File: test_KDTree.py

package info (click to toggle)
python-biopython 1.73%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 57,852 kB
  • sloc: python: 169,977; xml: 97,539; ansic: 15,653; sql: 1,208; makefile: 159; sh: 63
file content (211 lines) | stat: -rw-r--r-- 5,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

import unittest

try:
    import numpy
    del numpy
except ImportError:
    from Bio import MissingExternalDependencyError
    raise MissingExternalDependencyError(
        "Install NumPy if you want to use Bio.KDTree.")

try:
    from Bio.KDTree import _CKDTree
    del _CKDTree
except ImportError:
    from Bio import MissingExternalDependencyError
    raise MissingExternalDependencyError(
            "C module in Bio.KDTree not compiled")

from Bio.KDTree.KDTree import KDTree
from numpy import sum, sqrt, array
from numpy import random

nr_points = 5000
dim = 3
bucket_size = 5
radius = 0.01
query_radius = 10


def _dist(p, q):
    diff = p - q
    return sqrt(sum(diff * diff))


def neighbor_test(nr_points, dim, bucket_size, radius):
    """Test all fixed radius neighbor search.

    Test all fixed radius neighbor search using the
    KD tree C module.

    Arguments:
     - nr_points: number of points used in test
     - dim: dimension of coords
     - bucket_size: nr of points per tree node
     - radius: radius of search (typically 0.05 or so)

    Returns true if the test passes.
    """
    # KD tree search
    kdt = KDTree(dim, bucket_size)
    coords = random.random((nr_points, dim))
    kdt.kdt.set_data(coords)
    neighbors = kdt.kdt.neighbor_search(radius)
    r = [neighbor.radius for neighbor in neighbors]
    if r is None:
        l1 = 0
    else:
        l1 = len(r)
    # now do a slow search to compare results
    neighbors = kdt.kdt.neighbor_simple_search(radius)
    r = [neighbor.radius for neighbor in neighbors]
    if r is None:
        l2 = 0
    else:
        l2 = len(r)
    if l1 == l2:
        # print("Passed.")
        return True
    else:
        print("Not passed: %i != %i." % (l1, l2))
        return False


def test(nr_points, dim, bucket_size, radius):
    """Test neighbor search.

    Test neighbor search using the KD tree C module.

    Arguments:
     - nr_points: number of points used in test
     - dim: dimension of coords
     - bucket_size: nr of points per tree node
     - radius: radius of search (typically 0.05 or so)

    Returns true if the test passes.
    """
    # kd tree search
    kdt = KDTree(dim, bucket_size)
    coords = random.random((nr_points, dim))
    center = coords[0]
    kdt.kdt.set_data(coords)
    kdt.kdt.search_center_radius(center, radius)
    r = kdt.get_indices()
    if r is None:
        l1 = 0
    else:
        l1 = len(r)
    l2 = 0
    # now do a manual search to compare results
    for i in range(0, nr_points):
        p = coords[i]
        if _dist(p, center) <= radius:
            l2 = l2 + 1
    if l1 == l2:
        # print("Passed.")
        return True
    else:
        print("Not passed: %i != %i." % (l1, l2))
        return False


def test_search(nr_points, dim, bucket_size, radius):
    """Test search all points within radius of center.

    Search all point pairs that are within radius.

    Arguments:
     - nr_points: number of points used in test
     - dim: dimension of coords
     - bucket_size: nr of points per tree node
     - radius: radius of search

    Returns true if the test passes.
    """
    kdt = KDTree(dim, bucket_size)
    coords = random.random((nr_points, dim))
    kdt.set_coords(coords)
    kdt.search(coords[0], radius * 100)
    radii = kdt.get_radii()
    l1 = 0
    for i in range(0, nr_points):
        p = coords[i]
        if _dist(p, coords[0]) <= radius * 100:
            l1 = l1 + 1
    if l1 == len(radii):
        return True
    else:
        return False


def test_all_search(nr_points, dim, bucket_size, query_radius):
    """Test fixed neighbor search.

    Search all point pairs that are within radius.

    Arguments:
     - nr_points: number of points used in test
     - dim: dimension of coords
     - bucket_size: nr of points per tree node
     - query_radius: radius of search

    Returns true if the test passes.
    """
    kdt = KDTree(dim, bucket_size)
    coords = random.random((nr_points, dim))
    kdt.set_coords(coords)
    kdt.all_search(query_radius)
    indices = kdt.all_get_indices()
    if indices is None:
        l1 = 0
    else:
        l1 = len(indices)
    radii = kdt.all_get_radii()
    if radii is None:
        l2 = 0
    else:
        l2 = len(radii)
    if l1 == l2:
        return True
    else:
        return False


class KDTreeTest(unittest.TestCase):

    def test_KDTree_exceptions(self):
        kdt = KDTree(dim, bucket_size)
        with self.assertRaises(Exception) as context:
            kdt.set_coords(random.random((nr_points, dim)) * 100000000000000)
        self.assertTrue("Points should lie between -1e6 and 1e6" in str(context.exception))
        with self.assertRaises(Exception) as context:
            kdt.set_coords(random.random((nr_points, dim - 2)))
        self.assertTrue("Expected a Nx%i NumPy array" % dim in str(context.exception))
        with self.assertRaises(Exception) as context:
            kdt.search(array([0, 0, 0]), radius)
        self.assertTrue("No point set specified" in str(context.exception))

    def test_KDTree_neighbour(self):
        for i in range(0, 10):
            self.assertTrue(neighbor_test(nr_points, dim, bucket_size, radius))

    def test_KDTree(self):
        for i in range(0, 10):
            self.assertTrue(test(nr_points, dim, bucket_size, radius))

    def test_all_search(self):
        for i in range(0, 5):
            self.assertTrue(test_all_search((nr_points // 10), dim, bucket_size, query_radius))

    def test_search(self):
        for i in range(0, 5):
            self.assertTrue(test_search(nr_points, dim, bucket_size, radius))


if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity=2)
    unittest.main(testRunner=runner)