1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
# Copyright 2016 by Peter Cock. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Bio.Align.AlignInfo related tests."""
import unittest
from Bio.Alphabet import DNAAlphabet, generic_protein
from Bio.Alphabet import HasStopCodon, Gapped
from Bio.Alphabet.IUPAC import unambiguous_dna
from Bio.Align import MultipleSeqAlignment
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio import AlignIO
from Bio.SubsMat.FreqTable import FreqTable, FREQ
from Bio.Align.AlignInfo import SummaryInfo
import math
class AlignInfoTests(unittest.TestCase):
"""Test basic usage."""
def assertAlmostEqualList(self, list1, list2, **kwargs):
self.assertEqual(len(list1), len(list2))
for (v1, v2) in zip(list1, list2):
self.assertAlmostEqual(v1, v2, **kwargs)
def test_nucleotides(self):
filename = "GFF/multi.fna"
format = "fasta"
alignment = AlignIO.read(filename, format, alphabet=unambiguous_dna)
summary = SummaryInfo(alignment)
c = summary.dumb_consensus(ambiguous="N")
self.assertEqual(str(c), 'NNNNNNNN')
self.assertNotEqual(c.alphabet, unambiguous_dna)
self.assertTrue(isinstance(c.alphabet, DNAAlphabet))
c = summary.gap_consensus(ambiguous="N")
self.assertEqual(str(c), 'NNNNNNNN')
self.assertNotEqual(c.alphabet, unambiguous_dna)
self.assertTrue(isinstance(c.alphabet, DNAAlphabet))
expected = FreqTable({"A": 0.25, "G": 0.25, "T": 0.25, "C": 0.25},
FREQ, unambiguous_dna)
m = summary.pos_specific_score_matrix(chars_to_ignore=['-'],
axis_seq=c)
self.assertEqual(str(m), """ A C G T
N 2.0 0.0 1.0 0.0
N 1.0 1.0 1.0 0.0
N 1.0 0.0 2.0 0.0
N 0.0 1.0 1.0 1.0
N 1.0 2.0 0.0 0.0
N 0.0 2.0 1.0 0.0
N 1.0 2.0 0.0 0.0
N 0.0 2.0 1.0 0.0
""")
# Have a generic alphabet, without a declared gap char, so must tell
# provide the frequencies and chars to ignore explicitly.
ic = summary.information_content(e_freq_table=expected,
chars_to_ignore=['-'])
self.assertAlmostEqual(ic, 7.32029999423075, places=6)
def test_proteins(self):
alpha = HasStopCodon(Gapped(generic_protein, "-"), "*")
a = MultipleSeqAlignment([
SeqRecord(Seq("MHQAIFIYQIGYP*LKSGYIQSIRSPEYDNW-", alpha), id="ID001"),
SeqRecord(Seq("MH--IFIYQIGYAYLKSGYIQSIRSPEY-NW*", alpha), id="ID002"),
SeqRecord(Seq("MHQAIFIYQIGYPYLKSGYIQSIRSPEYDNW*", alpha), id="ID003")])
self.assertEqual(32, a.get_alignment_length())
s = SummaryInfo(a)
c = s.dumb_consensus(ambiguous="X")
self.assertEqual(str(c), "MHQAIFIYQIGYXXLKSGYIQSIRSPEYDNW*")
c = s.gap_consensus(ambiguous="X")
self.assertEqual(str(c), "MHXXIFIYQIGYXXLKSGYIQSIRSPEYXNWX")
m = s.pos_specific_score_matrix(chars_to_ignore=['-', '*'], axis_seq=c)
self.assertEqual(str(m), """ A D E F G H I K L M N P Q R S W Y
M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
X 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
X 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
G 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
I 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0
E 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
X 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
""")
ic = s.information_content(chars_to_ignore=['-', '*'])
self.assertAlmostEqual(ic, 133.061475107, places=6)
def test_pseudo_count(self):
# use example from
# http://biologie.univ-mrs.fr/upload/p202/01.4.PSSM_theory.pdf
alpha = unambiguous_dna
dna_align = MultipleSeqAlignment([
SeqRecord(Seq("AACCACGTTTAA", alpha), id="ID001"),
SeqRecord(Seq("CACCACGTGGGT", alpha), id="ID002"),
SeqRecord(Seq("CACCACGTTCGC", alpha), id="ID003"),
SeqRecord(Seq("GCGCACGTGGGG", alpha), id="ID004"),
SeqRecord(Seq("TCGCACGTTGTG", alpha), id="ID005"),
SeqRecord(Seq("TGGCACGTGTTT", alpha), id="ID006"),
SeqRecord(Seq("TGACACGTGGGA", alpha), id="ID007"),
SeqRecord(Seq("TTACACGTGCGC", alpha), id="ID008")])
summary = SummaryInfo(dna_align)
expected = FreqTable({"A": 0.325, "G": 0.175, "T": 0.325, "C": 0.175},
FREQ, unambiguous_dna)
ic = summary.information_content(e_freq_table=expected,
log_base=math.exp(1),
pseudo_count=1)
self.assertAlmostEqualList(summary.ic_vector, [0.110, 0.090, 0.360, 1.290,
0.800, 1.290, 1.290, 0.80,
0.610, 0.390, 0.470, 0.040],
places=2)
self.assertAlmostEqual(ic, 7.546, places=3)
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)
|