1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
|
\chapter{Multiple Sequence Alignment objects}
\label{chapter:align}
This chapter is about Multiple Sequence Alignments, by which we mean a collection of
multiple sequences which have been aligned together -- usually with the insertion of gap
characters, and addition of leading or trailing gaps -- such that all the sequence
strings are the same length. Such an alignment can be regarded as a matrix of letters,
where each row is held as a \verb|SeqRecord| object internally.
We will introduce the \verb|MultipleSeqAlignment| object which holds this kind of data,
and the \verb|Bio.AlignIO| module for reading and writing them as various file formats
(following the design of the \verb|Bio.SeqIO| module from the previous chapter).
Note that both \verb|Bio.SeqIO| and \verb|Bio.AlignIO| can read and write sequence
alignment files. The appropriate choice will depend largely on what you want to do
with the data.
The final part of this chapter is about our command line wrappers for common multiple
sequence alignment tools like ClustalW and MUSCLE.
\section{Parsing or Reading Sequence Alignments}
We have two functions for reading in sequence alignments, \verb|Bio.AlignIO.read()| and \verb|Bio.AlignIO.parse()| which following the convention introduced in \verb|Bio.SeqIO| are for files containing one or multiple alignments respectively.
Using \verb|Bio.AlignIO.parse()| will return an {\textit iterator} which gives \verb|MultipleSeqAlignment| objects. Iterators are typically used in a for loop. Examples of situations where you will have multiple different alignments include resampled alignments from the PHYLIP tool \verb|seqboot|, or multiple pairwise alignments from the EMBOSS tools \verb|water| or \verb|needle|, or Bill Pearson's FASTA tools.
However, in many situations you will be dealing with files which contain only a single alignment. In this case, you should use the \verb|Bio.AlignIO.read()| function which returns a single \verb|MultipleSeqAlignment| object.
Both functions expect two mandatory arguments:
\begin{enumerate}
\item The first argument is a {\textit handle} to read the data from, typically an open file (see Section~\ref{sec:appendix-handles}), or a filename.
\item The second argument is a lower case string specifying the alignment format. As in \verb|Bio.SeqIO| we don't try and guess the file format for you! See \url{http://biopython.org/wiki/AlignIO} for a full listing of supported formats.
\end{enumerate}
\noindent There is also an optional \verb|seq_count| argument which is discussed in Section~\ref{sec:AlignIO-count-argument} below for dealing with ambiguous file formats which may contain more than one alignment.
\subsection{Single Alignments}
As an example, consider the following annotation rich protein alignment in the PFAM or Stockholm file format:
\begin{minted}{text}
# STOCKHOLM 1.0
#=GS COATB_BPIKE/30-81 AC P03620.1
#=GS COATB_BPIKE/30-81 DR PDB; 1ifl ; 1-52;
#=GS Q9T0Q8_BPIKE/1-52 AC Q9T0Q8.1
#=GS COATB_BPI22/32-83 AC P15416.1
#=GS COATB_BPM13/24-72 AC P69541.1
#=GS COATB_BPM13/24-72 DR PDB; 2cpb ; 1-49;
#=GS COATB_BPM13/24-72 DR PDB; 2cps ; 1-49;
#=GS COATB_BPZJ2/1-49 AC P03618.1
#=GS Q9T0Q9_BPFD/1-49 AC Q9T0Q9.1
#=GS Q9T0Q9_BPFD/1-49 DR PDB; 1nh4 A; 1-49;
#=GS COATB_BPIF1/22-73 AC P03619.2
#=GS COATB_BPIF1/22-73 DR PDB; 1ifk ; 1-50;
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
#=GR COATB_BPIKE/30-81 SS -HHHHHHHHHHHHHH--HHHHHHHH--HHHHHHHHHHHHHHHHHHHHH----
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
COATB_BPM13/24-72 AEGDDP...AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR COATB_BPM13/24-72 SS ---S-T...CHCHHHHCCCCTCCCTTCHHHHHHHHHHHHHHHHHHHHCTT--
COATB_BPZJ2/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
Q9T0Q9_BPFD/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR Q9T0Q9_BPFD/1-49 SS ------...-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH--
COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
#=GR COATB_BPIF1/22-73 SS XX-HHHH--HHHHHH--HHHHHHH--HHHHHHHHHHHHHHHHHHHHHHH---
#=GC SS_cons XHHHHHHHHHHHHHHHCHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHHHC--
#=GC seq_cons AEssss...AptAhDSLpspAT-hIu.sWshVsslVsAsluIKLFKKFsSKA
//
\end{minted}
This is the seed alignment for the Phage\_Coat\_Gp8 (PF05371) PFAM entry, downloaded from a now out of date release of PFAM from \url{https://pfam.xfam.org/}. We can load this file as follows (assuming it has been saved to disk as ``PF05371\_seed.sth'' in the current working directory):
%doctest examples
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
\end{minted}
\noindent This code will print out a summary of the alignment:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment)
Alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
\end{minted}
You'll notice in the above output the sequences have been truncated. We could instead write our own code to format this as we please by iterating over the rows as \verb|SeqRecord| objects:
%doctest examples
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Alignment length %i" % alignment.get_alignment_length())
Alignment length 52
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))
...
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73
\end{minted}
You could also call Python's built-in \verb|format| function on the alignment object to show it in a particular file format -- see Section~\ref{sec:alignment-format} for details.
Did you notice in the raw file above that several of the sequences include database cross-references to the PDB and the associated known secondary structure? Try this:
%cont-doctest
\begin{minted}{pycon}
>>> for record in alignment:
... if record.dbxrefs:
... print("%s %s" % (record.id, record.dbxrefs))
...
COATB_BPIKE/30-81 ['PDB; 1ifl ; 1-52;']
COATB_BPM13/24-72 ['PDB; 2cpb ; 1-49;', 'PDB; 2cps ; 1-49;']
Q9T0Q9_BPFD/1-49 ['PDB; 1nh4 A; 1-49;']
COATB_BPIF1/22-73 ['PDB; 1ifk ; 1-50;']
\end{minted}
\noindent To have a look at all the sequence annotation, try this:
\begin{minted}{pycon}
>>> for record in alignment:
... print(record)
...
\end{minted}
PFAM provide a nice web interface at \url{http://pfam.xfam.org/family/PF05371} which will actually let you download this alignment in several other formats. This is what the file looks like in the FASTA file format:
\begin{minted}{text}
>COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
>Q9T0Q8_BPIKE/1-52
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
>COATB_BPI22/32-83
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
>COATB_BPM13/24-72
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
>Q9T0Q9_BPFD/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPIF1/22-73
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
\end{minted}
\noindent Note the website should have an option about showing gaps as periods (dots) or dashes, we've shown dashes above. Assuming you download and save this as file ``PF05371\_seed.faa'' then you can load it with almost exactly the same code:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.faa", "fasta")
>>> print(alignment)
\end{minted}
All that has changed in this code is the filename and the format string. You'll get the same output as before, the sequences and record identifiers are the same.
However, as you should expect, if you check each \verb|SeqRecord| there is no annotation nor database cross-references because these are not included in the FASTA file format.
Note that rather than using the Sanger website, you could have used \verb|Bio.AlignIO| to convert the original Stockholm format file into a FASTA file yourself (see below).
With any supported file format, you can load an alignment in exactly the same way just by changing the format string. For example, use ``phylip'' for PHYLIP files, ``nexus'' for NEXUS files or ``emboss'' for the alignments output by the EMBOSS tools. There is a full listing on the wiki page (\url{http://biopython.org/wiki/AlignIO}) and in the built in documentation (also \href{http://biopython.org/docs/\bpversion/api/Bio.AlignIO.html}{online}):
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> help(AlignIO)
\end{minted}
\subsection{Multiple Alignments}
The previous section focused on reading files containing a single alignment. In general however, files can contain more than one alignment, and to read these files we must use the \verb|Bio.AlignIO.parse()| function.
Suppose you have a small alignment in PHYLIP format:
\begin{minted}{text}
5 6
Alpha AACAAC
Beta AACCCC
Gamma ACCAAC
Delta CCACCA
Epsilon CCAAAC
\end{minted}
If you wanted to bootstrap a phylogenetic tree using the PHYLIP tools, one of the steps would be to create a set of many resampled alignments using the tool \verb|bootseq|. This would give output something like this, which has been abbreviated for conciseness:
\begin{minted}{text}
5 6
Alpha AAACCA
Beta AAACCC
Gamma ACCCCA
Delta CCCAAC
Epsilon CCCAAA
5 6
Alpha AAACAA
Beta AAACCC
Gamma ACCCAA
Delta CCCACC
Epsilon CCCAAA
5 6
Alpha AAAAAC
Beta AAACCC
Gamma AACAAC
Delta CCCCCA
Epsilon CCCAAC
...
5 6
Alpha AAAACC
Beta ACCCCC
Gamma AAAACC
Delta CCCCAA
Epsilon CAAACC
\end{minted}
If you wanted to read this in using \verb|Bio.AlignIO| you could use:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignments = AlignIO.parse("resampled.phy", "phylip")
>>> for alignment in alignments:
... print(alignment)
... print()
...
\end{minted}
\noindent This would give the following output, again abbreviated for display:
\begin{minted}{text}
Alignment with 5 rows and 6 columns
AAACCA Alpha
AAACCC Beta
ACCCCA Gamma
CCCAAC Delta
CCCAAA Epsilon
Alignment with 5 rows and 6 columns
AAACAA Alpha
AAACCC Beta
ACCCAA Gamma
CCCACC Delta
CCCAAA Epsilon
Alignment with 5 rows and 6 columns
AAAAAC Alpha
AAACCC Beta
AACAAC Gamma
CCCCCA Delta
CCCAAC Epsilon
...
Alignment with 5 rows and 6 columns
AAAACC Alpha
ACCCCC Beta
AAAACC Gamma
CCCCAA Delta
CAAACC Epsilon
\end{minted}
As with the function \verb|Bio.SeqIO.parse()|, using \verb|Bio.AlignIO.parse()| returns an iterator.
If you want to keep all the alignments in memory at once, which will allow you to access them in any order, then turn the iterator into a list:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignments = list(AlignIO.parse("resampled.phy", "phylip"))
>>> last_align = alignments[-1]
>>> first_align = alignments[0]
\end{minted}
\subsection{Ambiguous Alignments}
\label{sec:AlignIO-count-argument}
Many alignment file formats can explicitly store more than one alignment, and the division between each alignment is clear. However, when a general sequence file format has been used there is no such block structure. The most common such situation is when alignments have been saved in the FASTA file format. For example consider the following:
\begin{minted}{text}
>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
\end{minted}
\noindent This could be a single alignment containing six sequences (with repeated identifiers). Or, judging from the identifiers, this is probably two different alignments each with three sequences, which happen to all have the same length.
What about this next example?
\begin{minted}{text}
>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Delta
ACTACGGCTAGCACAGAAG
\end{minted}
\noindent Again, this could be a single alignment with six sequences. However this time based on the identifiers we might guess this is three pairwise alignments which by chance have all got the same lengths.
This final example is similar:
\begin{minted}{text}
>Alpha
ACTACGACTAGCTCAG--G
>XXX
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG
>YYY
ACTACGGCAAGCACAGG
>Alpha
--ACTACGAC--TAGCTCAGG
>ZZZ
GGACTACGACAATAGCTCAGG
\end{minted}
\noindent In this third example, because of the differing lengths, this cannot be treated as a single alignment containing all six records. However, it could be three pairwise alignments.
Clearly trying to store more than one alignment in a FASTA file is not ideal. However, if you are forced to deal with these as input files \verb|Bio.AlignIO| can cope with the most common situation where all the alignments have the same number of records.
One example of this is a collection of pairwise alignments, which can be produced by the EMBOSS tools \verb|needle| and \verb|water| -- although in this situation, \verb|Bio.AlignIO| should be able to understand their native output using ``emboss'' as the format string.
To interpret these FASTA examples as several separate alignments, we can use \verb|Bio.AlignIO.parse()| with the optional \verb|seq_count| argument which specifies how many sequences are expected in each alignment (in these examples, 3, 2 and 2 respectively).
For example, using the third example as the input data:
\begin{minted}{pycon}
>>> for alignment in AlignIO.parse(handle, "fasta", seq_count=2):
... print("Alignment length %i" % alignment.get_alignment_length())
... for record in alignment:
... print("%s - %s" % (record.seq, record.id))
... print()
...
\end{minted}
\noindent giving:
\begin{minted}{text}
Alignment length 19
ACTACGACTAGCTCAG--G - Alpha
ACTACCGCTAGCTCAGAAG - XXX
Alignment length 17
ACTACGACTAGCTCAGG - Alpha
ACTACGGCAAGCACAGG - YYY
Alignment length 21
--ACTACGAC--TAGCTCAGG - Alpha
GGACTACGACAATAGCTCAGG - ZZZ
\end{minted}
Using \verb|Bio.AlignIO.read()| or \verb|Bio.AlignIO.parse()| without the \verb|seq_count| argument would give a single alignment containing all six records for the first two examples. For the third example, an exception would be raised because the lengths differ preventing them being turned into a single alignment.
If the file format itself has a block structure allowing \verb|Bio.AlignIO| to determine the number of sequences in each alignment directly, then the \verb|seq_count| argument is not needed. If it is supplied, and doesn't agree with the file contents, an error is raised.
Note that this optional \verb|seq_count| argument assumes each alignment in the file has the same number of sequences. Hypothetically you may come across stranger situations, for example a FASTA file containing several alignments each with a different number of sequences -- although I would love to hear of a real world example of this. Assuming you cannot get the data in a nicer file format, there is no straight forward way to deal with this using \verb|Bio.AlignIO|. In this case, you could consider reading in the sequences themselves using \verb|Bio.SeqIO| and batching them together to create the alignments as appropriate.
\section{Writing Alignments}
We've talked about using \verb|Bio.AlignIO.read()| and \verb|Bio.AlignIO.parse()| for alignment input (reading files), and now we'll look at \verb|Bio.AlignIO.write()| which is for alignment output (writing files). This is a function taking three arguments: some \verb|MultipleSeqAlignment| objects (or for backwards compatibility the obsolete \verb|Alignment| objects), a handle or filename to write to, and a sequence format.
Here is an example, where we start by creating a few \verb|MultipleSeqAlignment| objects the hard way (by hand, rather than by loading them from a file).
Note we create some \verb|SeqRecord| objects to construct the alignment from.
%doctest
\begin{minted}{pycon}
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> align1 = MultipleSeqAlignment(
... [
... SeqRecord(Seq("ACTGCTAGCTAG"), id="Alpha"),
... SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta"),
... SeqRecord(Seq("ACTGCTAGDTAG"), id="Gamma"),
... ]
... )
>>> align2 = MultipleSeqAlignment(
... [
... SeqRecord(Seq("GTCAGC-AG"), id="Delta"),
... SeqRecord(Seq("GACAGCTAG"), id="Epsilon"),
... SeqRecord(Seq("GTCAGCTAG"), id="Zeta"),
... ]
... )
>>> align3 = MultipleSeqAlignment(
... [
... SeqRecord(Seq("ACTAGTACAGCTG"), id="Eta"),
... SeqRecord(Seq("ACTAGTACAGCT-"), id="Theta"),
... SeqRecord(Seq("-CTACTACAGGTG"), id="Iota"),
... ]
... )
>>> my_alignments = [align1, align2, align3]
\end{minted}
\noindent Now we have a list of \verb|Alignment| objects, we'll write them to a PHYLIP format file:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> AlignIO.write(my_alignments, "my_example.phy", "phylip")
\end{minted}
\noindent And if you open this file in your favourite text editor it should look like this:
\begin{minted}{text}
3 12
Alpha ACTGCTAGCT AG
Beta ACT-CTAGCT AG
Gamma ACTGCTAGDT AG
3 9
Delta GTCAGC-AG
Epislon GACAGCTAG
Zeta GTCAGCTAG
3 13
Eta ACTAGTACAG CTG
Theta ACTAGTACAG CT-
Iota -CTACTACAG GTG
\end{minted}
Its more common to want to load an existing alignment, and save that, perhaps after some simple manipulation like removing certain rows or columns.
Suppose you wanted to know how many alignments the \verb|Bio.AlignIO.write()| function wrote to the handle? If your alignments were in a list like the example above, you could just use \verb|len(my_alignments)|, however you can't do that when your records come from a generator/iterator. Therefore the \verb|Bio.AlignIO.write()| function returns the number of alignments written to the file.
\emph{Note} - If you tell the \verb|Bio.AlignIO.write()| function to write to a file that already exists, the old file will be overwritten without any warning.
\subsection{Converting between sequence alignment file formats}
\label{sec:converting-alignments}
Converting between sequence alignment file formats with \verb|Bio.AlignIO| works
in the same way as converting between sequence file formats with \verb|Bio.SeqIO|
(Section~\ref{sec:SeqIO-conversion}). We load generally the alignment(s) using
\verb|Bio.AlignIO.parse()| and then save them using the \verb|Bio.AlignIO.write()|
-- or just use the \verb|Bio.AlignIO.convert()| helper function.
For this example, we'll load the PFAM/Stockholm format file used earlier and save it as a Clustal W format file:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> count = AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.aln", "clustal")
>>> print("Converted %i alignments" % count)
Converted 1 alignments
\end{minted}
Or, using \verb|Bio.AlignIO.parse()| and \verb|Bio.AlignIO.write()|:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
>>> count = AlignIO.write(alignments, "PF05371_seed.aln", "clustal")
>>> print("Converted %i alignments" % count)
Converted 1 alignments
\end{minted}
The \verb|Bio.AlignIO.write()| function expects to be given multiple alignment objects. In the example above we gave it the alignment iterator returned by \verb|Bio.AlignIO.parse()|.
In this case, we know there is only one alignment in the file so we could have used \verb|Bio.AlignIO.read()| instead, but notice we have to pass this alignment to \verb|Bio.AlignIO.write()| as a single element list:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> AlignIO.write([alignment], "PF05371_seed.aln", "clustal")
\end{minted}
Either way, you should end up with the same new Clustal W format file ``PF05371\_seed.aln'' with the following content:
\begin{minted}{text}
CLUSTAL X (1.81) multiple sequence alignment
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
COATB_BPZJ2/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFAS
Q9T0Q9_BPFD/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVS
COATB_BPIKE/30-81 KA
Q9T0Q8_BPIKE/1-52 RA
COATB_BPI22/32-83 KA
COATB_BPM13/24-72 KA
COATB_BPZJ2/1-49 KA
Q9T0Q9_BPFD/1-49 KA
COATB_BPIF1/22-73 RA
\end{minted}
Alternatively, you could make a PHYLIP format file which we'll name ``PF05371\_seed.phy'':
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip")
\end{minted}
This time the output looks like this:
\begin{minted}{text}
7 52
COATB_BPIK AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
Q9T0Q8_BPI AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
COATB_BPI2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
COATB_BPM1 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZJ AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9T0Q9_BPF AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
\end{minted}
One of the big handicaps of the original PHYLIP alignment file format is
that the sequence identifiers are strictly truncated at ten characters.
In this example, as you can see the resulting names are still unique -
but they are not very readable. As a result, a more relaxed variant of
the original PHYLIP format is now quite widely used:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip-relaxed")
\end{minted}
This time the output looks like this, using a longer indentation to
allow all the identifiers to be given in full:
\begin{minted}{text}
7 52
COATB_BPIKE/30-81 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZJ2/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9T0Q9_BPFD/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF1/22-73 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
\end{minted}
If you have to work with the original strict PHYLIP format, then you may need to
compress the identifiers somehow -- or assign your own names or numbering system.
This following bit of code manipulates the record identifiers before saving the output:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> name_mapping = {}
>>> for i, record in enumerate(alignment):
... name_mapping[i] = record.id
... record.id = "seq%i" % i
...
>>> print(name_mapping)
{0: 'COATB_BPIKE/30-81', 1: 'Q9T0Q8_BPIKE/1-52', 2: 'COATB_BPI22/32-83', 3: 'COATB_BPM13/24-72', 4: 'COATB_BPZJ2/1-49', 5: 'Q9T0Q9_BPFD/1-49', 6: 'COATB_BPIF1/22-73'}
>>> AlignIO.write([alignment], "PF05371_seed.phy", "phylip")
\end{minted}
\noindent This code used a Python dictionary to record a simple mapping from the new sequence system to the original identifier:
\begin{minted}{python}
{
0: "COATB_BPIKE/30-81",
1: "Q9T0Q8_BPIKE/1-52",
2: "COATB_BPI22/32-83",
# ...
}
\end{minted}
\noindent Here is the new (strict) PHYLIP format output:
\begin{minted}{text}
7 52
seq0 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
seq1 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
seq2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
seq3 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq4 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
seq5 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq6 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
\end{minted}
\noindent In general, because of the identifier limitation, working with
\textit{strict} PHYLIP file formats shouldn't be your first choice.
Using the PFAM/Stockholm format on the other hand allows you to record a lot of additional annotation too.
\subsection{Getting your alignment objects as formatted strings}
\label{sec:alignment-format}
The \verb|Bio.AlignIO| interface is based on handles, which means if you want to get your alignment(s) into a string in a particular file format you need to do a little bit more work (see below).
However, you will probably prefer to call Python's built-in \verb|format| function on the alignment object.
This takes an output format specification as a single argument, a lower case string which is supported by \verb|Bio.AlignIO| as an output format. For example:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print(format(alignment, "clustal"))
CLUSTAL X (1.81) multiple sequence alignment
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
...
\end{minted}
Without an output format specification, \verb|format| returns the same output as \verb|str|.
As described in Section~\ref{sec:SeqRecord-format}, the \verb|SeqRecord| object has a similar method using output formats supported by \verb|Bio.SeqIO|.
Internally \verb|format| is calling \verb|Bio.AlignIO.write()| with a \verb|StringIO| handle. You can do this in your own code if for example you are using an
older version of Biopython:
\begin{minted}{pycon}
>>> from io import StringIO
>>> from Bio import AlignIO
>>> alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
>>> out_handle = StringIO()
>>> AlignIO.write(alignments, out_handle, "clustal")
1
>>> clustal_data = out_handle.getvalue()
>>> print(clustal_data)
CLUSTAL X (1.81) multiple sequence alignment
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
...
\end{minted}
\section{Manipulating Alignments}
\label{sec:manipulating-alignments}
Now that we've covered loading and saving alignments, we'll look at what else you can do
with them.
\subsection{Slicing alignments}
First of all, in some senses the alignment objects act like a Python \verb|list| of
\verb|SeqRecord| objects (the rows). With this model in mind hopefully the actions
of \verb|len()| (the number of rows) and iteration (each row as a \verb|SeqRecord|)
make sense:
%doctest examples
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Number of rows: %i" % len(alignment))
Number of rows: 7
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))
...
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73
\end{minted}
You can also use the list-like \verb|append| and \verb|extend| methods to add
more rows to the alignment (as \verb|SeqRecord| objects). Keeping the list
metaphor in mind, simple slicing of the alignment should also make sense -
it selects some of the rows giving back another alignment object:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment)
Alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
>>> print(alignment[3:7])
Alignment with 4 rows and 52 columns
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
\end{minted}
What if you wanted to select by column? Those of you who have used the NumPy
matrix or array objects won't be surprised at this - you use a double index.
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment[2, 6])
T
\end{minted}
\noindent Using two integer indices pulls out a single letter, short hand for this:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment[2].seq[6])
T
\end{minted}
You can pull out a single column as a string like this:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment[:, 6])
TTT---T
\end{minted}
You can also select a range of columns. For example, to pick out those same
three rows we extracted earlier, but take just their first six columns:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment[3:6, :6])
Alignment with 3 rows and 6 columns
AEGDDP COATB_BPM13/24-72
AEGDDP COATB_BPZJ2/1-49
AEGDDP Q9T0Q9_BPFD/1-49
\end{minted}
Leaving the first index as \verb|:| means take all the rows:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment[:, :6])
Alignment with 7 rows and 6 columns
AEPNAA COATB_BPIKE/30-81
AEPNAA Q9T0Q8_BPIKE/1-52
DGTSTA COATB_BPI22/32-83
AEGDDP COATB_BPM13/24-72
AEGDDP COATB_BPZJ2/1-49
AEGDDP Q9T0Q9_BPFD/1-49
FAADDA COATB_BPIF1/22-73
\end{minted}
This brings us to a neat way to remove a section. Notice columns
7, 8 and 9 which are gaps in three of the seven sequences:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment[:, 6:9])
Alignment with 7 rows and 3 columns
TNY COATB_BPIKE/30-81
TNY Q9T0Q8_BPIKE/1-52
TSY COATB_BPI22/32-83
--- COATB_BPM13/24-72
--- COATB_BPZJ2/1-49
--- Q9T0Q9_BPFD/1-49
TSQ COATB_BPIF1/22-73
\end{minted}
\noindent Again, you can slice to get everything after the ninth column:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment[:, 9:])
Alignment with 7 rows and 43 columns
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
ATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
AKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
\end{minted}
\noindent Now, the interesting thing is that addition of alignment objects works
by column. This lets you do this as a way to remove a block of columns:
%cont-doctest
\begin{minted}{pycon}
>>> edited = alignment[:, :6] + alignment[:, 9:]
>>> print(edited)
Alignment with 7 rows and 49 columns
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
\end{minted}
Another common use of alignment addition would be to combine alignments for
several different genes into a meta-alignment. Watch out though - the identifiers
need to match up (see Section~\ref{sec:SeqRecord-addition} for how adding
\verb|SeqRecord| objects works). You may find it helpful to first sort the
alignment rows alphabetically by id:
%cont-doctest
\begin{minted}{pycon}
>>> edited.sort()
>>> print(edited)
Alignment with 7 rows and 49 columns
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
\end{minted}
\noindent Note that you can only add two alignments together if they
have the same number of rows.
\subsection{Alignments as arrays}
Depending on what you are doing, it can be more useful to turn the alignment
object into an array of letters -- and you can do this with NumPy:
%doctest examples lib:numpy
\begin{minted}{pycon}
>>> import numpy as np
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> align_array = np.array([list(rec) for rec in alignment], np.character)
>>> print("Array shape %i by %i" % align_array.shape)
Array shape 7 by 52
\end{minted}
If you will be working heavily with the columns, you can tell NumPy to store
the array by column (as in Fortran) rather than its default of by row (as in C):
\begin{minted}{pycon}
>>> align_array = np.array([list(rec) for rec in alignment], np.character, order="F")
\end{minted}
Note that this leaves the original Biopython alignment object and the NumPy array
in memory as separate objects - editing one will not update the other!
\section{Getting information on the alignment}
\subsection{Substitutions}
The \verb+substitutions+ property of an alignment reports how often letters in the alignment are substituted for each other. This is calculated by taking all pairs of rows in the alignment, counting the number of times two letters are aligned to each other, and summing this over all pairs. For example,
%doctest
\begin{minted}{pycon}
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> alignment = MultipleSeqAlignment(
... [
... SeqRecord(Seq("ACTCCTA"), id='seq1'),
... SeqRecord(Seq("AAT-CTA"), id='seq2'),
... SeqRecord(Seq("CCTACT-"), id='seq3'),
... SeqRecord(Seq("TCTCCTC"), id='seq4'),
... ]
... )
...
>>> print(alignment)
Alignment with 4 rows and 7 columns
ACTCCTA seq1
AAT-CTA seq2
CCTACT- seq3
TCTCCTC seq4
>>> substitutions = alignment.substitutions
>>> print(substitutions)
A C T
A 2.0 4.5 1.0
C 4.5 10.0 0.5
T 1.0 0.5 12.0
<BLANKLINE>
\end{minted}
As the ordering of pairs is arbitrary, counts are divided equally above and below the diagonal. For example, the 9 alignments of \verb+A+ to \verb+C+ are stored as 4.5 at position \verb+['A', 'C']+ and 4.5 at position \verb+['C', 'A']+. This arrangement helps to make the math easier when calculating a substitution matrix from these counts, as described in Section~\ref{sec:subs_mat_ex}.
Note that \verb+alignment.substitutions+ contains entries for the letters appearing in the alignment only. You can use the \verb+select+ method to add entries for missing letters, for example
%cont-doctest
\begin{minted}{pycon}
>>> m = substitutions.select("ATCG")
>>> print(m)
A T C G
A 2.0 1.0 4.5 0.0
T 1.0 12.0 0.5 0.0
C 4.5 0.5 10.0 0.0
G 0.0 0.0 0.0 0.0
<BLANKLINE>
\end{minted}
This also allows you to change the order of letters in the alphabet.
\section{Alignment Tools}
\label{sec:alignment-tools}
There are \emph{lots} of algorithms out there for aligning sequences, both pairwise alignments
and multiple sequence alignments. These calculations are relatively slow, and you generally
wouldn't want to write such an algorithm in Python. For pairwise alignments Biopython contains
the \verb|Bio.pairwise2| module , which is supplemented by functions written in C for speed
enhancements and the new \verb|PairwiseAligner| (see Section~\ref{sec:pairwise}). In addition,
you can use Biopython to invoke a command line tool on your behalf. Normally you would:
\begin{enumerate}
\item Prepare an input file of your unaligned sequences, typically this will be a FASTA file
which you might create using \verb|Bio.SeqIO| (see Chapter~\ref{chapter:seqio}).
\item Call the command line tool to process this input file, typically via one of Biopython's
command line wrappers (which we'll discuss here).
\item Read the output from the tool, i.e. your aligned sequences, typically using
\verb|Bio.AlignIO| (see earlier in this chapter).
\end{enumerate}
All the command line wrappers we're going to talk about in this chapter follow the same style.
You create a command line object specifying the options (e.g. the input filename and the
output filename), then invoke this command line via a Python operating system call (e.g.
using the \texttt{subprocess} module).
Most of these wrappers are defined in the \verb|Bio.Align.Applications| module:
%doctest
\begin{minted}{pycon}
>>> import Bio.Align.Applications
>>> dir(Bio.Align.Applications) # doctest:+ELLIPSIS
['ClustalOmegaCommandline', 'ClustalwCommandline', 'DialignCommandline', 'MSAProbsCommandline', 'MafftCommandline', 'MuscleCommandline', 'PrankCommandline', 'ProbconsCommandline', 'TCoffeeCommandline', ...]
\end{minted}
\noindent (Ignore the entries starting with an underscore -- these have
special meaning in Python.)
The module \verb|Bio.Emboss.Applications| has wrappers for some of the
\href{http://emboss.sourceforge.net/}{EMBOSS suite}, including
\texttt{needle} and \texttt{water}, which are described below in
Section~\ref{sec:emboss-needle-water}, and wrappers for the EMBOSS
packaged versions of the PHYLIP tools (which EMBOSS refer to as one
of their EMBASSY packages - third party tools with an EMBOSS style
interface).
We won't explore all these alignment tools here in the section, just a
sample, but the same principles apply.
\subsection{ClustalW}
\label{sec:align_clustal}
ClustalW is a popular command line tool for multiple sequence alignment
(there is also a graphical interface called ClustalX). Biopython's
\verb|Bio.Align.Applications| module has a wrapper for this alignment tool
(and several others).
Before trying to use ClustalW from within Python, you should first try running
the ClustalW tool yourself by hand at the command line, to familiarise
yourself the other options. You'll find the Biopython wrapper is very
faithful to the actual command line API:
\begin{minted}{pycon}
>>> from Bio.Align.Applications import ClustalwCommandline
>>> help(ClustalwCommandline)
\end{minted}
For the most basic usage, all you need is to have a FASTA input file, such as
\href{https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta}{opuntia.fasta}
(available online or in the Doc/examples subdirectory of the Biopython source
code). This is a small FASTA file containing seven prickly-pear DNA sequences
(from the cactus family \textit{Opuntia}).
By default ClustalW will generate an alignment and guide tree file with names
based on the input FASTA file, in this case \texttt{opuntia.aln} and
\texttt{opuntia.dnd}, but you can override this or make it explicit:
%doctest
\begin{minted}{pycon}
>>> from Bio.Align.Applications import ClustalwCommandline
>>> cline = ClustalwCommandline("clustalw2", infile="opuntia.fasta")
>>> print(cline)
clustalw2 -infile=opuntia.fasta
\end{minted}
Notice here we have given the executable name as \texttt{clustalw2},
indicating we have version two installed, which has a different filename to
version one (\texttt{clustalw}, the default). Fortunately both versions
support the same set of arguments at the command line (and indeed, should be
functionally identical).
You may find that even though you have ClustalW installed, the above command
doesn't work -- you may get a message about ``command not found'' (especially
on Windows). This indicated that the ClustalW executable is not on your PATH
(an environment variable, a list of directories to be searched). You can
either update your PATH setting to include the location of your copy of
ClustalW tools (how you do this will depend on your OS), or simply type in
the full path of the tool. For example:
%doctest
\begin{minted}{pycon}
>>> import os
>>> from Bio.Align.Applications import ClustalwCommandline
>>> clustalw_exe = r"C:\Program Files\new clustal\clustalw2.exe"
>>> clustalw_cline = ClustalwCommandline(clustalw_exe, infile="opuntia.fasta")
\end{minted}
%Don't run it in the doctest
\begin{minted}{pycon}
>>> assert os.path.isfile(clustalw_exe), "Clustal W executable missing"
>>> stdout, stderr = clustalw_cline()
\end{minted}
\noindent Remember, in Python strings \verb|\n| and \verb|\t| are by default
interpreted as a new line and a tab -- which is why we're put a letter
``r'' at the start for a raw string that isn't translated in this way.
This is generally good practice when specifying a Windows style file name.
Internally this uses the
\verb|subprocess| module which is now the recommended way to run another
program in Python. This replaces older options like the \verb|os.system()|
and the \verb|os.popen*| functions.
Now, at this point it helps to know about how command line tools ``work''.
When you run a tool at the command line, it will often print text output
directly to screen. This text can be captured or redirected, via
two ``pipes'', called standard output (the normal results) and standard
error (for error messages and debug messages). There is also standard
input, which is any text fed into the tool. These names get shortened
to stdin, stdout and stderr. When the tool finishes, it has a return
code (an integer), which by convention is zero for success.
When you run the command line tool like this via the Biopython wrapper,
it will wait for it to finish, and check the return code. If this is
non zero (indicating an error), an exception is raised. The wrapper
then returns two strings, stdout and stderr.
In the case of ClustalW, when run at the command line all the important
output is written directly to the output files. Everything normally printed to
screen while you wait (via stdout or stderr) is boring and can be
ignored (assuming it worked).
What we care about are the two output files, the alignment and the guide
tree. We didn't tell ClustalW what filenames to use, but it defaults to
picking names based on the input file. In this case the output should be
in the file \verb|opuntia.aln|.
You should be able to work out how to read in the alignment using
\verb|Bio.AlignIO| by now:
%doctest examples
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> align = AlignIO.read("opuntia.aln", "clustal")
>>> print(align)
Alignment with 7 rows and 906 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
\end{minted}
In case you are interested (and this is an aside from the main thrust of this
chapter), the \texttt{opuntia.dnd} file ClustalW creates is just a standard
Newick tree file, and \verb|Bio.Phylo| can parse these:
%doctest examples
\begin{minted}{pycon}
>>> from Bio import Phylo
>>> tree = Phylo.read("opuntia.dnd", "newick")
>>> Phylo.draw_ascii(tree)
_______________ gi|6273291|gb|AF191665.1|AF191665
__________________________|
| | ______ gi|6273290|gb|AF191664.1|AF191664
| |__|
| |_____ gi|6273289|gb|AF191663.1|AF191663
|
_|_________________ gi|6273287|gb|AF191661.1|AF191661
|
|__________ gi|6273286|gb|AF191660.1|AF191660
|
| __ gi|6273285|gb|AF191659.1|AF191659
|___|
| gi|6273284|gb|AF191658.1|AF191658
<BLANKLINE>
\end{minted}
\noindent Chapter \ref{chapter:phylo} covers Biopython's support for phylogenetic trees in more
depth.
\subsection{MUSCLE}
MUSCLE is a more recent multiple sequence alignment tool than ClustalW, and
Biopython also has a wrapper for it under the \verb|Bio.Align.Applications|
module. As before, we recommend you try using MUSCLE from the command line before
trying it from within Python, as the Biopython wrapper is very faithful to the
actual command line API:
\begin{minted}{pycon}
>>> from Bio.Align.Applications import MuscleCommandline
>>> help(MuscleCommandline)
\end{minted}
For the most basic usage, all you need is to have a FASTA input file, such as
\href{https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta}{opuntia.fasta}
(available online or in the Doc/examples subdirectory of the Biopython source
code). You can then tell MUSCLE to read in this FASTA file, and write the
alignment to an output file:
%doctest
\begin{minted}{pycon}
>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.txt")
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.txt
\end{minted}
Note that MUSCLE uses ``-in'' and ``-out'' but in Biopython we have to use
``input'' and ``out'' as the keyword arguments or property names. This is
because ``in'' is a reserved word in Python.
By default MUSCLE will output the alignment as a FASTA file (using gapped
sequences). The \verb|Bio.AlignIO| module should be able to read this
alignment using \texttt{format="fasta"}.
You can also ask for ClustalW-like output:
%doctest
\begin{minted}{pycon}
>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.aln", clw=True)
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.aln -clw
\end{minted}
Or, strict ClustalW output where the original ClustalW header line is
used for maximum compatibility:
%doctest
\begin{minted}{pycon}
>>> from Bio.Align.Applications import MuscleCommandline
>>> cline = MuscleCommandline(input="opuntia.fasta", out="opuntia.aln", clwstrict=True)
>>> print(cline)
muscle -in opuntia.fasta -out opuntia.aln -clwstrict
\end{minted}
\noindent The \verb|Bio.AlignIO| module should be able to read these alignments
using \texttt{format="clustal"}.
MUSCLE can also output in GCG MSF format (using the \texttt{msf} argument), but
Biopython can't currently parse that, or using HTML which would give a human
readable web page (not suitable for parsing).
You can also set the other optional parameters, for example the maximum number
of iterations. See the built in help for details.
You would then run MUSCLE command line string as described above for
ClustalW, and parse the output using \verb|Bio.AlignIO| to get an
alignment object.
\subsection{MUSCLE using stdout}
Using a MUSCLE command line as in the examples above will write the alignment
to a file. This means there will be no important information written to the
standard out (stdout) or standard error (stderr) handles. However, by default
MUSCLE will write the alignment to standard output (stdout). We can take
advantage of this to avoid having a temporary output file! For example:
%doctest
\begin{minted}{pycon}
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")
>>> print(muscle_cline)
muscle -in opuntia.fasta
\end{minted}
If we run this via the wrapper, we get back the output as a string. In order
to parse this we can use \verb|StringIO| to turn it into a handle.
Remember that MUSCLE defaults to using FASTA as the output format:
\begin{minted}{pycon}
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")
>>> stdout, stderr = muscle_cline()
>>> from io import StringIO
>>> from Bio import AlignIO
>>> align = AlignIO.read(StringIO(stdout), "fasta")
>>> print(align)
Alignment with 7 rows and 906 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658
\end{minted}
The above approach is fairly simple, but if you are dealing with very large output
text the fact that all of stdout and stderr is loaded into memory as a string can
be a potential drawback. Using the \verb|subprocess| module we can work directly
with handles instead:
\begin{minted}{pycon}
>>> import subprocess
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(input="opuntia.fasta")
>>> child = subprocess.Popen(str(muscle_cline),
... stdout=subprocess.PIPE,
... stderr=subprocess.PIPE,
... universal_newlines=True,
... shell=(sys.platform!="win32"))
...
>>> from Bio import AlignIO
>>> align = AlignIO.read(child.stdout, "fasta")
>>> print(align)
Alignment with 7 rows and 906 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658
\end{minted}
\subsection{MUSCLE using stdin and stdout}
We don't actually \emph{need} to have our FASTA input sequences prepared in a file,
because by default MUSCLE will read in the input sequence from standard input!
Note this is a bit more advanced and fiddly, so don't bother with this technique
unless you need to.
First, we'll need some unaligned sequences in memory as \verb|SeqRecord| objects.
For this demonstration I'm going to use a filtered version of the original FASTA
file (using a generator expression), taking just six of the seven sequences:
%doctest
\begin{minted}{pycon}
>>> from Bio import SeqIO
>>> records = (r for r in SeqIO.parse("opuntia.fasta", "fasta") if len(r) < 900)
\end{minted}
Then we create the MUSCLE command line, leaving the input and output to their
defaults (stdin and stdout). I'm also going to ask for strict ClustalW format
as for the output.
%doctest
\begin{minted}{pycon}
>>> from Bio.Align.Applications import MuscleCommandline
>>> muscle_cline = MuscleCommandline(clwstrict=True)
>>> print(muscle_cline)
muscle -clwstrict
\end{minted}
Now for the fiddly bits using the \verb|subprocess| module, stdin and stdout:
\begin{minted}{pycon}
>>> import subprocess
>>> import sys
>>> child = subprocess.Popen(str(cline),
... stdin=subprocess.PIPE,
... stdout=subprocess.PIPE,
... stderr=subprocess.PIPE,
... universal_newlines=True,
... shell=(sys.platform!="win32"))
\end{minted}
That should start MUSCLE, but it will be sitting waiting for its FASTA input
sequences, which we must supply via its stdin handle:
\begin{minted}{pycon}
>>> SeqIO.write(records, child.stdin, "fasta")
6
>>> child.stdin.close()
\end{minted}
After writing the six sequences to the handle, MUSCLE will still be waiting
to see if that is all the FASTA sequences or not -- so we must signal that
this is all the input data by closing the handle. At that point MUSCLE should
start to run, and we can ask for the output:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> align = AlignIO.read(child.stdout, "clustal")
>>> print(align)
Alignment with 6 rows and 900 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF19166
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF19166
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF19165
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF19165
\end{minted}
Wow! There we are with a new alignment of just the six records, without having created
a temporary FASTA input file, or a temporary alignment output file. However, a word of
caution: Dealing with errors with this style of calling external programs is much more
complicated.
It also becomes far harder to diagnose problems, because you can't try running MUSCLE
manually outside of Biopython (because you don't have the input file to supply).
There can also be subtle cross platform issues (e.g. Windows versus Linux), and how
you run your script can have an impact (e.g. at the command line, from IDLE or an
IDE, or as a GUI script). These are all generic Python issues though, and not
specific to Biopython.
If you find working directly with \texttt{subprocess} like this scary, there is an
alternative. If you execute the tool with \texttt{muscle\_cline()} you can supply
any standard input as a big string, \texttt{muscle\_cline(stdin=...)}. So,
provided your data isn't very big, you can prepare the FASTA input in memory as
a string using \texttt{StringIO} (see Section~\ref{sec:appendix-handles}):
%doctest
\begin{minted}{pycon}
>>> from Bio import SeqIO
>>> records = (r for r in SeqIO.parse("opuntia.fasta", "fasta") if len(r) < 900)
>>> from io import StringIO
>>> handle = StringIO()
>>> SeqIO.write(records, handle, "fasta")
6
>>> data = handle.getvalue()
\end{minted}
\noindent You can then run the tool and parse the alignment as follows:
%not a doctest as can't assume the MUSCLE binary is present
\begin{minted}{pycon}
>>> stdout, stderr = muscle_cline(stdin=data)
>>> from Bio import AlignIO
>>> align = AlignIO.read(StringIO(stdout), "clustal")
>>> print(align)
Alignment with 6 rows and 900 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF19166
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF19166
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF19166
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF19165
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF19165
\end{minted}
You might find this easier, but it does require more memory (RAM) for the strings
used for the input FASTA and output Clustal formatted data.
\subsection{EMBOSS needle and water}
\label{sec:emboss-needle-water}
The \href{http://emboss.sourceforge.net/}{EMBOSS} suite includes the \texttt{water} and
\texttt{needle} tools for Smith-Waterman algorithm local alignment, and Needleman-Wunsch
global alignment. The tools share the same style interface, so switching between the two
is trivial -- we'll just use \texttt{needle} here.
Suppose you want to do a global pairwise alignment between two sequences, prepared in
FASTA format as follows:
\begin{minted}{text}
>HBA_HUMAN
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
AVHASLDKFLASVSTVLTSKYR
\end{minted}
\noindent in a file \texttt{alpha.faa}, and secondly in a file \texttt{beta.faa}:
\begin{minted}{text}
>HBB_HUMAN
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
KEFTPPVQAAYQKVVAGVANALAHKYH
\end{minted}
You can find copies of these example files with the Biopython source code
under the \verb|Doc/examples/| directory.
Let's start by creating a complete \texttt{needle} command line object in one go:
%doctest
\begin{minted}{pycon}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> needle_cline = NeedleCommandline(asequence="alpha.faa", bsequence="beta.faa",
... gapopen=10, gapextend=0.5, outfile="needle.txt")
>>> print(needle_cline)
needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5
\end{minted}
Why not try running this by hand at the command prompt? You should see it does a
pairwise comparison and records the output in the file \texttt{needle.txt} (in the
default EMBOSS alignment file format).
Even if you have EMBOSS installed, running this command may not work -- you
might get a message about ``command not found'' (especially on Windows). This
probably means that the EMBOSS tools are not on your PATH environment
variable. You can either update your PATH setting, or simply tell Biopython
the full path to the tool, for example:
%doctest
\begin{minted}{pycon}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> needle_cline = NeedleCommandline(r"C:\EMBOSS\needle.exe",
... asequence="alpha.faa", bsequence="beta.faa",
... gapopen=10, gapextend=0.5, outfile="needle.txt")
\end{minted}
\noindent Remember in Python that for a default string \verb|\n| or \verb|\t| means a
new line or a tab -- which is why we're put a letter ``r'' at the start for a raw string.
At this point it might help to try running the EMBOSS tools yourself by hand at the
command line, to familiarise yourself the other options and compare them to the
Biopython help text:
\begin{minted}{pycon}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> help(NeedleCommandline)
\end{minted}
Note that you can also specify (or change or look at) the settings like this:
%doctest
\begin{minted}{pycon}
>>> from Bio.Emboss.Applications import NeedleCommandline
>>> needle_cline = NeedleCommandline()
>>> needle_cline.asequence="alpha.faa"
>>> needle_cline.bsequence="beta.faa"
>>> needle_cline.gapopen=10
>>> needle_cline.gapextend=0.5
>>> needle_cline.outfile="needle.txt"
>>> print(needle_cline)
needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5
>>> print(needle_cline.outfile)
needle.txt
\end{minted}
Next we want to use Python to run this command for us. As explained above,
for full control, we recommend you use the built in Python \texttt{subprocess}
module, but for simple usage the wrapper object usually suffices:
\begin{minted}{pycon}
>>> stdout, stderr = needle_cline()
>>> print(stdout + stderr)
Needleman-Wunsch global alignment of two sequences
\end{minted}
Next we can load the output file with \verb|Bio.AlignIO| as
discussed earlier in this chapter, as the \texttt{emboss} format:
\begin{minted}{pycon}
>>> from Bio import AlignIO
>>> align = AlignIO.read("needle.txt", "emboss")
>>> print(align)
Alignment with 2 rows and 149 columns
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR HBA_HUMAN
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF...KYH HBB_HUMAN
\end{minted}
In this example, we told EMBOSS to write the output to a file, but you
\emph{can} tell it to write the output to stdout instead (useful if you
don't want a temporary output file to get rid of -- use
\texttt{stdout=True} rather than the \texttt{outfile} argument), and
also to read \emph{one} of the one of the inputs from stdin (e.g.
\texttt{asequence="stdin"}, much like in the MUSCLE example in the
section above).
This has only scratched the surface of what you can do with \texttt{needle}
and \texttt{water}. One useful trick is that the second file can contain
multiple sequences (say five), and then EMBOSS will do five pairwise
alignments.
\section{Pairwise sequence alignment}
\label{sec:pairwise}
Pairwise sequence alignment is the process of aligning two sequences to each
other by optimizing the similarity score between them. Biopython includes two
built-in pairwise aligners: the 'old' \verb|Bio.pairwise2| module and the new
\verb|PairwiseAligner| class within the \verb|Bio.Align| module (since Biopython
version 1.72). Both can perform global and local alignments and offer numerous
options to change the alignment parameters. Although \verb|pairwise2| has gained
some speed and memory enhancements recently, the new \verb|PairwiseAligner| is
much faster; so if you need to make many alignments with larger sequences, the
latter would be the tool to choose. \verb|pairwise2|, on the contrary, is also
able to align lists, which can be useful if your sequences do not consist of
single characters only.
Given that the parameters and sequences are the same, both aligners will return
the same alignments and alignment score (if the number of alignments is too high
they may return different subsets of all valid alignments).
\subsection{pairwise2}
\label{sec:pairwise2}
\verb|Bio.pairwise2| contains essentially the same algorithms as
\texttt{water} (local) and \texttt{needle} (global) from the
\href{http://emboss.sourceforge.net/}{EMBOSS} suite (see above) and should
return the same results. The \verb|pairwise2| module has undergone some
optimization regarding speed and memory consumption recently (Biopython versions
\textgreater 1.67) so that for short sequences (global alignments:
\textasciitilde 2000 residues, local alignments \textasciitilde 600 residues)
it's faster (or equally fast) to use \verb|pairwise2| than calling EMBOSS'
\texttt{water} or \texttt{needle} via the command line tools.
Suppose you want to do a global pairwise alignment between the same two
hemoglobin sequences from above (\texttt{HBA\_HUMAN}, \texttt{HBB\_HUMAN})
stored in \texttt{alpha.faa} and \texttt{beta.faa}:
%doctest examples
\begin{minted}{pycon}
>>> from Bio import pairwise2
>>> from Bio import SeqIO
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> alignments = pairwise2.align.globalxx(seq1.seq, seq2.seq)
\end{minted}
As you see, we call the alignment function with \verb|align.globalxx|. The tricky
part are the last two letters of the function name (here: \texttt{xx}), which are
used for decoding the scores and penalties for matches (and mismatches) and gaps.
The first letter decodes the match score, e.g. \texttt{x} means that a match counts
1 while mismatches have no costs. With \texttt{m} general values for either matches
or mismatches can be defined
(for more options see \href{http://biopython.org/docs/1.77/api/Bio.pairwise2.html}{Biopython's API}).
The second letter decodes the cost for gaps; \texttt{x} means no gap costs at all,
with \texttt{s} different penalties for opening and extending a gap can be assigned.
So, \verb|globalxx| means that only matches between both sequences are counted.
Our variable \texttt{alignments} now contains a list of alignments (at least one) which
have the same optimal score for the given conditions. In our example this are 80
different alignments with the score 72 (\verb|Bio.pairwise2| will return up to 1000
alignments). Have a look at one of these alignments:
%cont-doctest
\begin{minted}{pycon}
>>> len(alignments)
80
>>> print(alignments[0]) # doctest:+ELLIPSIS
Alignment(seqA='MV-LSPADKTNV---K-A--A-WGKVGAHAG...YR-', seqB='MVHL-----T--PEEKSAVTALWGKV----...Y-H', score=72.0, start=0, end=217)
\end{minted}
Each alignment is a named tuple consisting of the two aligned sequences, the score, the
start and the end positions of the alignment (in global alignments the start is
always 0 and the end the length of the alignment). \verb|Bio.pairwise2| has a
function \verb|format_alignment| for a nicer printout:
%cont-doctest
\begin{minted}{pycon}
>>> print(pairwise2.format_alignment(*alignments[0])) # doctest:+ELLIPSIS
MV-LSPADKTNV---K-A--A-WGKVGAHAG---EY-GA-EALE-RMFLSF----PTTK-TY--F...YR-
|| | | | | | |||| | | ||| | | | | |...|
MVHL-----T--PEEKSAVTALWGKV-----NVDE-VG-GEAL-GR--L--LVVYP---WT-QRF...Y-H
Score=72
<BLANKLINE>
\end{minted}
Since Biopython 1.77 the required parameters can be supplied with keywords. The
last example can now also be written as:
%cont-doctest
\begin{minted}{pycon}
>>> alignments = pairwise2.align.globalxx(sequenceA=seq1.seq, sequenceB=seq2.seq)
\end{minted}
Better alignments are usually obtained by penalizing gaps: higher costs
for opening a gap and lower costs for extending an existing gap. For amino
acid sequences match scores are usually encoded in matrices like \texttt{PAM}
or \texttt{BLOSUM}. Thus, a more meaningful alignment for our example can be
obtained by using the BLOSUM62 matrix, together with a gap open penalty of 10
and a gap extension penalty of 0.5 (using \verb|globalds|):
\begin{minted}{pycon}
>>> from Bio import pairwise2
>>> from Bio import SeqIO
>>> from Bio.Align import substitution_matrices
>>> blosum62 = substitution_matrices.load("BLOSUM62")
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> alignments = pairwise2.align.globalds(seq1.seq, seq2.seq, blosum62, -10, -0.5)
>>> len(alignments)
2
>>> print(pairwise2.format_alignment(*alignments[0]))
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR
|| |.|..|..|.|.|||| ......|............|.......||.
MVHLTPEEKSAVTALWGKV-NVDEVGGEALGRLLVVYPWTQRFF...KYH
Score=292.5
\end{minted}
This alignment has the same score that we obtained earlier with EMBOSS needle
using the same sequences and the same parameters.
Local alignments are called similarly with the function \verb|align.localXX|,
where again XX stands for a two letter code for the match and gap functions:
%doctest
\begin{minted}{pycon}
>>> from Bio import pairwise2
>>> from Bio.Align import substitution_matrices
>>> blosum62 = substitution_matrices.load("BLOSUM62")
>>> alignments = pairwise2.align.localds("LSPADKTNVKAA", "PEEKSAV", blosum62, -10, -1)
>>> print(pairwise2.format_alignment(*alignments[0]))
3 PADKTNV
|..|..|
1 PEEKSAV
Score=16
<BLANKLINE>
\end{minted}
In recent Biopython versions, \verb|format_alignment| will only print the
aligned part of a local alignment (together with the start positions in 1-based
notation, as shown in the above example). If you are also interested in the non-
aligned parts of the sequences, use the keyword-parameter \verb|full_sequences=True|:
%doctest
\begin{minted}{pycon}
>>> from Bio import pairwise2
>>> from Bio.Align import substitution_matrices
>>> blosum62 = substitution_matrices.load("BLOSUM62")
>>> alignments = pairwise2.align.localds("LSPADKTNVKAA", "PEEKSAV", blosum62, -10, -1)
>>> print(pairwise2.format_alignment(*alignments[0], full_sequences=True))
LSPADKTNVKAA
|..|..|
--PEEKSAV---
Score=16
<BLANKLINE>
\end{minted}
Note that local alignments must, as defined by Smith \& Waterman, have a
positive score (\textgreater 0). Thus, \verb|pairwise2| may return no
alignments if no score \textgreater 0 has been obtained. Also, \verb|pairwise2|
will not report alignments which are the result of the addition of zero-scoring
extensions on either site. In the next example, the pairs serin/aspartate (S/D)
and lysin/asparagin (K/N) both have a match score of 0. As you see, the aligned
part has not been extended:
%doctest
\begin{minted}{pycon}
>>> from Bio import pairwise2
>>> from Bio.Align import substitution_matrices
>>> blosum62 = substitution_matrices.load("BLOSUM62")
>>> alignments = pairwise2.align.localds("LSSPADKTNVKKAA", "DDPEEKSAVNN", blosum62, -10, -1)
>>> print(pairwise2.format_alignment(*alignments[0]))
4 PADKTNV
|..|..|
3 PEEKSAV
Score=16
<BLANKLINE>
\end{minted}
Instead of supplying a complete match/mismatch matrix, the match code
\texttt{m} allows for easy defining general match/mismatch values. The next
example uses match/mismatch scores of 5/-4 and gap penalties (open/extend)
of 2/0.5 using \verb|localms|:
%cont-doctest
\begin{minted}{pycon}
>>> alignments = pairwise2.align.localms("AGAACT", "GAC", 5, -4, -2, -0.5)
>>> print(pairwise2.format_alignment(*alignments[0]))
2 GAAC
| ||
1 G-AC
Score=13
<BLANKLINE>
\end{minted}
One useful keyword argument of the \verb|Bio.pairwise2.align| functions is
\texttt{score\_only}. When set to \texttt{True} it will only return the score
of the best alignment(s), but in a significantly shorter time. It will also
allow the alignment of longer sequences before a memory error is raised.
Another useful keyword argument is \texttt{one\_alignment\_only=True} which
will also result in some speed gain.
Unfortunately, \verb|Bio.pairwise2| does not work with Biopython's multiple
sequence alignment objects (yet).
However, the module has some interesting advanced features: you can
define your own match and gap functions (interested in testing affine
logarithmic gap costs?), gap penalties and end gaps penalties can be different
for both sequences, sequences can be supplied as lists (useful if you have
residues that are encoded by more than one character), etc. These features
are hard (if at all) to realize with other alignment tools. For more details
see the modules documentation in
\href{http://biopython.org/docs/\bpversion/api/Bio.pairwise2.html}{Biopython's API}.
\subsection{PairwiseAligner}
\label{sec:pairwisealigner}
The new \verb|Bio.Align.PairwiseAligner| implements the Needleman-Wunsch, Smith-Waterman,
Gotoh (three-state), and Waterman-Smith-Beyer global and local pairwise alignment algorithms.
We refer to Durbin {\textit et al.} \cite{durbin1998} for in-depth information on sequence alignment algorithms.
\subsubsection{Basic usage}
\label{sec:pairwise-basic}
To generate pairwise alignments, first create a \verb+PairwiseAligner+ object:
%doctest examples
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
\end{minted}
The \verb+PairwiseAligner+ object \verb+aligner+
(see Section~\ref{sec:pairwise-aligner})
stores the alignment parameters to be used for the pairwise alignments.
These attributes can be set in the constructor of the object or after the object
is made.
%cont-doctest
\begin{minted}{pycon}
>>> aligner = Align.PairwiseAligner(match_score=1.0)
\end{minted}
Or, equivalently:
%cont-doctest
\begin{minted}{pycon}
>>> aligner.match_score = 1.0
\end{minted}
Use the \verb+aligner.score+ method to calculate the alignment score between
two sequences:
%cont-doctest
\begin{minted}{pycon}
>>> seq1 = "GAACT"
>>> seq2 = "GAT"
>>> score = aligner.score(seq1, seq2)
>>> score
3.0
\end{minted}
To see the actual alignments, use the \verb+aligner.align+ method and iterate over the \verb+PairwiseAlignment+ objects returned:
%cont-doctest
\begin{minted}{pycon}
>>> alignments = aligner.align(seq1, seq2)
>>> for alignment in alignments:
... print(alignment)
...
GAACT
||--|
GA--T
<BLANKLINE>
GAACT
|-|-|
G-A-T
<BLANKLINE>
\end{minted}
By default, a global pairwise alignment is performed, which finds the optimal
alignment over the whole length of \verb+seq1+ and \verb+seq2+.
Instead, a local alignment will find the subsequence of
\verb+seq1+ and \verb+seq2+ with the highest alignment score.
Local alignments can be generated by setting \verb+aligner.mode+ to
\verb+"local"+:
%cont-doctest
\begin{minted}{pycon}
>>> aligner.mode = 'local'
>>> seq1 = "AGAACTC"
>>> seq2 = "GAACT"
>>> score = aligner.score(seq1, seq2)
>>> score
5.0
>>> alignments = aligner.align(seq1, seq2)
>>> for alignment in alignments:
... print(alignment)
...
AGAACTC
|||||
GAACT
<BLANKLINE>
\end{minted}
Note that there is some ambiguity in the definition of the best local alignments if segments with a score 0 can be added to the alignment. We follow the suggestion by Waterman \& Eggert \cite{waterman1987} and disallow such extensions.
\subsubsection{The pairwise aligner object}
\label{sec:pairwise-aligner}
The \verb+PairwiseAligner+ object stores all alignment parameters to be used
for the pairwise alignments. To see an overview of the values for all parameters, use
%cont-doctest
\begin{minted}{pycon}
>>> print(aligner)
Pairwise sequence aligner with parameters
match_score: 1.000000
mismatch_score: 0.000000
target_internal_open_gap_score: 0.000000
target_internal_extend_gap_score: 0.000000
target_left_open_gap_score: 0.000000
target_left_extend_gap_score: 0.000000
target_right_open_gap_score: 0.000000
target_right_extend_gap_score: 0.000000
query_internal_open_gap_score: 0.000000
query_internal_extend_gap_score: 0.000000
query_left_open_gap_score: 0.000000
query_left_extend_gap_score: 0.000000
query_right_open_gap_score: 0.000000
query_right_extend_gap_score: 0.000000
mode: local
<BLANKLINE>
\end{minted}
See Sections~\ref{sec:pairwise-substitution-scores}, \ref{sec:pairwise-affine-gapscores}, and \ref{sec:pairwise-general-gapscores} below for the definition of these
parameters. The attribute \verb+mode+ (described above in Section~\ref{sec:pairwise-basic}) can be set equal to \verb+"global"+ or \verb+"local"+ to specify global or local pairwise alignment, respectively.
Depending on the gap scoring parameters
(see Sections~\ref{sec:pairwise-affine-gapscores} and
\ref{sec:pairwise-general-gapscores}) and mode, a \verb+PairwiseAligner+ object
automatically chooses the appropriate algorithm to use for pairwise sequence alignment. To verify the selected algorithm, use
%cont-doctest
\begin{minted}{pycon}
>>> aligner.algorithm
'Smith-Waterman'
\end{minted}
This attribute is read-only.
A \verb+PairwiseAligner+ object also stores the precision $\epsilon$ to be used during alignment. The value of $\epsilon$ is stored in the attribute \verb+aligner.epsilon+, and by default is equal to $10^{-6}$:
%cont-doctest
\begin{minted}{pycon}
>>> aligner.epsilon
1e-06
\end{minted}
Two scores will be considered equal to each other for the purpose of the alignment if the absolute difference between them is less than $\epsilon$.
\subsubsection{Substitution scores}
\label{sec:pairwise-substitution-scores}
Substitution scores define the value to be added to the total score when two letters (nucleotides or amino acids) are aligned to each other. The substitution scores to be used by the \verb+PairwiseAligner+ can be specified in two ways:
\begin{itemize}
\item By specifying a match score for identical letters, and a mismatch scores for mismatched letters. Nucleotide sequence alignments are typically based on match and mismatch scores. For example, by default BLAST \cite{altschul1990} uses a match score of $+1$ and a mismatch score of $-2$ for nucleotide alignments by \verb+megablast+, with a gap penalty of 2.5 (see section \ref{sec:pairwise-affine-gapscores} for more information on gap scores). Match and mismatch scores can be specified by setting the \verb+match+ and \verb+mismatch+ attributes of the \verb+PairwiseAligner+ object:
%doctest examples lib:numpy
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.match_score
1.0
>>> aligner.mismatch_score
0.0
>>> score = aligner.score("ACGT","ACAT")
>>> print(score)
3.0
>>> aligner.match_score = 1.0
>>> aligner.mismatch_score = -2.0
>>> aligner.gap_score = -2.5
>>> score = aligner.score("ACGT","ACAT")
>>> print(score)
1.0
\end{minted}
When using match and mismatch scores, the character \verb+X+ is interpreted as an unknown character and gets a zero score in alignments, irrespective of the value of the match or mismatch score:
%cont-doctest
\begin{minted}{pycon}
>>> score = aligner.score("ACGT","ACXT")
>>> print(score)
3.0
\end{minted}
\item
Alternatively, you can use the \verb+substitution_matrix+ attribute of the \verb+PairwiseAligner+ object to specify a substitution matrix. This allows you to apply different scores for different pairs of matched and mismatched letters. This is typically used for amino acid sequence alignments. For example, by default BLAST \cite{altschul1990} uses the BLOSUM62 substitution matrix for protein alignments by \verb+blastp+. This substitution matrix is available from Biopython:
%cont-doctest
\begin{minted}{pycon}
>>> from Bio.Align import substitution_matrices
>>> substitution_matrices.load() #doctest: +ELLIPSIS
['BENNER22', 'BENNER6', 'BENNER74', 'BLOSUM45', 'BLOSUM50', 'BLOSUM62', ..., 'TRANS']
>>> matrix = substitution_matrices.load("BLOSUM62")
>>> print(matrix) #doctest: +ELLIPSIS
# Matrix made by matblas from blosum62.iij
...
A R N D C Q ...
A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 ...
R -1.0 5.0 0.0 -2.0 -3.0 1.0 ...
N -2.0 0.0 6.0 1.0 -3.0 0.0 ...
D -2.0 -2.0 1.0 6.0 -3.0 0.0 ...
C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 ...
Q -1.0 1.0 0.0 0.0 -3.0 5.0 ...
...
>>> aligner.substitution_matrix = matrix
>>> score = aligner.score("ACDQ", "ACDQ")
>>> score
24.0
>>> score = aligner.score("ACDQ", "ACNQ")
>>> score
19.0
\end{minted}
When using a substitution matrix, \verb+X+ is {\em not} interpreted as an unknown character. Instead, the score provided by the substutition matrix will be used:
%cont-doctest
\begin{minted}{pycon}
>>> matrix['D','X']
-1.0
>>> score = aligner.score("ACDQ", "ACXQ")
>>> score
17.0
\end{minted}
\end{itemize}
By default, \verb+aligner.substitution_matrix+ is \verb+None+.
The attributes \verb+aligner.match_score+ and \verb+aligner.mismatch_score+ are
ignored if \verb+aligner.substitution_matrix+ is not \verb+None+.
Setting \verb+aligner.match_score+ or \verb+aligner.mismatch_score+ to valid values will reset \verb+aligner.substitution_matrix+ to \verb+None+.
\subsubsection{Affine gap scores}
\label{sec:pairwise-affine-gapscores}
Affine gap scores are defined by a score to open a gap, and a score to extend
an existing gap:
$\textrm{gap score} = \textrm{open gap score} + (n-1) \times \textrm{extend gap score}$,
where $n$ is the length of the gap.
Biopython's pairwise sequence aligner allows fine-grained control over the gap
scoring scheme by specifying the following twelve attributes of a \verb+PairwiseAligner+ object:
\begin{table}[h]
\begin{tabular}{|l|l|}
\hline
\bf{Opening scores} & \bf{Extending scores} \\
\hline
\verb+query_left_open_gap_score+ & \verb+query_left_extend_gap_score+ \\
\verb+query_internal_open_gap_score+ & \verb+query_internal_extend_gap_score+ \\
\verb+query_right_open_gap_score+ & \verb+query_right_extend_gap_score+ \\
\verb+target_left_open_gap_score+ & \verb+target_left_extend_gap_score+ \\
\verb+target_internal_open_gap_score+ & \verb+target_internal_extend_gap_score+ \\
\verb+target_right_open_gap_score+ & \verb+target_right_extend_gap_score+ \\
\hline
\end{tabular}
\end{table}
These attributes allow for different gap scores for internal gaps and on either end of the sequence, as shown in this example:
\begin{table}[h]
\begin{tabular}{|c|c|l|}
\hline
\bf{target} & \bf{query} & \bf{score} \\
\hline
A & - & query left open gap score \\
C & - & query left extend gap score \\
C & - & query left extend gap score \\
G & G & match score \\
G & T & mismatch score \\
G & - & query internal open gap score \\
A & - & query internal extend gap score \\
A & - & query internal extend gap score \\
T & T & match score \\
A & A & match score \\
G & - & query internal open gap score \\
C & C & match score \\
- & C & target internal open gap score \\
- & C & target internal extend gap score \\
C & C & match score \\
T & G & mismatch score \\
C & C & match score \\
- & C & target internal open gap score \\
A & A & match score \\
- & T & target right open gap score \\
- & A & target right extend gap score \\
- & A & target right extend gap score \\
\hline
\end{tabular}
\end{table}
For convenience, \verb+PairwiseAligner+ objects have additional attributes that refer to a number of these values collectively, as shown (hierarchically) in Table~\ref{table:align-meta-attributes}.
\begin{table}
\caption{Meta-attributes of the pairwise aligner objects.}
\begin{tabular}{|l|l|}
\hline
\bf{Meta-attribute} & \bf{Attributes it maps to} \\
\hline
\verb+gap_score+ & \verb+target_gap_score+, \verb+query_gap_score+ \\
\verb+open_gap_score+ & \verb+target_open_gap_score+, \verb+query_open_gap_score+ \\
\verb+extend_gap_score+ & \verb+target_extend_gap_score+, \verb+query_extend_gap_score+ \\
\verb+internal_gap_score+ & \verb+target_internal_gap_score+, \verb+query_internal_gap_score+ \\
\verb+internal_open_gap_score+ & \verb+target_internal_open_gap_score+, \verb+query_internal_open_gap_score+ \\
\verb+internal_extend_gap_score+ & \verb+target_internal_extend_gap_score+, \verb+query_internal_extend_gap_score+ \\
\verb+end_gap_score+ & \verb+target_end_gap_score+, \verb+query_end_gap_score+ \\
\verb+end_open_gap_score+ & \verb+target_end_open_gap_score+, \verb+query_end_open_gap_score+ \\
\verb+end_extend_gap_score+ & \verb+target_end_extend_gap_score+, \verb+query_end_extend_gap_score+ \\
\verb+left_gap_score+ & \verb+target_left_gap_score+, \verb+query_left_gap_score+ \\
\verb+right_gap_score+ & \verb+target_right_gap_score+, \verb+query_right_gap_score+ \\
\verb+left_open_gap_score+ & \verb+target_left_open_gap_score+, \verb+query_left_open_gap_score+ \\
\verb+left_extend_gap_score+ & \verb+target_left_extend_gap_score+, \verb+query_left_extend_gap_score+ \\
\verb+right_open_gap_score+ & \verb+target_right_open_gap_score+, \verb+query_right_open_gap_score+ \\
\verb+right_extend_gap_score+ & \verb+target_right_extend_gap_score+, \verb+query_right_extend_gap_score+ \\
\verb+target_open_gap_score+ & \verb+target_internal_open_gap_score+, \verb+target_left_open_gap_score+, \\
& \verb+target_right_open_gap_score+ \\
\verb+target_extend_gap_score+ & \verb+target_internal_extend_gap_score+, \verb+target_left_extend_gap_score+, \\
& \verb+target_right_extend_gap_score+ \\
\verb+target_gap_score+ & \verb+target_open_gap_score+, \verb+target_extend_gap_score+ \\
\verb+query_open_gap_score+ & \verb+query_internal_open_gap_score+, \verb+query_left_open_gap_score+, \\
& \verb+query_right_open_gap_score+ \\
\verb+query_extend_gap_score+ & \verb+query_internal_extend_gap_score+, \verb+query_left_extend_gap_score+, \\
& \verb+query_right_extend_gap_score+ \\
\verb+query_gap_score+ & \verb+query_open_gap_score+, \verb+query_extend_gap_score+ \\
\verb+target_internal_gap_score+ & \verb+target_internal_open_gap_score+, \verb+target_internal_extend_gap_score+ \\
\verb+target_end_gap_score+ & \verb+target_end_open_gap_score+, \verb+target_end_extend_gap_score+ \\
\verb+target_end_open_gap_score+ & \verb+target_left_open_gap_score+, \verb+target_right_open_gap_score+ \\
\verb+target_end_extend_gap_score+ & \verb+target_left_extend_gap_score+, \verb+target_right_extend_gap_score+ \\
\verb+target_left_gap_score+ & \verb+target_left_open_gap_score+, \verb+target_left_extend_gap_score+ \\
\verb+target_right_gap_score+ & \verb+target_right_open_gap_score+, \verb+target_right_extend_gap_score+ \\
\verb+query_end_gap_score+ & \verb+query_end_open_gap_score+, \verb+query_end_extend_gap_score+ \\
\verb+query_end_open_gap_score+ & \verb+query_left_open_gap_score+, \verb+query_right_open_gap_score+ \\
\verb+query_end_extend_gap_score+ & \verb+query_left_extend_gap_score+, \verb+query_right_extend_gap_score+ \\
\verb+query_internal_gap_score+ & \verb+query_internal_open_gap_score+, \verb+query_internal_extend_gap_score+ \\
\verb+query_left_gap_score+ & \verb+query_left_open_gap_score+, \verb+query_left_extend_gap_score+ \\
\verb+query_right_gap_score+ & \verb+query_right_open_gap_score+, \verb+query_right_extend_gap_score+ \\
\hline
\end{tabular}
\label{table:align-meta-attributes}
\end{table}
\subsubsection{General gap scores}
\label{sec:pairwise-general-gapscores}
For even more fine-grained control over the gap scores, you can specify a gap scoring function. For example, the gap scoring function below disallows a gap after two nucleotides in the query sequence:
%doctest
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> def my_gap_score_function(start, length):
... if start==2:
... return -1000
... else:
... return -1 * length
...
>>> aligner.query_gap_score = my_gap_score_function
>>> alignments = aligner.align("AACTT", "AATT")
>>> for alignment in alignments:
... print(alignment)
...
AACTT
-|.||
-AATT
<BLANKLINE>
AACTT
|-.||
A-ATT
<BLANKLINE>
AACTT
||.-|
AAT-T
<BLANKLINE>
AACTT
||.|-
AATT-
<BLANKLINE>
\end{minted}
\subsubsection{Iterating over alignments}
The \verb+alignments+ returned by \verb+aligner.align+ are a kind of immutable iterable objects (similar to \verb+range+). While they appear similarto a \verb+tuple+ or \verb+list+ of \verb+PairwiseAlignment+ objects, they are different in the sense that each \verb+PairwiseAlignment+ object is created dynamically when it is needed. This approach was chosen because the number of alignments can be extremely large, in particular for poor alignments (see Section~\ref{sec:pairwise-examples} for an example).
You can perform the following operations on \verb+alignments+:
\begin{itemize}
\item \verb+len(alignments)+ returns the number of alignments stored. This function returns quickly, even if the number of alignments is huge. If the number of alignments is extremely large (typically, larger than 9,223,372,036,854,775,807, which is the largest integer that can be stored as a \verb+long int+ on 64 bit machines), \verb+len(alignments)+ will raise an \verb+OverflowError+. A large number of alignments suggests that the alignment quality is low.
%doctest
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("AAA", "AA")
>>> len(alignments)
3
\end{minted}
\item You can extract a specific alignment by index:
%doctest
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("AAA", "AA")
>>> print(alignments[2])
AAA
-||
-AA
<BLANKLINE>
>>> print(alignments[0])
AAA
||-
AA-
<BLANKLINE>
\end{minted}
\item You can iterate over alignments, for example as in
\begin{minted}{pycon}
>>> for alignment in alignments:
... print(alignment)
...
\end{minted}
Note that \verb+alignments+ can be reused, i.e. you can iterate over alignments multiple times:
%doctest
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("AAA", "AA")
>>> for alignment in alignments:
... print(alignment)
...
AAA
||-
AA-
<BLANKLINE>
AAA
|-|
A-A
<BLANKLINE>
AAA
-||
-AA
<BLANKLINE>
>>> for alignment in alignments:
... print(alignment)
...
AAA
||-
AA-
<BLANKLINE>
AAA
|-|
A-A
<BLANKLINE>
AAA
-||
-AA
<BLANKLINE>
\end{minted}
You can also convert the \verb+alignments+ iterator into a \verb+list+ or \verb+tuple+:
\begin{minted}{pycon}
>>> alignments = list(alignments)
\end{minted}
It is wise to check the number of alignments by calling \verb+len(alignments)+ before attempting to call \verb+list(alignments)+ to save all alignments as a list.
\item The alignment score (which has the same value for each alignment in \verb+alignments+) is stored as an attribute. This allows you to check the alignment score before proceeding to extract individual alignments:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignments.score)
2.0
\end{minted}
\end{itemize}
\subsubsection{Alignment objects}
The \verb+aligner.align+ method returns \verb+PairwiseAlignment+ objects, each representing one alignment between the two sequences.
%doctest
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> seq1 = "GAACT"
>>> seq2 = "GAT"
>>> alignments = aligner.align(seq1, seq2)
>>> alignment = alignments[0]
>>> alignment # doctest: +SKIP
<Bio.Align.PairwiseAlignment object at 0x10204d250>
\end{minted}
Each alignment stores the alignment score:
%cont-doctest
\begin{minted}{pycon}
>>> alignment.score
3.0
\end{minted}
as well as pointers to the sequences that were aligned:
%cont-doctest
\begin{minted}{pycon}
>>> alignment.target
'GAACT'
>>> alignment.query
'GAT'
\end{minted}
Print the \verb+PairwiseAlignment+ object to show the alignment explicitly:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment)
GAACT
||--|
GA--T
<BLANKLINE>
\end{minted}
You can also represent the alignment as a string in PSL (Pattern Space Layout, as generated by BLAT \cite{kent2002}) format:
%cont-doctest
\begin{minted}{pycon}
>>> format(alignment, 'psl')
'3\t0\t0\t0\t0\t0\t1\t2\t+\tquery\t3\t0\t3\ttarget\t5\t0\t5\t2\t2,1,\t0,2,\t0,4,\n'
\end{minted}
Use the \verb+aligned+ property to find the start and end indices of subsequences in the target and query sequence that were aligned to each other.
Generally, if the alignment between target (t) and query (q) consists of $N$
chunks, you get two tuples of length $N$:
\begin{minted}{python}
(
((t_start1, t_end1), (t_start2, t_end2), ..., (t_startN, t_endN)),
((q_start1, q_end1), (q_start2, q_end2), ..., (q_startN, q_endN)),
)
\end{minted}
In the current example, `alignment.aligned` returns two tuples of length 2:
%cont-doctest
\begin{minted}{pycon}
>>> alignment.aligned
(((0, 2), (4, 5)), ((0, 2), (2, 3)))
\end{minted}
while for the alternative alignment, two tuples of length 3 are returned:
%cont-doctest
\begin{minted}{pycon}
>>> alignment = alignments[1]
>>> print(alignment)
GAACT
|-|-|
G-A-T
<BLANKLINE>
>>> alignment.aligned
(((0, 1), (2, 3), (4, 5)), ((0, 1), (1, 2), (2, 3)))
\end{minted}
Note that different alignments may have the same subsequences aligned to each other. In particular, this may occur if alignments differ from each other in terms of their gap placement only:
%cont-doctest
\begin{minted}{pycon}
>>> aligner.mismatch_score = -10
>>> alignments = aligner.align("AAACAAA", "AAAGAAA")
>>> len(alignments)
2
>>> print(alignments[0])
AAAC-AAA
|||--|||
AAA-GAAA
<BLANKLINE>
>>> alignments[0].aligned
(((0, 3), (4, 7)), ((0, 3), (4, 7)))
>>> print(alignments[1])
AAA-CAAA
|||--|||
AAAG-AAA
<BLANKLINE>
>>> alignments[1].aligned
(((0, 3), (4, 7)), ((0, 3), (4, 7)))
\end{minted}
The \verb+aligned+ property can be used to identify alignments that are identical to each other in terms of their aligned sequences.
\subsubsection{Examples}
\label{sec:pairwise-examples}
Suppose you want to do a global pairwise alignment between the same two
hemoglobin sequences from above (\texttt{HBA\_HUMAN}, \texttt{HBB\_HUMAN})
stored in \texttt{alpha.faa} and \texttt{beta.faa}:
%doctest examples
\begin{minted}{pycon}
>>> from Bio import Align
>>> from Bio import SeqIO
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> aligner = Align.PairwiseAligner()
>>> score = aligner.score(seq1.seq, seq2.seq)
>>> print(score)
72.0
\end{minted}
showing an alignment score of 72.0. To see the individual alignments, do
%cont-doctest
\begin{minted}{pycon}
>>> alignments = aligner.align(seq1.seq, seq2.seq)
\end{minted}
In this example, the total number of optimal alignments is huge (more than $4 \times 10^{37}$), and calling \verb+len(alignments)+ will raise an \verb+OverflowError+:
% don't include in the doctest, as 32-bit system show a different number
\begin{minted}{pycon}
>>> len(alignments)
Traceback (most recent call last):
...
OverflowError: number of optimal alignments is larger than 9223372036854775807
\end{minted}
Let's have a look at the first alignment:
%cont-doctest
\begin{minted}{pycon}
>>> alignment = alignments[0]
\end{minted}
The alignment object stores the alignment score, as well as the alignment
itself:
%cont-doctest
\begin{minted}{pycon}
>>> print(alignment.score)
72.0
>>> print(alignment) #doctest: +ELLIPSIS
MV-LS-PAD--KTN--VK-AA-WGKV-----GAHAGEYGAEALE-RMFLSF----P-TTKTY--FPHF--...
||-|--|----|----|--|--||||-----|---||--|--|--|--|------|-|------|--|--...
MVHL-TP--EEK--SAV-TA-LWGKVNVDEVG---GE--A--L-GR--L--LVVYPWT----QRF--FES...
\end{minted}
Better alignments are usually obtained by penalizing gaps: higher costs
for opening a gap and lower costs for extending an existing gap. For amino
acid sequences match scores are usually encoded in matrices like \texttt{PAM}
or \texttt{BLOSUM}. Thus, a more meaningful alignment for our example can be
obtained by using the BLOSUM62 matrix, together with a gap open penalty of 10
and a gap extension penalty of 0.5:
%doctest examples lib:numpy
\begin{minted}{pycon}
>>> from Bio import Align
>>> from Bio import SeqIO
>>> from Bio.Align import substitution_matrices
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> aligner = Align.PairwiseAligner()
>>> aligner.open_gap_score = -10
>>> aligner.extend_gap_score = -0.5
>>> aligner.substitution_matrix = substitution_matrices.load("BLOSUM62")
>>> score = aligner.score(seq1.seq, seq2.seq)
>>> print(score)
292.5
>>> alignments = aligner.align(seq1.seq, seq2.seq)
>>> len(alignments)
2
>>> print(alignments[0].score)
292.5
>>> print(alignments[0]) #doctest: +ELLIPSIS
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSAQVKGHGKKV...
||-|.|..|..|.|.||||--...|.|.|||.|.....|.|...|..|-|||-----.|...||.|||||...
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV...
<BLANKLINE>
\end{minted}
This alignment has the same score that we obtained earlier with EMBOSS needle
using the same sequences and the same parameters.
To perform a local alignment, set \verb+aligner.mode+ to \verb+'local'+:
%cont-doctest
\begin{minted}{pycon}
>>> aligner.mode = 'local'
>>> aligner.open_gap_score = -10
>>> aligner.extend_gap_score = -1
>>> alignments = aligner.align("LSPADKTNVKAA", "PEEKSAV")
>>> print(len(alignments))
1
>>> alignment = alignments[0]
>>> print(alignment)
LSPADKTNVKAA
|..|..|
PEEKSAV
<BLANKLINE>
>>> print(alignment.score)
16.0
\end{minted}
\subsubsection{Generalized pairwise alignments}
\label{sec:generalized-pairwise}
In most cases, \verb+PairwiseAligner+ is used to perform alignments of sequences (strings or \verb+Seq+ objects) consisting of single-letter nucleotides or amino acids. More generally, \verb+PairwiseAligner+ can also be applied to lists or tuples of arbitrary objects. This section will describe some examples of such generalized pairwise alignments.
\paragraph*{Generalized pairwise alignments using a substitution matrix and alphabet}
Schneider \textit{et al.} \cite{schneider2005} created a substitution matrix for aligning three-nucleotide codons (see \hyperlink{codonmatrix}{below} in section \ref{sec:substitution_matrices} for more information). This substitution matrix is associated with an alphabet consisting of all three-letter codons:
%doctest . lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align import substitution_matrices
>>> m = substitution_matrices.load("SCHNEIDER")
>>> m.alphabet #doctest: +ELLIPSIS
('AAA', 'AAC', 'AAG', 'AAT', 'ACA', 'ACC', 'ACG', 'ACT', ..., 'TTG', 'TTT')
\end{minted}
We can use this matrix to align codon sequences to each other:
%cont-doctest
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.substitution_matrix = m
>>> aligner.gap_score = -1.0
>>> s1 = ('AAT', 'CTG', 'TTT', 'TTT')
>>> s2 = ('AAT', 'TTA', 'TTT')
>>> alignments = aligner.align(s1, s2)
>>> len(alignments)
2
>>> print(alignments[0])
AAT CTG TTT TTT
||| ... ||| ---
AAT TTA TTT ---
<BLANKLINE>
>>> print(alignments[1])
AAT CTG TTT TTT
||| ... --- |||
AAT TTA --- TTT
<BLANKLINE>
\end{minted}
Note that aligning \verb+TTT+ to \verb+TTA+, as in this example:
\begin{minted}{pycon}
AAT CTG TTT TTT
||| --- ... |||
AAT --- TTA TTT
\end{minted}
would get a much lower score:
%cont-doctest
\begin{minted}{pycon}
>>> print(m['CTG', 'TTA'])
7.6
>>> print(m['TTT', 'TTA'])
-0.3
\end{minted}
presumably because \verb+CTG+ and \verb+TTA+ both code for leucine, while \verb+TTT+ codes for phenylalanine. The three-letter codon substitution matrix also reveals a preference among codons representing the same amino acid. For example, \verb+TTA+ has a preference for \verb+CTG+ preferred compared to \verb+CTC+, though all three code for leucine:
%cont-doctest
\begin{minted}{pycon}
>>> s1 = ('AAT', 'CTG', 'CTC', 'TTT')
>>> s2 = ('AAT', 'TTA', 'TTT')
>>> alignments = aligner.align(s1, s2)
>>> len(alignments)
1
>>> print(alignments[0])
AAT CTG CTC TTT
||| ... --- |||
AAT TTA --- TTT
<BLANKLINE>
>>> print(m['CTC', 'TTA'])
6.5
\end{minted}
\paragraph*{Generalized pairwise alignments using match/mismatch scores and an alphabet}
Using the three-letter amino acid symbols, the sequences above translate to
%doctest
\begin{minted}{pycon}
>>> s1 = ('Asn', 'Leu', 'Leu', 'Phe')
>>> s2 = ('Asn', 'Leu', 'Phe')
\end{minted}
We can align these sequences directly to each other by using a three-letter amino acid alphabet:
%cont-doctest
\begin{minted}{pycon}
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.alphabet = ['Ala', 'Arg', 'Asn', 'Asp', 'Cys',
... 'Gln', 'Glu', 'Gly', 'His', 'Ile',
... 'Leu', 'Lys', 'Met', 'Phe', 'Pro',
... 'Ser', 'Thr', 'Trp', 'Tyr', 'Val']
\end{minted}
We use +6/-1 match and mismatch scores as an approximation of the BLOSUM62 matrix, and align these sequences to each other:
%cont-doctest
\begin{minted}{pycon}
>>> aligner.match = +6
>>> aligner.mismatch = -1
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
Asn Leu Leu Phe
||| ||| --- |||
Asn Leu --- Phe
<BLANKLINE>
>>> print(alignments[1])
Asn Leu Leu Phe
||| --- ||| |||
Asn --- Leu Phe
<BLANKLINE>
>>> print(alignments.score)
18.0
\end{minted}
\paragraph*{Generalized pairwise alignments using match/mismatch scores and integer sequences}
Internally, the first step when performing an alignment is to replace the two sequences by integer arrays consisting of the indices of each letter in each sequence in the alphabet associated with the aligner. This step can be bypassed by passing integer arrays directly:
%doctest . lib:numpy
\begin{minted}{pycon}
>>> import numpy
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> s1 = numpy.array([2, 10, 10, 13], numpy.int32)
>>> s2 = numpy.array([2, 10, 13], numpy.int32)
>>> aligner.match = +6
>>> aligner.mismatch = -1
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
2 10 10 13
| || -- ||
2 10 -- 13
<BLANKLINE>
>>> print(alignments[1])
2 10 10 13
| -- || ||
2 -- 10 13
<BLANKLINE>
>>> print(alignments.score)
18.0
\end{minted}
Note that the indices should consist of 32-bit integers, as specified in this example by \verb+numpy.int32+.
Negative indices are interpreted as unknown letters, and receive a zero score:
%cont-doctest
\begin{minted}{pycon}
>>> s2 = numpy.array([2, -5, 13], numpy.int32)
>>> aligner.gap_score = -3
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
2 10 10 13
| .. -- ||
2 -5 -- 13
<BLANKLINE>
>>> print(alignments[1])
2 10 10 13
| -- .. ||
2 -- -5 13
<BLANKLINE>
>>> print(alignments.score)
9.0
\end{minted}
\paragraph*{Generalized pairwise alignments using a substitution matrix and integer sequences}
Integer sequences can also be aligned using a substitution matrix, in this case a numpy square array without an alphabet associated with it. In this case, all index values must be non-negative, and smaller than the size of the substitution matrix:
%doctest . lib:numpy
\begin{minted}{pycon}
>>> from Bio import Align
>>> import numpy
>>> aligner = Align.PairwiseAligner()
>>> m = numpy.eye(5)
>>> m[0, 1:] = m[1:, 0] = -2
>>> m[2,2] = 3
>>> print(m)
[[ 1. -2. -2. -2. -2.]
[-2. 1. 0. 0. 0.]
[-2. 0. 3. 0. 0.]
[-2. 0. 0. 1. 0.]
[-2. 0. 0. 0. 1.]]
>>> aligner.substitution_matrix = m
>>> aligner.gap_score = -1
>>> s1 = numpy.array([0, 2, 3, 4], numpy.int32)
>>> s2 = numpy.array([0, 3, 2, 1], numpy.int32)
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
0 - 2 3 4
| - | . -
0 3 2 1 -
<BLANKLINE>
>>> print(alignments[1])
0 - 2 3 4
| - | - .
0 3 2 - 1
<BLANKLINE>
>>> print(alignments.score)
2.0
\end{minted}
\section{Substitution matrices}
\label{sec:substitution_matrices}
The \verb+Array+ class in \verb+Bio.Align.substitution_matrices+ is a subclass of numpy arrays that supports indexing both by integers and by specific strings. An \verb+Array+ instance can either be a one-dimensional array or a square two-dimensional arrays. A one-dimensional \verb+Array+ object can for example be used to store the nucleotide frequency of a DNA sequence, while a two-dimensional \verb+Array+ object can be used to represent a scoring matrix for sequence alignments.
\subsection*{Creating an Array object}
To create a one-dimensional \verb+Array+, only the alphabet of allowed letters needs to be specified:
%doctest . lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align.substitution_matrices import Array
>>> counts = Array("ACGT")
>>> print(counts)
A 0.0
C 0.0
G 0.0
T 0.0
<BLANKLINE>
\end{minted}
The allowed letters are stored in the \verb+alphabet+ property:
%cont-doctest
\begin{minted}{pycon}
>>> counts.alphabet
'ACGT'
\end{minted}
This property is read-only; modifying the underlying \verb+_alphabet+ attribute may lead to unexpected results.
Elements can be accessed both by letter and by integer index:
%cont-doctest
\begin{minted}{pycon}
>>> counts['C'] = -3
>>> counts[2] = 7
>>> print(counts)
A 0.0
C -3.0
G 7.0
T 0.0
<BLANKLINE>
>>> counts[1]
-3.0
\end{minted}
Using a letter that is not in the alphabet, or an index that is out of bounds, will cause a \verb+IndexError+:
%cont-doctest
\begin{minted}{pycon}
>>> counts['U']
Traceback (most recent call last):
...
IndexError: 'U'
>>> counts['X'] = 6
Traceback (most recent call last):
...
IndexError: 'X'
>>> counts[7]
Traceback (most recent call last):
...
IndexError: index 7 is out of bounds for axis 0 with size 4
\end{minted}
A two-dimensional \verb+Array+ can be created by specifying \verb+dims=2+:
%doctest . lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align.substitution_matrices import Array
>>> counts = Array("ACGT", dims=2)
>>> print(counts)
A C G T
A 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0
G 0.0 0.0 0.0 0.0
T 0.0 0.0 0.0 0.0
<BLANKLINE>
\end{minted}
Again, both letters and integers can be used for indexing, and specifying a letter that is not in the alphabet will cause an \verb+IndexError+:
%cont-doctest
\begin{minted}{pycon}
>>> counts['A', 'C'] = 12.0
>>> counts[2, 1] = 5.0
>>> counts[3, 'T'] = -2
>>> print(counts)
A C G T
A 0.0 12.0 0.0 0.0
C 0.0 0.0 0.0 0.0
G 0.0 5.0 0.0 0.0
T 0.0 0.0 0.0 -2.0
<BLANKLINE>
>>> counts['X', 1]
Traceback (most recent call last):
...
IndexError: 'X'
>>> counts['A', 5]
Traceback (most recent call last):
...
IndexError: index 5 is out of bounds for axis 1 with size 4
\end{minted}
Selecting a row or column from the two-dimensional array will return a one-dimensional \verb+Array+:
%cont-doctest
\begin{minted}{pycon}
>>> counts = Array("ACGT", dims=2)
>>> counts['A', 'C'] = 12.0
>>> counts[2, 1] = 5.0
>>> counts[3, 'T'] = -2
\end{minted}
% don't include this in the doctest, as the exact output is platform-dependent
\begin{minted}{pycon}
>>> counts['G']
Array([0., 5., 0., 0.],
alphabet='ACGT')
>>> counts[:, 'C']
Array([12., 0., 5., 0.],
alphabet='ACGT')
\end{minted}
\verb+Array+ objects can thus be used as an array and as a dictionary. They can be converted to plain numpy arrays or plain dictionary objects:
%cont-doctest
\begin{minted}{pycon}
>>> import numpy
>>> x = Array("ACGT")
>>> x['C'] = 5
\end{minted}
% don't include this in the doctest, as the exact output is platform-dependent
\begin{minted}{pycon}
>>> x
Array([0., 5., 0., 0.],
alphabet='ACGT')
>>> a = numpy.array(x) # create a plain numpy array
>>> a
array([0., 5., 0., 0.])
>>> d = dict(x) # create a plain dictionary
>>> d
{'A': 0.0, 'C': 5.0, 'G': 0.0, 'T': 0.0}
\end{minted}
While the alphabet of an \verb+Array+ is usually a string, you may also use a tuple of (immutable) objects. This is used for example for a \hyperlink{codonmatrix}{codon substitution matrix}, where the keys are not individual nucleotides or amino acids but instead three-nucleotide codons.
While the \verb+alphabet+ property of an \verb+Array+ is immutable, you can create a new \verb+Array+ object by selecting the letters you are interested in from the alphabet. For example,
%cont-doctest
\begin{minted}{pycon}
>>> a = Array("ABCD", dims=2, data=numpy.arange(16).reshape(4,4))
>>> print(a)
A B C D
A 0.0 1.0 2.0 3.0
B 4.0 5.0 6.0 7.0
C 8.0 9.0 10.0 11.0
D 12.0 13.0 14.0 15.0
<BLANKLINE>
>>> b = a.select("CAD")
>>> print(b)
C A D
C 10.0 8.0 11.0
A 2.0 0.0 3.0
D 14.0 12.0 15.0
<BLANKLINE>
\end{minted}
Note that this also allows you to reorder the alphabet.
Data for letters that are not found in the alphabet are set to zero:
%cont-doctest
\begin{minted}{pycon}
>>> c = a.select("DEC")
>>> print(c)
D E C
D 15.0 0.0 14.0
E 0.0 0.0 0.0
C 11.0 0.0 10.0
<BLANKLINE>
\end{minted}
\subsection*{Calculating a substitution matrix from a pairwise sequence alignment}
As \verb+Array+ is a subclass of a numpy array, you can apply mathematical operations on an \verb+Array+ object in much the same way. Here, we illustrate this by calculating a scoring matrix from the alignment of the 16S ribosomal RNA gene sequences of {\it Escherichia coli} and {\it Bacillus subtilis}. First, we create a \verb+PairwiseAligner+ and initialize it with the default scores used by \verb+blastn+:
%doctest ../Tests/Align lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.mode = 'local'
>>> aligner.match_score = 2
>>> aligner.mismatch_score = -3
>>> aligner.open_gap_score = -7
>>> aligner.extend_gap_score = -2
\end{minted}
Next, we read in the 16S ribosomal RNA gene sequence of {\it Escherichia coli} and {\it Bacillus subtilis} (provided in \verb+Tests/scoring_matrices/ecoli.fa+ and \verb+Tests/scoring_matrices/bsubtilis.fa+), and align them to each other:
%cont-doctest
\begin{minted}{pycon}
>>> from Bio import SeqIO
>>> sequence1 = SeqIO.read('ecoli.fa', 'fasta')
>>> sequence2 = SeqIO.read('bsubtilis.fa', 'fasta')
>>> alignments = aligner.align(sequence1.seq, sequence2.seq)
\end{minted}
The number of alignments generated is very large:
%cont-doctest
\begin{minted}{pycon}
>>> len(alignments)
1990656
\end{minted}
However, as they only differ trivially from each other, we arbitrarily choose the first alignment, and count the number of each substitution:
%cont-doctest
\begin{minted}{pycon}
>>> alignment = alignments[0]
>>> from Bio.Align.substitution_matrices import Array
>>> frequency = Array("ACGT", dims=2)
>>> for (start1, end1), (start2, end2) in zip(*alignment.aligned):
... seq1 = sequence1[start1:end1]
... seq2 = sequence2[start2:end2]
... for c1, c2 in zip(seq1, seq2):
... frequency[c1, c2] += 1
...
>>> print(frequency)
A C G T
A 307.0 19.0 34.0 19.0
C 15.0 280.0 25.0 29.0
G 34.0 24.0 401.0 20.0
T 24.0 36.0 20.0 228.0
<BLANKLINE>
\end{minted}
We normalize against the total number to find the probability of each substitution, and create a symmetric matrix:
%cont-doctest
\begin{minted}{pycon}
>>> import numpy
>>> probabilities = frequency / numpy.sum(frequency)
>>> probabilities = (probabilities + probabilities.transpose()) / 2.0
>>> print(format(probabilities, "%.4f"))
A C G T
A 0.2026 0.0112 0.0224 0.0142
C 0.0112 0.1848 0.0162 0.0215
G 0.0224 0.0162 0.2647 0.0132
T 0.0142 0.0215 0.0132 0.1505
<BLANKLINE>
\end{minted}
The background probability is the probability of finding an A, C, G, or T nucleotide in each sequence separately. This can be calculated as the sum of each row or column:
%cont-doctest
\begin{minted}{pycon}
>>> background = numpy.sum(probabilities, 0)
>>> print(format(background, "%.4f"))
A 0.2505
C 0.2337
G 0.3165
T 0.1993
<BLANKLINE>
\end{minted}
The number of substitutions expected at random is simply the product of the background distribution with itself:
%cont-doctest
\begin{minted}{pycon}
>>> expected = numpy.dot(background[:,None], background[None, :])
>>> print(format(expected, "%.4f"))
A C G T
A 0.0627 0.0585 0.0793 0.0499
C 0.0585 0.0546 0.0740 0.0466
G 0.0793 0.0740 0.1002 0.0631
T 0.0499 0.0466 0.0631 0.0397
<BLANKLINE>
\end{minted}
The scoring matrix can then be calculated as the logarithm of the odds-ratio of the observed and the expected probabilities:
%cont-doctest
\begin{minted}{pycon}
>>> oddsratios = probabilities / expected
>>> scoring_matrix = numpy.log2(oddsratios)
>>> print(scoring_matrix)
A C G T
A 1.7 -2.4 -1.8 -1.8
C -2.4 1.8 -2.2 -1.1
G -1.8 -2.2 1.4 -2.3
T -1.8 -1.1 -2.3 1.9
<BLANKLINE>
\end{minted}
The matrix can be used to set the substitution matrix for the pairwise aligner:
%cont-doctest
\begin{minted}{pycon}
>>> aligner.substitution_matrix = scoring_matrix
\end{minted}
A \verb+ValueError+ is triggered if the \verb+Array+ objects appearing in a mathematical operation have different alphabets:
%doctest . lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align.substitution_matrices import Array
>>> d = Array("ACGT")
>>> r = Array("ACGU")
>>> d + r
Traceback (most recent call last):
...
ValueError: alphabets are inconsistent
\end{minted}
\subsection*{Reading \texttt{Array} object from file}
\verb+Bio.Align.substitution_matrices+ includes a parser to read one- and two-dimensional \verb+Array+ objects from file. One-dimensional arrays are represented by a simple two-column format, with the first column containing the key and the second column the corresponding value. For example, the file \verb+hg38.chrom.sizes+ (obtained from UCSC), available in the \verb+Tests/Align+ subdirectory of the Biopython distribution, contains the size in nucleotides of each chromosome in human genome assembly hg38:
\begin{minted}{text}
chr1 248956422
chr2 242193529
chr3 198295559
chr4 190214555
...
chrUn_KI270385v1 990
chrUn_KI270423v1 981
chrUn_KI270392v1 971
chrUn_KI270394v1 970
\end{minted}
To parse this file, use
%doctest ../Tests/Align lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align import substitution_matrices
>>> with open("hg38.chrom.sizes") as handle:
... table = substitution_matrices.read(handle)
...
>>> print(table) #doctest: +ELLIPSIS
chr1 248956422.0
chr2 242193529.0
chr3 198295559.0
chr4 190214555.0
...
chrUn_KI270423v1 981.0
chrUn_KI270392v1 971.0
chrUn_KI270394v1 970.0
<BLANKLINE>
\end{minted}
Use \verb+dtype=int+ to read the values as integers:
%cont-doctest
\begin{minted}{pycon}
>>> with open("hg38.chrom.sizes") as handle:
... table = substitution_matrices.read(handle, int)
...
>>> print(table) #doctest: +ELLIPSIS
chr1 248956422
chr2 242193529
chr3 198295559
chr4 190214555
...
chrUn_KI270423v1 981
chrUn_KI270392v1 971
chrUn_KI270394v1 970
<BLANKLINE>
\end{minted}
For two-dimensional arrays, we follow the file format of substitution matrices provided by NCBI. For example, the BLOSUM62 matrix, which is the default substitution matrix for NCBI's protein-protein BLAST \cite{altschul1990} program \verb+blastp+, is stored as follows:
\begin{minted}{text}
# Matrix made by matblas from blosum62.iij
# * column uses minimum score
# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 62
# Entropy = 0.6979, Expected = -0.5209
A R N D C Q E G H I L K M F P S T W Y V B Z X *
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
...
\end{minted}
This file is included in the Biopython distribution under \verb+Bio/Align/substitution_matrices/data+. To parse this file, use
%doctest ../Bio/Align/substitution_matrices/data lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align import substitution_matrices
>>> with open("BLOSUM62") as handle:
... matrix = substitution_matrices.read(handle)
...
>>> print(matrix.alphabet)
ARNDCQEGHILKMFPSTWYVBZX*
>>> print(matrix['A','D'])
-2.0
\end{minted}
The header lines starting with \verb+#+ are stored in the attribute \verb+header+:
%cont-doctest
\begin{minted}{pycon}
>>> matrix.header[0]
'Matrix made by matblas from blosum62.iij'
\end{minted}
We can now use this matrix as the substitution matrix on an aligner object:
%cont-doctest
\begin{minted}{pycon}
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.substitution_matrix = matrix
\end{minted}
To save an Array object, create a string first:
%cont-doctest
\begin{minted}{pycon}
>>> text = format(matrix)
>>> print(text) #doctest: +ELLIPSIS
# Matrix made by matblas from blosum62.iij
# * column uses minimum score
# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 62
# Entropy = 0.6979, Expected = -0.5209
A R N D C Q E G H I L K M F P S ...
A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 -1.0 0.0 -2.0 -1.0 -1.0 -1.0 -1.0 -2.0 -1.0 1.0 ...
R -1.0 5.0 0.0 -2.0 -3.0 1.0 0.0 -2.0 0.0 -3.0 -2.0 2.0 -1.0 -3.0 -2.0 -1.0 ...
N -2.0 0.0 6.0 1.0 -3.0 0.0 0.0 0.0 1.0 -3.0 -3.0 0.0 -2.0 -3.0 -2.0 1.0 ...
D -2.0 -2.0 1.0 6.0 -3.0 0.0 2.0 -1.0 -1.0 -3.0 -4.0 -1.0 -3.0 -3.0 -1.0 0.0 ...
C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 -4.0 -3.0 -3.0 -1.0 -1.0 -3.0 -1.0 -2.0 -3.0 -1.0 ...
...
\end{minted}
and write the \verb+text+ to a file.
\subsection*{Loading predefined substitution matrices}
Biopython contains a large set of substitution matrices defined in the literature, including BLOSUM (Blocks Substitution Matrix) \cite{henikoff1992} and PAM (Point Accepted Mutation) matrices \cite{dayhoff1978}. These matrices are available as flat files in the \verb+Bio/Align/scoring_matrices/data+ directory, and can be loaded into Python using the \verb+load+ function in the \verb+scoring_matrices+ submodule. For example, the BLOSUM62 matrix can be loaded by running
%doctest . lib:numpy
\begin{minted}{pycon}
>>> from Bio.Align import substitution_matrices
>>> m = substitution_matrices.load("BLOSUM62")
\end{minted}
This substitution matrix has an alphabet consisting of the 20 amino acids used in the genetic code, the three ambiguous amino acids B (asparagine or aspartic acid), Z (glutamine or glutamic acid), and X (representing any amino acid), and the stop codon represented by an asterisk:
%cont-doctest
\begin{minted}{pycon}
>>> m.alphabet
'ARNDCQEGHILKMFPSTWYVBZX*'
\end{minted}
To get a full list of available substitution matrices, use \verb+load+ without an argument:
%cont-doctest
\begin{minted}{pycon}
>>> substitution_matrices.load() #doctest: +ELLIPSIS
['BENNER22', 'BENNER6', 'BENNER74', 'BLOSUM45', 'BLOSUM50', ..., 'TRANS']
\end{minted}
\hypertarget{codonmatrix}
Note that the substitution matrix provided by Schneider \textit{et al.} \cite{schneider2005} uses an alphabet consisting of three-nucleotide codons:
%cont-doctest
\begin{minted}{pycon}
>>> m = substitution_matrices.load("SCHNEIDER")
>>> m.alphabet #doctest: +ELLIPSIS
('AAA', 'AAC', 'AAG', 'AAT', 'ACA', 'ACC', 'ACG', 'ACT', ..., 'TTG', 'TTT')
\end{minted}
|