1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
"""Python implementation of chisqprob, to avoid SciPy dependency.
Adapted from SciPy: scipy/special/cephes/{chdtr,igam}.
"""
import math
# Cephes Math Library Release 2.0: April, 1987
# Copyright 1985, 1987 by Stephen L. Moshier
# Direct inquiries to 30 Frost Street, Cambridge, MA 02140
MACHEP = 0.0000001 # the machine roundoff error / tolerance
BIG = 4.503599627370496e15
BIGINV = 2.22044604925031308085e-16
def chisqprob(x, df):
"""Probability value (1-tail) for the Chi^2 probability distribution.
Broadcasting rules apply.
Parameters
----------
x : array_like or float > 0
df : array_like or float, probably int >= 1
Returns
-------
chisqprob : ndarray
The area from ``chisq`` to infinity under the Chi^2 probability
distribution with degrees of freedom ``df``.
"""
if x <= 0:
return 1.0
if x == 0:
return 0.0
if df <= 0:
raise ValueError("Domain error.")
if x < 1.0 or x < df:
return 1.0 - _igam(0.5 * df, 0.5 * x)
return _igamc(0.5 * df, 0.5 * x)
def _igamc(a, x):
"""Complemented incomplete Gamma integral (PRIVATE).
Parameters
----------
a: float
x: float
Returns
-------
float
Notes
-----
The function is defined by::
igamc(a,x) = 1 - igam(a,x)
inf.
-
1 | | -t a-1
= ----- | e t dt.
- | |
| (a) -
x
In this implementation both arguments must be positive.
The integral is evaluated by either a power series or
continued fraction expansion, depending on the relative
values of a and x.
"""
# Compute x**a * exp(-x) / Gamma(a)
ax = math.exp(a * math.log(x) - x - math.lgamma(a))
# Continued fraction
y = 1.0 - a
z = x + y + 1.0
c = 0.0
pkm2 = 1.0
qkm2 = x
pkm1 = x + 1.0
qkm1 = z * x
ans = pkm1 / qkm1
while True:
c += 1.0
y += 1.0
z += 2.0
yc = y * c
pk = pkm1 * z - pkm2 * yc
qk = qkm1 * z - qkm2 * yc
if qk != 0:
r = pk / qk
t = abs((ans - r) / r)
ans = r
else:
t = 1.0
pkm2 = pkm1
pkm1 = pk
qkm2 = qkm1
qkm1 = qk
if abs(pk) > BIG:
pkm2 *= BIGINV
pkm1 *= BIGINV
qkm2 *= BIGINV
qkm1 *= BIGINV
if t <= MACHEP:
return ans * ax
def _igam(a, x):
"""Left tail of incomplete Gamma function (PRIVATE).
Computes this formula::
inf. k
a -x - x
x e > ----------
- -
k=0 | (a+k+1)
"""
# Compute x**a * exp(-x) / Gamma(a)
ax = math.exp(a * math.log(x) - x - math.lgamma(a))
# Power series
r = a
c = 1.0
ans = 1.0
while True:
r += 1.0
c *= x / r
ans += c
if c / ans <= MACHEP:
return ans * ax / a
# --- Speed ---
# try:
# from scipy.stats import chisqprob
# except ImportError:
# pass
|