lines.append(self._str_line(self._records[-1]))
return "\n".join(lines)
def __repr__(self):
"""Return a representation of the object for debugging.
The representation cannot be used with eval() to recreate the object,
which is usually possible with simple python ojects. For example:
<Bio.Align.MultipleSeqAlignment instance (2 records of length 14,
SingleLetterAlphabet()) at a3c184c>
The hex string is the memory address of the object, see help(id).
This provides a simple way to visually distinguish alignments of
the same size.
"""
# A doctest for __repr__ would be nice, but __class__ comes out differently
# if run via the __main__ trick.
return "<%s instance (%i records of length %i, %s) at %x>" % \
(self.__class__, len(self._records),
self.get_alignment_length(), repr(self._alphabet), id(self))
# This version is useful for doing eval(repr(alignment)),
# but it can be VERY long:
# return "%s(%s, %s)" \
# % (self.__class__, repr(self._records), repr(self._alphabet))
def format(self, format):
"""Return the alignment as a string in the specified file format.
The format should be a lower case string supported as an output
format by Bio.AlignIO (such as "fasta", "clustal", "phylip",
"stockholm", etc), which is used to turn the alignment into a
string.
e.g.
>>> from Bio.Alphabet import IUPAC, Gapped
>>> from Bio.Align import MultipleSeqAlignment
>>> align = MultipleSeqAlignment([], Gapped(IUPAC.unambiguous_dna, "-"))
>>> align.add_sequence("Alpha", "ACTGCTAGCTAG")
>>> align.add_sequence("Beta", "ACT-CTAGCTAG")
>>> align.add_sequence("Gamma", "ACTGCTAGATAG")
>>> print(align.format("fasta"))
>Alpha
ACTGCTAGCTAG
>Beta
ACT-CTAGCTAG
>Gamma
ACTGCTAGATAG
<BLANKLINE>
>>> print(align.format("phylip"))
3 12
Alpha ACTGCTAGCT AG
Beta ACT-CTAGCT AG
Gamma ACTGCTAGAT AG
<BLANKLINE>
For Python 2.6, 3.0 or later see also the built in format() function.
"""
# See also the __format__ added for Python 2.6 / 3.0, PEP 3101
# See also the SeqRecord class and its format() method using Bio.SeqIO
return self.__format__(format)
def __format__(self, format_spec):
"""Return the alignment as a string in the specified file format.
This method supports the python format() function added in
Python 2.6/3.0. The format_spec should be a lower case
string supported by Bio.AlignIO as an output file format.
See also the alignment's format() method.
"""
if format_spec:
from Bio._py3k import StringIO
from Bio import AlignIO
handle = StringIO()
AlignIO.write([self], handle, format_spec)
return handle.getvalue()
else:
# Follow python convention and default to using __str__
return str(self)
def __iter__(self):
"""Iterate over alignment rows as SeqRecord objects.
e.g.
>>> from Bio.Alphabet import IUPAC, Gapped
>>> from Bio.Align import MultipleSeqAlignment
>>> align = MultipleSeqAlignment([], Gapped(IUPAC.unambiguous_dna, "-"))
>>> align.add_sequence("Alpha", "ACTGCTAGCTAG")
>>> align.add_sequence("Beta", "ACT-CTAGCTAG")
>>> align.add_sequence("Gamma", "ACTGCTAGATAG")
>>> for record in align:
... print(record.id)
... print(record.seq)
...
Alpha
ACTGCTAGCTAG
Beta
ACT-CTAGCTAG
Gamma
ACTGCTAGATAG
"""
return iter(self._records)
def __len__(self):
"""Return the number of sequences in the alignment.
Use len(alignment) to get the number of sequences (i.e. the number of
rows), and alignment.get_alignment_length() to get the length of the
longest sequence (i.e. the number of columns).
This is easy to remember if you think of the alignment as being like a
list of SeqRecord objects.
"""
return len(self._records)
def get_alignment_length(self):
"""Return the maximum length of the alignment.
All objects in the alignment should (hopefully) have the same
length. This function will go through and find this length
by finding the maximum length of sequences in the alignment.
>>> from Bio.Alphabet import IUPAC, Gapped
>>> from Bio.Align import MultipleSeqAlignment
>>> align = MultipleSeqAlignment([], Gapped(IUPAC.unambiguous_dna, "-"))
>>> align.add_sequence("Alpha", "ACTGCTAGCTAG")
>>> align.add_sequence("Beta", "ACT-CTAGCTAG")
>>> align.add_sequence("Gamma", "ACTGCTAGATAG")
>>> align.get_alignment_length()
12
If you want to know the number of sequences in the alignment,
use len(align) instead:
>>> len(align)
3
"""
max_length = 0
for record in self._records:
if len(record.seq) > max_length:
max_length = len(record.seq)
return max_length
def add_sequence(self, descriptor, sequence, start=None, end=None,
weight=1.0):
"""Add a sequence to the alignment.
This doesn't do any kind of alignment, it just adds in the sequence
object, which is assumed to be prealigned with the existing
sequences.
Arguments:
- descriptor - The descriptive id of the sequence being added.
This will be used as the resulting SeqRecord's
.id property (and, for historical compatibility,
also the .description property)
- sequence - A string with sequence info.
- start - You can explicitly set the start point of the sequence.
This is useful (at least) for BLAST alignments, which can
just be partial alignments of sequences.
- end - Specify the end of the sequence, which is important
for the same reason as the start.
- weight - The weight to place on the sequence in the alignment.
By default, all sequences have the same weight. (0.0 =>
no weight, 1.0 => highest weight)
In general providing a SeqRecord and calling .append is preferred.
"""
new_seq = Seq(sequence, self._alphabet)
# We are now effectively using the SeqRecord's .id as
# the primary identifier (e.g. in Bio.SeqIO) so we should
# populate it with the descriptor.
# For backwards compatibility, also store this in the
# SeqRecord's description property.
new_record = SeqRecord(new_seq,
id=descriptor,
description=descriptor)
# hack! We really need to work out how to deal with annotations
# and features in biopython. Right now, I'll just use the
# generic annotations dictionary we've got to store the start
# and end, but we should think up something better. I don't know
# if I'm really a big fan of the LocatableSeq thing they've got
# in BioPerl, but I'm not positive what the best thing to do on
# this is...
if start:
new_record.annotations['start'] = start
if end:
new_record.annotations['end'] = end
# another hack to add weight information to the sequence
new_record.annotations['weight'] = weight
self._records.append(new_record)
def extend(self, records):
"""Add more SeqRecord objects to the alignment as rows.
They must all have the same length as the original alignment, and have
alphabets compatible with the alignment's alphabet. For example,
>>> from Bio.Alphabet import generic_dna
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("AAAACGT", generic_dna), id="Alpha")
>>> b = SeqRecord(Seq("AAA-CGT", generic_dna), id="Beta")
>>> c = SeqRecord(Seq("AAAAGGT", generic_dna), id="Gamma")
>>> d = SeqRecord(Seq("AAAACGT", generic_dna), id="Delta")
>>> e = SeqRecord(Seq("AAA-GGT", generic_dna), id="Epsilon")
First we create a small alignment (three rows):
>>> align = MultipleSeqAlignment([a, b, c])
>>> print(align)
DNAAlphabet() alignment with 3 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
Now we can extend this alignment with another two rows:
>>> align.extend([d, e])
>>> print(align)
DNAAlphabet() alignment with 5 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
AAAACGT Delta
AAA-GGT Epsilon
Because the alignment object allows iteration over the rows as
SeqRecords, you can use the extend method with a second alignment
(provided its sequences have the same length as the original alignment).
"""
if len(self):
# Use the standard method to get the length
expected_length = self.get_alignment_length()
else:
# Take the first record's length
records = iter(records) # records arg could be list or iterator
try:
rec = next(records)
except StopIteration:
# Special case, no records
return
expected_length = len(rec)
self._append(rec, expected_length)
# Can now setup the per-column-annotations as well, set to None
# while missing the length:
self.column_annotations = {}
# Now continue to the rest of the records as usual
for rec in records:
self._append(rec, expected_length)
def append(self, record):
"""Add one more SeqRecord object to the alignment as a new row.
This must have the same length as the original alignment (unless this is
the first record), and have an alphabet compatible with the alignment's
alphabet.
>>> from Bio import AlignIO
>>> align = AlignIO.read("Clustalw/opuntia.aln", "clustal")
>>> print(align)
SingleLetterAlphabet() alignment with 7 rows and 156 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
>>> len(align)
7
We'll now construct a dummy record to append as an example:
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> dummy = SeqRecord(Seq("N"*156), id="dummy")
Now append this to the alignment,
>>> align.append(dummy)
>>> print(align)
SingleLetterAlphabet() alignment with 8 rows and 156 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNN dummy
>>> len(align)
8
"""
if self._records:
self._append(record, self.get_alignment_length())
else:
self._append(record)
def _append(self, record, expected_length=None):
"""Validate and append a record (PRIVATE)."""
if not isinstance(record, SeqRecord):
raise TypeError("New sequence is not a SeqRecord object")
# Currently the get_alignment_length() call is expensive, so we need
# to avoid calling it repeatedly for __init__ and extend, hence this
# private _append method
if expected_length is not None and len(record) != expected_length:
# TODO - Use the following more helpful error, but update unit tests
# raise ValueError("New sequence is not of length %i" \
# % self.get_alignment_length())
raise ValueError("Sequences must all be the same length")
# Using not self.alphabet.contains(record.seq.alphabet) needs fixing
# for AlphabetEncoders (e.g. gapped versus ungapped).
if not Alphabet._check_type_compatible([self._alphabet, record.seq.alphabet]):
raise ValueError("New sequence's alphabet is incompatible")
self._records.append(record)
def __add__(self, other):
"""Combine two alignments with the same number of rows by adding them.
If you have two multiple sequence alignments (MSAs), there are two ways to think
about adding them - by row or by column. Using the extend method adds by row.
Using the addition operator adds by column. For example,
>>> from Bio.Alphabet import generic_dna
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a1 = SeqRecord(Seq("AAAAC", generic_dna), id="Alpha")
>>> b1 = SeqRecord(Seq("AAA-C", generic_dna), id="Beta")
>>> c1 = SeqRecord(Seq("AAAAG", generic_dna), id="Gamma")
>>> a2 = SeqRecord(Seq("GT", generic_dna), id="Alpha")
>>> b2 = SeqRecord(Seq("GT", generic_dna), id="Beta")
>>> c2 = SeqRecord(Seq("GT", generic_dna), id="Gamma")
>>> left = MultipleSeqAlignment([a1, b1, c1],
... annotations={"tool": "demo", "name": "start"},
... column_annotations={"stats": "CCCXC"})
>>> right = MultipleSeqAlignment([a2, b2, c2],
... annotations={"tool": "demo", "name": "end"},
... column_annotations={"stats": "CC"})
Now, let's look at these two alignments:
>>> print(left)
DNAAlphabet() alignment with 3 rows and 5 columns
AAAAC Alpha
AAA-C Beta
AAAAG Gamma
>>> print(right)
DNAAlphabet() alignment with 3 rows and 2 columns
GT Alpha
GT Beta
GT Gamma
And add them:
>>> combined = left + right
>>> print(combined)
DNAAlphabet() alignment with 3 rows and 7 columns
AAAACGT Alpha
AAA-CGT Beta
AAAAGGT Gamma
For this to work, both alignments must have the same number of records (here
they both have 3 rows):
>>> len(left)
3
>>> len(right)
3
>>> len(combined)
3
The individual rows are SeqRecord objects, and these can be added together. Refer
to the SeqRecord documentation for details of how the annotation is handled. This
example is a special case in that both original alignments shared the same names,
meaning when the rows are added they also get the same name.
Any common annotations are preserved, but differing annotation is lost. This is
the same behaviour used in the SeqRecord annotations and is designed to prevent
accidental propagation of inappropriate values:
>>> combined.annotations
{'tool': 'demo'}
Similarly any common per-column-annotations are combined:
>>> combined.column_annotations
{'stats': 'CCCXCCC'}
"""
if not isinstance(other, MultipleSeqAlignment):
raise NotImplementedError
if len(self) != len(other):
raise ValueError("When adding two alignments they must have the same length"
" (i.e. same number or rows)")
alpha = Alphabet._consensus_alphabet([self._alphabet, other._alphabet])
merged = (left + right for left, right in zip(self, other))
# Take any common annotation:
annotations = dict()
for k, v in self.annotations.items():
if k in other.annotations and other.annotations[k] == v:
annotations[k] = v
column_annotations = dict()
for k, v in self.column_annotations.items():
if k in other.column_annotations:
column_annotations[k] = v + other.column_annotations[k]
return MultipleSeqAlignment(merged, alpha, annotations, column_annotations)
def __getitem__(self, index):
"""Access part of the alignment.
Depending on the indices, you can get a SeqRecord object
(representing a single row), a Seq object (for a single columns),
a string (for a single characters) or another alignment
(representing some part or all of the alignment).
align[r,c] gives a single character as a string
align[r] gives a row as a SeqRecord
align[r,:] gives a row as a SeqRecord
align[:,c] gives a column as a Seq (using the alignment's alphabet)
align[:] and align[:,:] give a copy of the alignment
Anything else gives a sub alignment, e.g.
align[0:2] or align[0:2,:] uses only row 0 and 1
align[:,1:3] uses only columns 1 and 2
align[0:2,1:3] uses only rows 0 & 1 and only cols 1 & 2
We'll use the following example alignment here for illustration:
>>> from Bio.Alphabet import generic_dna
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> a = SeqRecord(Seq("AAAACGT", generic_dna), id="Alpha")
>>> b = SeqRecord(Seq("AAA-CGT", generic_dna), id="Beta")
>>> c = SeqRecord(Seq("AAAAGGT", generic_dna), id="Gamma")
>>> d = SeqRecord(Seq("AAAACGT", generic_dna), id="Delta")
>>> e = SeqRecord(Seq("AAA-GGT", generic_dna), id="Epsilon")
>>> align = MultipleSeqAlignment([a, b, c, d, e], generic_dna)
You can access a row of the alignment as a SeqRecord using an integer
index (think of the alignment as a list of SeqRecord objects here):
>>> first_record = align[0]
>>> print("%s %s" % (first_record.id, first_record.seq))
Alpha AAAACGT
>>> last_record = align[-1]
>>> print("%s %s" % (last_record.id, last_record.seq))
Epsilon AAA-GGT
You can also access use python's slice notation to create a sub-alignment
containing only some of the SeqRecord objects:
>>> sub_alignment = align[2:5]
>>> print(sub_alignment)
DNAAlphabet() alignment with 3 rows and 7 columns
AAAAGGT Gamma
AAAACGT Delta
AAA-GGT Epsilon
This includes support for a step, i.e. align[start:end:step], which
can be used to select every second sequence:
>>> sub_alignment = align[::2]
>>> print(sub_alignment)
DNAAlphabet() alignment with 3 rows and 7 columns
AAAACGT Alpha
AAAAGGT Gamma
AAA-GGT Epsilon
Or to get a copy of the alignment with the rows in reverse order:
>>> rev_alignment = align[::-1]
>>> print(rev_alignment)
DNAAlphabet() alignment with 5 rows and 7 columns
AAA-GGT Epsilon
AAAACGT Delta
AAAAGGT Gamma
AAA-CGT Beta
AAAACGT Alpha
You can also use two indices to specify both rows and columns. Using simple
integers gives you the entry as a single character string. e.g.
>>> align[3, 4]
'C'
This is equivalent to:
>>> align[3][4]
'C'
or:
>>> align[3].seq[4]
'C'
To get a single column (as a string) use this syntax:
>>> align[:, 4]
'CCGCG'
Or, to get part of a column,
>>> align[1:3, 4]
'CG'
However, in general you get a sub-alignment,
>>> print(align[1:5, 3:6])
DNAAlphabet() alignment with 4 rows and 3 columns
-CG Beta
AGG Gamma
ACG Delta
-GG Epsilon
This should all seem familiar to anyone who has used the NumPy
array or matrix objects.
"""
if isinstance(index, int):
# e.g. result = align[x]
# Return a SeqRecord
return self._records[index]
elif isinstance(index, slice):
# e.g. sub_align = align[i:j:k]
new = MultipleSeqAlignment(self._records[index], self._alphabet)
if self.column_annotations and len(new) == len(self):
# All rows kept (although could have been reversed)
# Perserve the column annotations too,
for k, v in self.column_annotations.items():
new.column_annotations[k] = v
return new
elif len(index) != 2:
raise TypeError("Invalid index type.")
# Handle double indexing
row_index, col_index = index
if isinstance(row_index, int):
# e.g. row_or_part_row = align[6, 1:4], gives a SeqRecord
return self._records[row_index][col_index]
elif isinstance(col_index, int):
# e.g. col_or_part_col = align[1:5, 6], gives a string
return "".join(rec[col_index] for rec in self._records[row_index])
else:
# e.g. sub_align = align[1:4, 5:7], gives another alignment
new = MultipleSeqAlignment((rec[col_index] for rec in self._records[row_index]),
self._alphabet)
if self.column_annotations and len(new) == len(self):
# All rows kept (although could have been reversed)
# Perserve the column annotations too,
for k, v in self.column_annotations.items():
new.column_annotations[k] = v[col_index]
return new
def sort(self, key=None, reverse=False):
"""Sort the rows (SeqRecord objects) of the alignment in place.
This sorts the rows alphabetically using the SeqRecord object id by
default. The sorting can be controlled by supplying a key function
which must map each SeqRecord to a sort value.
This is useful if you want to add two alignments which use the same
record identifiers, but in a different order. For example,
>>> from Bio.Alphabet import generic_dna
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> align1 = MultipleSeqAlignment([
... SeqRecord(Seq("ACGT", generic_dna), id="Human"),
... SeqRecord(Seq("ACGG", generic_dna), id="Mouse"),
... SeqRecord(Seq("ACGC", generic_dna), id="Chicken"),
... ])
>>> align2 = MultipleSeqAlignment([
... SeqRecord(Seq("CGGT", generic_dna), id="Mouse"),
... SeqRecord(Seq("CGTT", generic_dna), id="Human"),
... SeqRecord(Seq("CGCT", generic_dna), id="Chicken"),
... ])
If you simple try and add these without sorting, you get this:
>>> print(align1 + align2)
DNAAlphabet() alignment with 3 rows and 8 columns
ACGTCGGT <unknown id>
ACGGCGTT <unknown id>
ACGCCGCT Chicken
Consult the SeqRecord documentation which explains why you get a
default value when annotation like the identifier doesn't match up.
However, if we sort the alignments first, then add them we get the
desired result:
>>> align1.sort()
>>> align2.sort()
>>> print(align1 + align2)
DNAAlphabet() alignment with 3 rows and 8 columns
ACGCCGCT Chicken
ACGTCGTT Human
ACGGCGGT Mouse
As an example using a different sort order, you could sort on the
GC content of each sequence.
>>> from Bio.SeqUtils import GC
>>> print(align1)
DNAAlphabet() alignment with 3 rows and 4 columns
ACGC Chicken
ACGT Human
ACGG Mouse
>>> align1.sort(key = lambda record: GC(record.seq))
>>> print(align1)
DNAAlphabet() alignment with 3 rows and 4 columns
ACGT Human
ACGC Chicken
ACGG Mouse
There is also a reverse argument, so if you wanted to sort by ID
but backwards:
>>> align1.sort(reverse=True)
>>> print(align1)
DNAAlphabet() alignment with 3 rows and 4 columns
ACGG Mouse
ACGT Human
ACGC Chicken
"""
if key is None:
self._records.sort(key=lambda r: r.id, reverse=reverse)
else:
self._records.sort(key=key, reverse=reverse)
class PairwiseAlignment(object):
"""Represents a pairwise sequence alignment.
Internally, the pairwise alignment is stored as the path through
the traceback matrix, i.e. a tuple of pairs of indices corresponding
to the vertices of the path in the traceback matrix.
"""
def __init__(self, target, query, path, score):
"""Initialize a new PairwiseAlignment object.
Arguments:
- target - The first sequence, as a plain string, without gaps.
- query - The second sequence, as a plain string, without gaps.
- path - The path through the traceback matrix, defining an
alignment.
- score - The alignment score.
You would normally obtain a PairwiseAlignment object by iterating
over a PairwiseAlignments object.
"""
self.target = target
self.query = query
self.score = score
self.path = path
# For Python2 only
def __cmp__(self, other):
if self.path < other.path:
return -1
if self.path > other.path:
return +1
return 0
def __eq__(self, other):
return self.path == other.path
def __ne__(self, other):
return self.path != other.path
def __lt__(self, other):
return self.path < other.path
def __le__(self, other):
return self.path <= other.path
def __gt__(self, other):
return self.path > other.path
def __ge__(self, other):
return self.path >= other.path
def __format__(self, format_spec):
if format_spec == 'psl':
return self._format_psl()
return str(self)
def __str__(self):
query = self.query
target = self.target
try:
# check if query is a SeqRecord
query = query.seq
except AttributeError:
# query is a Seq object or a plain string
pass
try:
# check if target is a SeqRecord
target = target.seq
except AttributeError:
# target is a Seq object or a plain string
pass
seq1 = str(target)
seq2 = str(query)
n1 = len(seq1)
n2 = len(seq2)
aligned_seq1 = ""
aligned_seq2 = ""
pattern = ""
path = self.path
end1, end2 = path[0]
if end1 > 0 or end2 > 0:
end = max(end1, end2)
aligned_seq1 += "." * (end - end1) + seq1[:end1]
aligned_seq2 += "." * (end - end2) + seq2[:end2]
pattern += '.' * end
start1 = end1
start2 = end2
for end1, end2 in path[1:]:
gap = 0
if end1 == start1:
gap = end2 - start2
aligned_seq1 += '-' * gap
aligned_seq2 += seq2[start2:end2]
pattern += '-' * gap
elif end2 == start2:
gap = end1 - start1
aligned_seq1 += seq1[start1:end1]
aligned_seq2 += '-' * gap
pattern += '-' * gap
else:
s1 = seq1[start1:end1]
s2 = seq2[start2:end2]
aligned_seq1 += s1
aligned_seq2 += s2
for c1, c2 in zip(s1, s2):
if c1 == c2:
pattern += '|'
else:
pattern += 'X'
start1 = end1
start2 = end2
n1 -= end1
n2 -= end2
n = max(n1, n2)
aligned_seq1 += seq1[end1:] + '.' * (n - n1)
aligned_seq2 += seq2[end2:] + '.' * (n - n2)
pattern += '.' * n
return "%s\n%s\n%s\n" % (aligned_seq1, pattern, aligned_seq2)
def _format_psl(self):
query = self.query
target = self.target
try:
Qname = query.id
except AttributeError:
Qname = "query"
else:
query = query.seq
try:
Tname = target.id
except AttributeError:
Tname = "target"
else:
target = target.seq
seq1 = str(target)
seq2 = str(query)
n1 = len(seq1)
n2 = len(seq2)
match = 0
mismatch = 0
repmatch = 0
Ns = 0
Qgapcount = 0
Qgapbases = 0
Tgapcount = 0
Tgapbases = 0
Qsize = n2
Qstart = 0
Qend = Qsize
Tsize = n1
Tstart = 0
Tend = Tsize
blockSizes = []
qStarts = []
tStarts = []
strand = '+'
start1 = 0
start2 = 0
start1, start2 = self.path[0]
for end1, end2 in self.path[1:]:
count1 = end1 - start1
count2 = end2 - start2
if count1 == 0:
if start2 == 0:
Qstart += count2
elif end2 == n2:
Qend -= count2
else:
Qgapcount += 1
Qgapbases += count2
start2 = end2
elif count2 == 0:
if start1 == 0:
Tstart += count1
elif end1 == n1:
Tend -= count1
else:
Tgapcount += 1
Tgapbases += count1
start1 = end1
else:
assert count1 == count2
tStarts.append(start1)
qStarts.append(start2)
blockSizes.append(count1)
for c1, c2 in zip(seq1[start1:end1], seq2[start2:end2]):
if c1 == 'N' or c2 == 'N':
Ns += 1
elif c1 == c2:
match += 1
else:
mismatch += 1
start1 = end1
start2 = end2
blockcount = len(blockSizes)
blockSizes = ",".join(map(str, blockSizes)) + ","
qStarts = ",".join(map(str, qStarts)) + ","
tStarts = ",".join(map(str, tStarts)) + ","
words = [str(match),
str(mismatch),
str(repmatch),
str(Ns),
str(Qgapcount),
str(Qgapbases),
str(Tgapcount),
str(Tgapbases),
strand,
Qname,
str(Qsize),
str(Qstart),
str(Qend),
Tname,
str(Tsize),
str(Tstart),
str(Tend),
str(blockcount),
blockSizes,
qStarts,
tStarts,
]
line = "\t".join(words) + "\n"
return line
class PairwiseAlignments(object):
"""Implements an iterator over pairwise alignments returned by the aligner.
This class also supports indexing, which is fast for increasing indices,
but may be slow for random access of a large number of alignments.
Note that pairwise aligners can return an astronomical number of alignments,
even for relatively short sequences, if they align poorly to each other. We
therefore recommend to first check the number of alignments, accessible as
len(alignments), which can be calculated quickly even if the number of
alignments is very large.
"""
def __init__(self, seqA, seqB, score, paths):
"""Initialize a new PairwiseAlignments object.
Arguments:
- seqA - The first sequence, as a plain string, without gaps.
- seqB - The second sequence, as a plain string, without gaps.
- score - The alignment score.
- paths - An iterator over the paths in the traceback matrix;
each path defines one alignment.
You would normally obtain an PairwiseAlignments object by calling
aligner.align(seqA, seqB), where aligner is a PairwiseAligner object.
"""
self.seqA = seqA
self.seqB = seqB
self.score = score
self.paths = paths
self.index = -1
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
if index == self.index:
return self.alignment
if index < self.index:
self.paths.reset()
self.index = -1
while self.index < index:
try:
alignment = next(self)
except StopIteration:
raise IndexError('index out of range')
return alignment
def __iter__(self):
self.paths.reset()
self.index = -1
return self
def __next__(self):
path = next(self.paths)
self.index += 1
alignment = PairwiseAlignment(self.seqA, self.seqB, path, self.score)
self.alignment = alignment
return alignment
if sys.version_info[0] < 3: # Python 2
next = __next__
class PairwiseAligner(_aligners.PairwiseAligner):
"""Performs pairwise sequence alignment using dynamic programming.
This provides functions to get global and local alignments between two
sequences. A global alignment finds the best concordance between all
characters in two sequences. A local alignment finds just the
subsequences that align the best.
To perform a pairwise sequence alignment, first create a PairwiseAligner
object. This object stores the match and mismatch scores, as well as the
gap scores. Typically, match scores are positive, while mismatch scores
and gap scores are negative or zero. By default, the match score is 1,
and the mismatch and gap scores are zero. Based on the values of the gap
scores, a PairwiseAligner object automatically chooses the appropriate
alignment algorithm (the Needleman-Wunsch, Smith-Waterman, Gotoh, or
Waterman-Smith-Beyer global or local alignment algorithm).
Calling the "score" method on the aligner with two sequences as arguments
will calculate the alignment score between the two sequences.
Calling the "align" method on the aligner with two sequences as arguments
will return a generator yielding the alignments between the two
sequences.
Some examples:
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("ACCGT", "ACG")
>>> for alignment in sorted(alignments):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 3.0:
ACCGT
|-||-
A-CG-
<BLANKLINE>
Score = 3.0:
ACCGT
||-|-
AC-G-
<BLANKLINE>
Specify the aligner mode as local to generate local alignments:
>>> aligner.mode = 'local'
>>> alignments = aligner.align("ACCGT", "ACG")
>>> for alignment in sorted(alignments):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 3.0:
ACCGT
|-||.
A-CG.
<BLANKLINE>
Score = 3.0:
ACCGT
||-|.
AC-G.
<BLANKLINE>
Do a global alignment. Identical characters are given 2 points,
1 point is deducted for each non-identical character.
>>> aligner.mode = 'global'
>>> aligner.match = 2
>>> aligner.mismatch = -1
>>> for alignment in aligner.align("ACCGT", "ACG"):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 6.0:
ACCGT
||-|-
AC-G-
<BLANKLINE>
Score = 6.0:
ACCGT
|-||-
A-CG-
<BLANKLINE>
Same as above, except now 0.5 points are deducted when opening a
gap, and 0.1 points are deducted when extending it.
>>> aligner.open_gap_score = -0.5
>>> aligner.extend_gap_score = -0.1
>>> aligner.target_end_gap_score = 0.0
>>> aligner.query_end_gap_score = 0.0
>>> for alignment in aligner.align("ACCGT", "ACG"):
... print("Score = %.1f:" % alignment.score)
... print(alignment)
...
Score = 5.5:
ACCGT
|-||-
A-CG-
<BLANKLINE>
Score = 5.5:
ACCGT
||-|-
AC-G-
<BLANKLINE>
The alignment function can also use known matrices already included in
Biopython:
>>> from Bio.SubsMat import MatrixInfo
>>> aligner = Align.PairwiseAligner()
>>> aligner.substitution_matrix = MatrixInfo.blosum62
>>> alignments = aligner.align("KEVLA", "EVL")
>>> alignments = list(alignments)
>>> print("Number of alignments: %d" % len(alignments))
Number of alignments: 1
>>> alignment = alignments[0]
>>> print("Score = %.1f" % alignment.score)
Score = 13.0
>>> print(alignment)
KEVLA
-|||-
-EVL-
<BLANKLINE>
"""
def align(self, seqA, seqB):
seqA = str(seqA)
seqB = str(seqB)
score, paths = _aligners.PairwiseAligner.align(self, seqA, seqB)
alignments = PairwiseAlignments(seqA, seqB, score, paths)
return alignments
def score(self, seqA, seqB):
seqA = str(seqA)
seqB = str(seqB)
return _aligners.PairwiseAligner.score(self, seqA, seqB)
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()
|