File: analysis.py

package info (click to toggle)
python-biopython 1.85%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 126,372 kB
  • sloc: xml: 1,047,995; python: 332,722; ansic: 16,944; sql: 1,208; makefile: 140; sh: 81
file content (1299 lines) | stat: -rw-r--r-- 46,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
# Copyright 2013 by Zheng Ruan (zruan1991@gmail.com). All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Code for performing calculations on codon alignments."""

import sys
from collections import Counter
from collections import defaultdict
from heapq import heapify
from heapq import heappop
from heapq import heappush
from itertools import permutations
from math import erfc
from math import floor
from math import log
from math import sqrt

import numpy as np

from Bio.Align import Alignment
from Bio.Data import CodonTable


def calculate_dn_ds(alignment, method="NG86", codon_table=None, k=1, cfreq=None):
    """Calculate dN and dS of the given two sequences.

    Available methods:
        - NG86  - `Nei and Gojobori (1986)`_ (PMID 3444411).
        - LWL85 - `Li et al. (1985)`_ (PMID 3916709).
        - ML    - `Goldman and Yang (1994)`_ (PMID 7968486).
        - YN00  - `Yang and Nielsen (2000)`_ (PMID 10666704).

    .. _`Nei and Gojobori (1986)`: http://www.ncbi.nlm.nih.gov/pubmed/3444411
    .. _`Li et al. (1985)`: http://www.ncbi.nlm.nih.gov/pubmed/3916709
    .. _`Goldman and Yang (1994)`: http://mbe.oxfordjournals.org/content/11/5/725
    .. _`Yang and Nielsen (2000)`: https://doi.org/10.1093/oxfordjournals.molbev.a026236

    Arguments:
     - k  - transition/transversion rate ratio
     - cfreq - Current codon frequency vector can only be specified
       when you are using ML method. Possible ways of
       getting cfreq are: F1x4, F3x4 and F61.

    """
    if cfreq is None:
        cfreq = "F3x4"
    elif cfreq is not None and method != "ML":
        raise ValueError("cfreq can only be specified when you are using ML method")
    elif cfreq not in ("F1x4", "F3x4", "F61"):
        raise ValueError("cfreq must be 'F1x4', 'F3x4', or 'F61'")
    if codon_table is None:
        codon_table = CodonTable.generic_by_id[1]
    codons1 = []
    codons2 = []
    sequence1, sequence2 = alignment.sequences
    try:
        sequence1 = sequence1.seq  # stupid SeqRecord
    except AttributeError:
        pass
    sequence1 = str(sequence1)
    try:
        sequence2 = sequence2.seq  # stupid SeqRecord
    except AttributeError:
        pass
    sequence2 = str(sequence2)
    aligned1, aligned2 = alignment.aligned
    for block1, block2 in zip(aligned1, aligned2):
        start1, end1 = block1
        start2, end2 = block2
        codons1.extend(sequence1[i : i + 3] for i in range(start1, end1, 3))
        codons2.extend(sequence2[i : i + 3] for i in range(start2, end2, 3))
    bases = {"A", "T", "C", "G"}
    for codon1 in codons1:
        if not all(nucleotide in bases for nucleotide in codon1):
            raise ValueError(
                f"Unrecognized character in {codon1} in the target sequence"
                " (Codons consist of A, T, C or G)"
            )
    for codon2 in codons2:
        if not all(nucleotide in bases for nucleotide in codon2):
            raise ValueError(
                f"Unrecognized character in {codon2} in the query sequence"
                " (Codons consist of A, T, C or G)"
            )
    if method == "ML":
        return _ml(codons1, codons2, cfreq, codon_table)
    elif method == "NG86":
        return _ng86(codons1, codons2, k, codon_table)
    elif method == "LWL85":
        return _lwl85(codons1, codons2, codon_table)
    elif method == "YN00":
        return _yn00(codons1, codons2, codon_table)
    else:
        raise ValueError(f"Unknown method '{method}'")


#################################################################
#              private functions for NG86 method
#################################################################


def _ng86(codons1, codons2, k, codon_table):
    """NG86 method main function (PRIVATE)."""
    S_sites1, N_sites1 = _count_site_NG86(codons1, codon_table=codon_table, k=k)
    S_sites2, N_sites2 = _count_site_NG86(codons2, codon_table=codon_table, k=k)
    S_sites = (S_sites1 + S_sites2) / 2.0
    N_sites = (N_sites1 + N_sites2) / 2.0
    SN = [0, 0]
    for codon1, codon2 in zip(codons1, codons2):
        SN = [
            m + n
            for m, n in zip(
                SN, _count_diff_NG86(codon1, codon2, codon_table=codon_table)
            )
        ]

    ps = SN[0] / S_sites
    pn = SN[1] / N_sites
    if ps < 3 / 4:
        dS = abs(-3.0 / 4 * log(1 - 4.0 / 3 * ps))
    else:
        dS = -1
    if pn < 3 / 4:
        dN = abs(-3.0 / 4 * log(1 - 4.0 / 3 * pn))
    else:
        dN = -1
    return dN, dS


def _count_site_NG86(codons, codon_table, k=1):
    """Count synonymous and non-synonymous sites of a list of codons (PRIVATE).

    Arguments:
     - codons - A list of three letter codons.
     - k - transition/transversion rate ratio.

    """
    S_site = 0  # synonymous sites
    N_site = 0  # non-synonymous sites
    purine = ("A", "G")
    pyrimidine = ("T", "C")
    bases = ("A", "T", "C", "G")
    for codon in codons:
        neighbor_codon = {"transition": [], "transversion": []}
        # classify neighbor codons
        codon = codon.replace("U", "T")
        for i, nucleotide in enumerate(codon):
            for base in bases:
                if nucleotide == base:
                    pass
                elif nucleotide in purine and base in purine:
                    codon_chars = list(codon)
                    codon_chars[i] = base
                    this_codon = "".join(codon_chars)
                    neighbor_codon["transition"].append(this_codon)
                elif nucleotide in pyrimidine and base in pyrimidine:
                    codon_chars = list(codon)
                    codon_chars[i] = base
                    this_codon = "".join(codon_chars)
                    neighbor_codon["transition"].append(this_codon)
                else:
                    codon_chars = list(codon)
                    codon_chars[i] = base
                    this_codon = "".join(codon_chars)
                    neighbor_codon["transversion"].append(this_codon)
        # count synonymous and non-synonymous sites
        aa = codon_table.forward_table[codon]
        this_codon_N_site = this_codon_S_site = 0
        for neighbor in neighbor_codon["transition"]:
            if neighbor in codon_table.stop_codons:
                this_codon_N_site += k
            elif codon_table.forward_table[neighbor] == aa:
                this_codon_S_site += k
            else:
                this_codon_N_site += k
        for neighbor in neighbor_codon["transversion"]:
            if neighbor in codon_table.stop_codons:
                this_codon_N_site += 1
            elif codon_table.forward_table[neighbor] == aa:
                this_codon_S_site += 1
            else:
                this_codon_N_site += 1
        norm_const = (this_codon_N_site + this_codon_S_site) / 3
        S_site += this_codon_S_site / norm_const
        N_site += this_codon_N_site / norm_const
    return (S_site, N_site)


def _count_diff_NG86(codon1, codon2, codon_table):
    """Count differences between two codons, three-letter string (PRIVATE).

    The function will take multiple pathways from codon1 to codon2
    into account.
    """
    SN = [0, 0]  # synonymous and nonsynonymous counts
    if codon1 == codon2:
        return SN
    else:
        diff_pos = [
            i
            for i, (nucleotide1, nucleotide2) in enumerate(zip(codon1, codon2))
            if nucleotide1 != nucleotide2
        ]

        def compare_codon(codon1, codon2, codon_table, weight=1):
            """Compare two codon accounting for different pathways."""
            sd = nd = 0
            if len(set(map(codon_table.forward_table.get, [codon1, codon2]))) == 1:
                sd += weight
            else:
                nd += weight
            return (sd, nd)

        if len(diff_pos) == 1:
            SN = [
                i + j
                for i, j in zip(
                    SN, compare_codon(codon1, codon2, codon_table=codon_table)
                )
            ]
        elif len(diff_pos) == 2:
            for i in diff_pos:
                temp_codon = codon1[:i] + codon2[i] + codon1[i + 1 :]
                SN = [
                    i + j
                    for i, j in zip(
                        SN,
                        compare_codon(
                            codon1, temp_codon, codon_table=codon_table, weight=0.5
                        ),
                    )
                ]
                SN = [
                    i + j
                    for i, j in zip(
                        SN,
                        compare_codon(
                            temp_codon, codon2, codon_table=codon_table, weight=0.5
                        ),
                    )
                ]
        elif len(diff_pos) == 3:
            paths = list(permutations([0, 1, 2], 3))
            tmp_codon = []
            for index1, index2, index3 in paths:
                tmp1 = codon1[:index1] + codon2[index1] + codon1[index1 + 1 :]
                tmp2 = tmp1[:index2] + codon2[index2] + tmp1[index2 + 1 :]
                tmp_codon.append((tmp1, tmp2))
                SN = [
                    i + j
                    for i, j in zip(
                        SN, compare_codon(codon1, tmp1, codon_table, weight=0.5 / 3)
                    )
                ]
                SN = [
                    i + j
                    for i, j in zip(
                        SN, compare_codon(tmp1, tmp2, codon_table, weight=0.5 / 3)
                    )
                ]
                SN = [
                    i + j
                    for i, j in zip(
                        SN, compare_codon(tmp2, codon2, codon_table, weight=0.5 / 3)
                    )
                ]
    return SN


#################################################################
#               private functions for LWL85 method
#################################################################


def _lwl85(codons1, codons2, codon_table):
    """LWL85 method main function (PRIVATE).

    Nomenclature is according to Li et al. (1985), PMID 3916709.
    """
    codon_fold_dict = _get_codon_fold(codon_table)
    # count number of sites in different degenerate classes
    fold0 = [0, 0]
    fold2 = [0, 0]
    fold4 = [0, 0]
    for codon in codons1 + codons2:
        fold_num = codon_fold_dict[codon]
        for f in fold_num:
            if f == "0":
                fold0[0] += 1
            elif f == "2":
                fold2[0] += 1
            elif f == "4":
                fold4[0] += 1
    L = [sum(fold0) / 2.0, sum(fold2) / 2.0, sum(fold4) / 2.0]
    # count number of differences in different degenerate classes
    PQ = [0] * 6  # with P0, P2, P4, Q0, Q2, Q4 in each position
    for codon1, codon2 in zip(codons1, codons2):
        if codon1 == codon2:
            continue
        PQ = [
            i + j
            for i, j in zip(PQ, _diff_codon(codon1, codon2, fold_dict=codon_fold_dict))
        ]
    PQ = [i / j for i, j in zip(PQ, L * 2)]
    P = PQ[:3]
    Q = PQ[3:]
    A = [
        (1.0 / 2) * log(1.0 / (1 - 2 * i - j)) - (1.0 / 4) * log(1.0 / (1 - 2 * j))
        for i, j in zip(P, Q)
    ]
    B = [(1.0 / 2) * log(1.0 / (1 - 2 * i)) for i in Q]
    dS = 3 * (L[2] * A[1] + L[2] * (A[2] + B[2])) / (L[1] + 3 * L[2])
    dN = 3 * (L[2] * B[1] + L[0] * (A[0] + B[0])) / (2 * L[1] + 3 * L[0])
    return dN, dS


def _get_codon_fold(codon_table):
    """Classify different position in a codon into different folds (PRIVATE)."""
    fold_table = {}
    forward_table = codon_table.forward_table
    bases = {"A", "T", "C", "G"}
    for codon in forward_table:
        if "U" in codon:
            continue
        fold = ""
        codon_base_lst = list(codon)
        for i, base in enumerate(codon_base_lst):
            other_bases = bases - set(base)
            aa = []
            for other_base in other_bases:
                codon_base_lst[i] = other_base
                try:
                    aa.append(forward_table["".join(codon_base_lst)])
                except KeyError:
                    aa.append("stop")
            if aa.count(forward_table[codon]) == 0:
                fold += "0"
            elif aa.count(forward_table[codon]) in (1, 2):
                fold += "2"
            elif aa.count(forward_table[codon]) == 3:
                fold += "4"
            else:
                raise RuntimeError(
                    "Unknown Error, cannot assign the position to a fold"
                )
            codon_base_lst[i] = base
        fold_table[codon] = fold
    return fold_table


def _diff_codon(codon1, codon2, fold_dict):
    """Count number of different substitution types between two codons (PRIVATE).

    returns tuple (P0, P2, P4, Q0, Q2, Q4)

    Nomenclature is according to Li et al. (1958), PMID 3916709.
    """
    P0 = P2 = P4 = Q0 = Q2 = Q4 = 0
    fold_num = fold_dict[codon1]
    purine = ("A", "G")
    pyrimidine = ("T", "C")
    for n, (nucleotide1, nucleotide2) in enumerate(zip(codon1, codon2)):
        if nucleotide1 == nucleotide2:
            pass
        elif nucleotide1 in purine and nucleotide2 in purine:
            if fold_num[n] == "0":
                P0 += 1
            elif fold_num[n] == "2":
                P2 += 1
            elif fold_num[n] == "4":
                P4 += 1
            else:
                raise RuntimeError("Unexpected fold_num %d" % fold_num[n])
        elif nucleotide1 in pyrimidine and nucleotide2 in pyrimidine:
            if fold_num[n] == "0":
                P0 += 1
            elif fold_num[n] == "2":
                P2 += 1
            elif fold_num[n] == "4":
                P4 += 1
            else:
                raise RuntimeError("Unexpected fold_num %d" % fold_num[n])
        else:
            # nucleotide1 in purine and nucleotide2 in pyrimidine, or
            # nucleotide1 in pyrimidine and nucleotide2 in purine
            if fold_num[n] == "0":
                Q0 += 1
            elif fold_num[n] == "2":
                Q2 += 1
            elif fold_num[n] == "4":
                Q4 += 1
            else:
                raise RuntimeError("Unexpected fold_num %d" % fold_num[n])
    return (P0, P2, P4, Q0, Q2, Q4)


#################################################################
#               private functions for YN00 method
#################################################################


def _yn00(codons1, codons2, codon_table):
    """YN00 method main function (PRIVATE).

    Nomenclature is according to Yang and Nielsen (2000), PMID 10666704.
    """
    from scipy.linalg import expm

    fcodon = [
        {"A": 0, "G": 0, "C": 0, "T": 0},
        {"A": 0, "G": 0, "C": 0, "T": 0},
        {"A": 0, "G": 0, "C": 0, "T": 0},
    ]
    codon_fold_dict = _get_codon_fold(codon_table)
    fold0_cnt = defaultdict(int)
    fold4_cnt = defaultdict(int)
    for codon in codons1 + codons2:
        # count sites at different codon position
        fcodon[0][codon[0]] += 1
        fcodon[1][codon[1]] += 1
        fcodon[2][codon[2]] += 1
        # count sites in different degenerate fold class
        fold_num = codon_fold_dict[codon]
        for i, f in enumerate(fold_num):
            if f == "0":
                fold0_cnt[codon[i]] += 1
            elif f == "4":
                fold4_cnt[codon[i]] += 1
    f0_total = sum(fold0_cnt.values())
    f4_total = sum(fold4_cnt.values())
    for i, j in zip(fold0_cnt, fold4_cnt):
        fold0_cnt[i] = fold0_cnt[i] / f0_total
        fold4_cnt[i] = fold4_cnt[i] / f4_total
    # TODO:
    # the initial kappa is different from what yn00 gives,
    # try to find the problem.
    TV = _get_TV(codons1, codons2, codon_table=codon_table)
    k04 = (_get_kappa_t(fold0_cnt, TV), _get_kappa_t(fold4_cnt, TV))
    kappa = (f0_total * k04[0] + f4_total * k04[1]) / (f0_total + f4_total)
    # kappa = 2.4285
    # count synonymous sites and non-synonymous sites
    for i in range(3):
        tot = sum(fcodon[i].values())
        fcodon[i] = {j: k / tot for j, k in fcodon[i].items()}
    pi = defaultdict(int)
    for codon in list(codon_table.forward_table.keys()) + codon_table.stop_codons:
        if "U" not in codon:
            pi[codon] = 0
    for codon in codons1 + codons2:
        pi[codon] += 1
    S_sites1, N_sites1, bfreqSN1 = _count_site_YN00(
        codons1, codons2, pi, k=kappa, codon_table=codon_table
    )
    S_sites2, N_sites2, bfreqSN2 = _count_site_YN00(
        codons2, codons1, pi, k=kappa, codon_table=codon_table
    )
    N_sites = (N_sites1 + N_sites2) / 2
    S_sites = (S_sites1 + S_sites2) / 2
    bfreqSN = [{"A": 0, "T": 0, "C": 0, "G": 0}, {"A": 0, "T": 0, "C": 0, "G": 0}]
    for i in range(2):
        for base in ("A", "T", "C", "G"):
            bfreqSN[i][base] = (bfreqSN1[i][base] + bfreqSN2[i][base]) / 2
    # use NG86 method to get initial t and w
    SN = [0, 0]
    for codon1, codon2 in zip(codons1, codons2):
        SN = [
            m + n
            for m, n in zip(
                SN, _count_diff_NG86(codon1, codon2, codon_table=codon_table)
            )
        ]
    ps = SN[0] / S_sites
    pn = SN[1] / N_sites
    p = sum(SN) / (S_sites + N_sites)
    w = log(1 - 4.0 / 3 * pn) / log(1 - 4.0 / 3 * ps)
    t = -3 / 4 * log(1 - 4 / 3 * p)
    tolerance = 1e-5
    dSdN_pre = [0, 0]
    for temp in range(20):
        # count synonymous and nonsynonymous differences under kappa, w, t
        codons = [
            codon
            for codon in list(codon_table.forward_table.keys())
            + codon_table.stop_codons
            if "U" not in codon
        ]
        Q = _get_Q(pi, kappa, w, codons, codon_table)
        P = expm(Q * t)
        TV = [0, 0, 0, 0]  # synonymous/nonsynonymous transition/transversion
        codon_npath = Counter(zip(codons1, codons2))
        for (nucleotide1, nucleotide2), count in codon_npath.items():
            tv = _count_diff_YN00(nucleotide1, nucleotide2, P, codons, codon_table)
            TV = [m + n * count for m, n in zip(TV, tv)]
        TV = (TV[0] / S_sites, TV[1] / S_sites), (TV[2] / N_sites, TV[3] / N_sites)
        # according to the DistanceF84() function of yn00.c in paml,
        # the t (e.q. 10) appears in PMID: 10666704 is dS and dN
        dSdN = []
        for f, tv in zip(bfreqSN, TV):
            dSdN.append(_get_kappa_t(f, tv, t=True))
        t = dSdN[0] * 3 * S_sites / (S_sites + N_sites) + dSdN[1] * 3 * N_sites / (
            S_sites + N_sites
        )
        w = dSdN[1] / dSdN[0]
        if all(abs(i - j) < tolerance for i, j in zip(dSdN, dSdN_pre)):
            return dSdN[1], dSdN[0]  # dN, dS
        dSdN_pre = dSdN


def _get_TV(codons1, codons2, codon_table):
    """Get TV (PRIVATE).

    Arguments:
     - T - proportions of transitional differences
     - V - proportions of transversional differences

    """
    purine = ("A", "G")
    pyrimidine = ("C", "T")
    TV = [0, 0]
    sites = 0
    for codon1, codon2 in zip(codons1, codons2):
        for nucleotide1, nucleotide2 in zip(codon1, codon2):
            if nucleotide1 == nucleotide2:
                pass
            elif nucleotide1 in purine and nucleotide2 in purine:
                TV[0] += 1
            elif nucleotide1 in pyrimidine and nucleotide2 in pyrimidine:
                TV[0] += 1
            else:
                TV[1] += 1
            sites += 1
    return (TV[0] / sites, TV[1] / sites)
    # return (TV[0], TV[1])


def _get_kappa_t(pi, TV, t=False):
    """Calculate kappa (PRIVATE).

    The following formula and variable names are according to PMID: 10666704
    """
    pi["Y"] = pi["T"] + pi["C"]
    pi["R"] = pi["A"] + pi["G"]
    A = (
        2 * (pi["T"] * pi["C"] + pi["A"] * pi["G"])
        + 2
        * (
            pi["T"] * pi["C"] * pi["R"] / pi["Y"]
            + pi["A"] * pi["G"] * pi["Y"] / pi["R"]
        )
        * (1 - TV[1] / (2 * pi["Y"] * pi["R"]))
        - TV[0]
    ) / (2 * (pi["T"] * pi["C"] / pi["Y"] + pi["A"] * pi["G"] / pi["R"]))
    B = 1 - TV[1] / (2 * pi["Y"] * pi["R"])
    a = -0.5 * log(A)  # this seems to be an error in YANG's original paper
    b = -0.5 * log(B)
    kappaF84 = a / b - 1
    if t is False:
        kappaHKY85 = 1 + (
            pi["T"] * pi["C"] / pi["Y"] + pi["A"] * pi["G"] / pi["R"]
        ) * kappaF84 / (pi["T"] * pi["C"] + pi["A"] * pi["G"])
        return kappaHKY85
    else:
        t = (
            4 * pi["T"] * pi["C"] * (1 + kappaF84 / pi["Y"])
            + 4 * pi["A"] * pi["G"] * (1 + kappaF84 / pi["R"])
            + 4 * pi["Y"] * pi["R"]
        ) * b
        return t


def _count_site_YN00(codons1, codons2, pi, k, codon_table):
    """Site counting method from Ina / Yang and Nielsen (PRIVATE).

    Method from `Ina (1995)`_ as modified by `Yang and Nielsen (2000)`_.
    This will return the total number of synonymous and nonsynonymous sites
    and base frequencies in each category. The function is equivalent to
    the ``CountSites()`` function in ``yn00.c`` of PAML.

    .. _`Ina (1995)`: https://doi.org/10.1007/BF00167113
    .. _`Yang and Nielsen (2000)`: https://doi.org/10.1093/oxfordjournals.molbev.a026236

    """
    length = len(codons1)
    assert length == len(codons2)
    purine = ("A", "G")
    pyrimidine = ("T", "C")
    bases = ("A", "T", "C", "G")
    codon_dict = codon_table.forward_table
    stop = codon_table.stop_codons
    codon_npath = Counter(zip(codons1, codons2))
    S_sites = N_sites = 0
    freqSN = [
        {"A": 0, "T": 0, "C": 0, "G": 0},  # synonymous
        {"A": 0, "T": 0, "C": 0, "G": 0},
    ]  # nonsynonymous
    for codon_pair, npath in codon_npath.items():
        codon = codon_pair[0]
        S = N = 0
        for pos in range(3):
            for base in bases:
                if codon[pos] == base:
                    continue
                neighbor_codon = codon[:pos] + base + codon[pos + 1 :]
                if neighbor_codon in stop:
                    continue
                weight = pi[neighbor_codon]
                if codon[pos] in pyrimidine and base in pyrimidine:
                    weight *= k
                elif codon[pos] in purine and base in purine:
                    weight *= k
                if codon_dict[codon] == codon_dict[neighbor_codon]:
                    S += weight
                    freqSN[0][base] += weight * npath
                else:
                    N += weight
                    freqSN[1][base] += weight * npath
        S_sites += S * npath
        N_sites += N * npath
    norm_const = 3 * length / (S_sites + N_sites)
    S_sites *= norm_const
    N_sites *= norm_const
    for i in freqSN:
        norm_const = sum(i.values())
        for b in i:
            i[b] /= norm_const
    return S_sites, N_sites, freqSN


def _count_diff_YN00(codon1, codon2, P, codons, codon_table):
    """Count differences between two codons (three-letter string; PRIVATE).

    The function will weighted multiple pathways from codon1 to codon2
    according to P matrix of codon substitution. The proportion
    of transition and transversion (TV) will also be calculated in
    the function.
    """
    TV = [
        0,
        0,
        0,
        0,
    ]  # transition and transversion counts (synonymous and nonsynonymous)
    if codon1 == codon2:
        return TV
    else:
        diff_pos = [
            i
            for i, (nucleotide1, nucleotide2) in enumerate(zip(codon1, codon2))
            if nucleotide1 != nucleotide2
        ]

        def count_TV(codon1, codon2, diff, codon_table, weight=1):
            purine = ("A", "G")
            pyrimidine = ("T", "C")
            dic = codon_table.forward_table
            stop = codon_table.stop_codons
            if codon1 in stop or codon2 in stop:
                # stop codon is always considered as nonsynonymous
                if codon1[diff] in purine and codon2[diff] in purine:
                    return [0, 0, weight, 0]
                elif codon1[diff] in pyrimidine and codon2[diff] in pyrimidine:
                    return [0, 0, weight, 0]
                else:
                    return [0, 0, 0, weight]
            elif dic[codon1] == dic[codon2]:
                if codon1[diff] in purine and codon2[diff] in purine:
                    return [weight, 0, 0, 0]
                elif codon1[diff] in pyrimidine and codon2[diff] in pyrimidine:
                    return [weight, 0, 0, 0]
                else:
                    return [0, weight, 0, 0]
            else:
                if codon1[diff] in purine and codon2[diff] in purine:
                    return [0, 0, weight, 0]
                elif codon1[diff] in pyrimidine and codon2[diff] in pyrimidine:
                    return [0, 0, weight, 0]
                else:
                    return [0, 0, 0, weight]

        if len(diff_pos) == 1:
            TV = [
                p + q
                for p, q in zip(TV, count_TV(codon1, codon2, diff_pos[0], codon_table))
            ]
        elif len(diff_pos) == 2:
            tmp_codons = [codon1[:i] + codon2[i] + codon1[i + 1 :] for i in diff_pos]
            path_prob = []
            for codon in tmp_codons:
                codon_idx = list(map(codons.index, [codon1, codon, codon2]))
                prob = (P[codon_idx[0], codon_idx[1]], P[codon_idx[1], codon_idx[2]])
                path_prob.append(prob[0] * prob[1])
            path_prob = [2 * i / sum(path_prob) for i in path_prob]
            for n, i in enumerate(diff_pos):
                codon = codon1[:i] + codon2[i] + codon1[i + 1 :]
                TV = [
                    p + q
                    for p, q in zip(
                        TV,
                        count_TV(
                            codon1, codon, i, codon_table, weight=path_prob[n] / 2
                        ),
                    )
                ]
                TV = [
                    p + q
                    for p, q in zip(
                        TV,
                        count_TV(
                            codon1, codon, i, codon_table, weight=path_prob[n] / 2
                        ),
                    )
                ]
        elif len(diff_pos) == 3:
            paths = list(permutations([0, 1, 2], 3))
            path_prob = []
            tmp_codons = []
            for index1, index2, index3 in paths:
                tmp1 = codon1[:index1] + codon2[index1] + codon1[index1 + 1 :]
                tmp2 = tmp1[:index2] + codon2[index2] + tmp1[index2 + 1 :]
                tmp_codons.append((tmp1, tmp2))
                codon_idx = list(map(codons.index, [codon1, tmp1, tmp2, codon2]))
                prob = (
                    P[codon_idx[0], codon_idx[1]],
                    P[codon_idx[1], codon_idx[2]],
                    P[codon_idx[2], codon_idx[3]],
                )
                path_prob.append(prob[0] * prob[1] * prob[2])
            path_prob = [3 * i / sum(path_prob) for i in path_prob]
            for codon, j, k in zip(tmp_codons, path_prob, paths):
                TV = [
                    p + q
                    for p, q in zip(
                        TV, count_TV(codon1, codon[0], k[0], codon_table, weight=j / 3)
                    )
                ]
                TV = [
                    p + q
                    for p, q in zip(
                        TV,
                        count_TV(codon[0], codon[1], k[1], codon_table, weight=j / 3),
                    )
                ]
                TV = [
                    p + q
                    for p, q in zip(
                        TV, count_TV(codon[1], codon2, k[1], codon_table, weight=j / 3)
                    )
                ]
    return TV


#################################################################
#        private functions for Maximum Likelihood method
#################################################################


def _ml(codons1, codons2, cmethod, codon_table):
    """ML method main function (PRIVATE)."""
    from scipy.optimize import minimize

    pi = _get_pi(codons1, codons2, cmethod, codon_table=codon_table)
    codon_cnt = Counter(zip(codons1, codons2))
    codons = [
        codon
        for codon in list(codon_table.forward_table.keys()) + codon_table.stop_codons
        if "U" not in codon
    ]

    # apply optimization
    def func(
        params, pi=pi, codon_cnt=codon_cnt, codons=codons, codon_table=codon_table
    ):
        """Temporary function, params = [t, k, w]."""
        return -_likelihood_func(
            params[0],
            params[1],
            params[2],
            pi,
            codon_cnt,
            codons=codons,
            codon_table=codon_table,
        )

    # count sites
    opt_res = minimize(
        func,
        [1, 0.1, 2],
        method="L-BFGS-B",
        bounds=((1e-10, 20), (1e-10, 20), (1e-10, 10)),
        tol=1e-5,
    )
    t, k, w = opt_res.x
    Q = _get_Q(pi, k, w, codons, codon_table)
    Sd = Nd = 0
    for i, codon1 in enumerate(codons):
        for j, codon2 in enumerate(codons):
            if i != j:
                try:
                    if (
                        codon_table.forward_table[codon1]
                        == codon_table.forward_table[codon2]
                    ):
                        # synonymous count
                        Sd += pi[codon1] * Q[i, j]
                    else:
                        # nonsynonymous count
                        Nd += pi[codon1] * Q[i, j]
                except KeyError:
                    # This is probably due to stop codons
                    pass
    Sd *= t
    Nd *= t

    # count differences (with w fixed to 1)
    def func_w1(
        params, pi=pi, codon_cnt=codon_cnt, codons=codons, codon_table=codon_table
    ):
        """Temporary function, params = [t, k]. w is fixed to 1."""
        return -_likelihood_func(
            params[0],
            params[1],
            1.0,
            pi,
            codon_cnt,
            codons=codons,
            codon_table=codon_table,
        )

    opt_res = minimize(
        func_w1,
        [1, 0.1],
        method="L-BFGS-B",
        bounds=((1e-10, 20), (1e-10, 20)),
        tol=1e-5,
    )
    t, k = opt_res.x
    w = 1.0
    Q = _get_Q(pi, k, w, codons, codon_table)
    rhoS = rhoN = 0
    for i, codon1 in enumerate(codons):
        for j, codon2 in enumerate(codons):
            if i != j:
                try:
                    if (
                        codon_table.forward_table[codon1]
                        == codon_table.forward_table[codon2]
                    ):
                        # synonymous count
                        rhoS += pi[codon1] * Q[i, j]
                    else:
                        # nonsynonymous count
                        rhoN += pi[codon1] * Q[i, j]
                except KeyError:
                    # This is probably due to stop codons
                    pass
    rhoS *= 3
    rhoN *= 3
    dN = Nd / rhoN
    dS = Sd / rhoS
    return dN, dS


def _get_pi(codons1, codons2, cmethod, codon_table):
    """Obtain codon frequency dict (pi) from two codon list (PRIVATE).

    This function is designed for ML method. Available counting methods
    (cfreq) are F1x4, F3x4 and F64.
    """
    # TODO:
    # Stop codon should not be allowed according to Yang.
    # Try to modify this!
    pi = {}
    if cmethod == "F1x4":
        fcodon = Counter(
            nucleotide for codon in codons1 + codons2 for nucleotide in codon
        )
        tot = sum(fcodon.values())
        fcodon = {j: k / tot for j, k in fcodon.items()}
        for codon in codon_table.forward_table.keys() + codon_table.stop_codons:
            if "U" not in codon:
                pi[codon] = fcodon[codon[0]] * fcodon[codon[1]] * fcodon[codon[2]]
    elif cmethod == "F3x4":
        # three codon position
        fcodon = [
            {"A": 0, "G": 0, "C": 0, "T": 0},
            {"A": 0, "G": 0, "C": 0, "T": 0},
            {"A": 0, "G": 0, "C": 0, "T": 0},
        ]
        for codon in codons1 + codons2:
            fcodon[0][codon[0]] += 1
            fcodon[1][codon[1]] += 1
            fcodon[2][codon[2]] += 1
        for i in range(3):
            tot = sum(fcodon[i].values())
            fcodon[i] = {j: k / tot for j, k in fcodon[i].items()}
        for codon in list(codon_table.forward_table.keys()) + codon_table.stop_codons:
            if "U" not in codon:
                pi[codon] = (
                    fcodon[0][codon[0]] * fcodon[1][codon[1]] * fcodon[2][codon[2]]
                )
    elif cmethod == "F61":
        for codon in codon_table.forward_table.keys() + codon_table.stop_codons:
            if "U" not in codon:
                pi[codon] = 0.1
        for codon in codons1 + codons2:
            pi[codon] += 1
        tot = sum(pi.values())
        pi = {j: k / tot for j, k in pi.items()}
    return pi


def _q(codon1, codon2, pi, k, w, codon_table):
    """Q matrix for codon substitution (PRIVATE).

    Arguments:
     - codon1, codon2  : three letter codon string
     - pi              : expected codon frequency
     - k               : transition/transversion ratio
     - w               : nonsynonymous/synonymous rate ratio
     - codon_table     : Bio.Data.CodonTable object

    """
    if codon1 == codon2:
        # diagonal elements is the sum of all other elements
        return 0
    if codon1 in codon_table.stop_codons or codon2 in codon_table.stop_codons:
        return 0
    if (codon1 not in pi) or (codon2 not in pi):
        return 0
    purine = ("A", "G")
    pyrimidine = ("T", "C")
    diff = [
        (i, nucleotide1, nucleotide2)
        for i, (nucleotide1, nucleotide2) in enumerate(zip(codon1, codon2))
        if nucleotide1 != nucleotide2
    ]
    if len(diff) >= 2:
        return 0
    if codon_table.forward_table[codon1] == codon_table.forward_table[codon2]:
        # synonymous substitution
        if diff[0][1] in purine and diff[0][2] in purine:
            # transition
            return k * pi[codon2]
        elif diff[0][1] in pyrimidine and diff[0][2] in pyrimidine:
            # transition
            return k * pi[codon2]
        else:
            # transversion
            return pi[codon2]
    else:
        # nonsynonymous substitution
        if diff[0][1] in purine and diff[0][2] in purine:
            # transition
            return w * k * pi[codon2]
        elif diff[0][1] in pyrimidine and diff[0][2] in pyrimidine:
            # transition
            return w * k * pi[codon2]
        else:
            # transversion
            return w * pi[codon2]


def _get_Q(pi, k, w, codons, codon_table):
    """Q matrix for codon substitution (PRIVATE)."""
    codon_num = len(codons)
    Q = np.zeros((codon_num, codon_num))
    for i1, codon1 in enumerate(codons):
        for i2, codon2 in enumerate(codons):
            if i1 != i2:
                Q[i1, i2] = _q(codon1, codon2, pi, k, w, codon_table=codon_table)
    nucl_substitutions = 0
    for i, codon in enumerate(codons):
        Q[i, i] = -sum(Q[i, :])
        try:
            nucl_substitutions += pi[codon] * (-Q[i, i])
        except KeyError:
            pass
    Q /= nucl_substitutions
    return Q


def _likelihood_func(t, k, w, pi, codon_cnt, codons, codon_table):
    """Likelihood function for ML method (PRIVATE)."""
    from scipy.linalg import expm

    Q = _get_Q(pi, k, w, codons, codon_table)
    P = expm(Q * t)
    likelihood = 0
    for i, codon1 in enumerate(codons):
        for j, codon2 in enumerate(codons):
            if (codon1, codon2) in codon_cnt:
                if P[i, j] * pi[codon1] <= 0:
                    likelihood += codon_cnt[(codon1, codon2)] * 0
                else:
                    likelihood += codon_cnt[(codon1, codon2)] * log(
                        pi[codon1] * P[i, j]
                    )
    return likelihood


def calculate_dn_ds_matrix(alignment, method="NG86", codon_table=None):
    """Calculate dN and dS pairwise for the multiple alignment, and return as matrices.

    Argument:
     - method       - Available methods include NG86, LWL85, YN00 and ML.
     - codon_table  - Codon table to use for forward translation.

    """
    from Bio.Phylo.TreeConstruction import DistanceMatrix

    if codon_table is None:
        codon_table = CodonTable.generic_by_id[1]
    sequences = alignment.sequences
    coordinates = alignment.coordinates
    names = [record.id for record in sequences]
    size = len(names)
    dn_matrix = []
    ds_matrix = []
    for i in range(size):
        dn_matrix.append([])
        ds_matrix.append([])
        for j in range(i):
            pairwise_sequences = [sequences[i], sequences[j]]
            pairwise_coordinates = coordinates[(i, j), :]
            pairwise_alignment = Alignment(pairwise_sequences, pairwise_coordinates)
            dn, ds = calculate_dn_ds(
                pairwise_alignment, method=method, codon_table=codon_table
            )
            dn_matrix[i].append(dn)
            ds_matrix[i].append(ds)
        dn_matrix[i].append(0.0)
        ds_matrix[i].append(0.0)
    dn_dm = DistanceMatrix(names, matrix=dn_matrix)
    ds_dm = DistanceMatrix(names, matrix=ds_matrix)
    return dn_dm, ds_dm


def mktest(alignment, species=None, codon_table=None):
    """McDonald-Kreitman test for neutrality.

    Implement the McDonald-Kreitman test for neutrality (PMID: 1904993)
    This method counts changes rather than sites
    (http://mkt.uab.es/mkt/help_mkt.asp).

    Arguments:
     - alignment    - Alignment of gene nucleotide sequences to compare.
     - species      - List of the species ID for each sequence in the alignment.
       Typically, the species ID is the species name as a string, or an integer.
     - codon_table  - Codon table to use for forward translation.

    Return the p-value of test result.
    """
    if codon_table is None:
        codon_table = CodonTable.generic_by_id[1]
    G, nonsyn_G = _get_codon2codon_matrix(codon_table=codon_table)
    unique_species = set(species)
    sequences = []
    for sequence in alignment.sequences:
        try:
            sequence = sequence.seq
        except AttributeError:
            pass
        sequence = str(sequence)
        sequences.append(sequence)
    syn_fix, nonsyn_fix, syn_poly, nonsyn_poly = 0, 0, 0, 0
    starts = sys.maxsize
    for ends in alignment.coordinates.transpose():
        step = min(ends - starts)
        for j in range(0, step, 3):
            codons = {key: [] for key in unique_species}
            for key, sequence, start in zip(species, sequences, starts):
                codon = sequence[start + j : start + j + 3]
                codons[key].append(codon)
            fixed = True
            all_codons = set()
            for value in codons.values():
                value = set(value)
                if len(value) > 1:
                    fixed = False
                all_codons.update(value)
            if len(all_codons) == 1:
                continue
            nonsyn = _count_replacement(all_codons, nonsyn_G)
            syn = _count_replacement(all_codons, G) - nonsyn
            if fixed is True:
                # fixed
                nonsyn_fix += nonsyn
                syn_fix += syn
            else:
                # not fixed
                nonsyn_poly += nonsyn
                syn_poly += syn
        starts = ends
    return _G_test([syn_fix, nonsyn_fix, syn_poly, nonsyn_poly])


def _get_codon2codon_matrix(codon_table):
    """Get codon codon substitution matrix (PRIVATE).

    Elements in the matrix are number of synonymous and nonsynonymous
    substitutions required for the substitution.
    """
    bases = ("A", "T", "C", "G")
    codons = [
        codon
        for codon in list(codon_table.forward_table.keys()) + codon_table.stop_codons
        if "U" not in codon
    ]
    # set up codon_dict considering stop codons
    codon_dict = codon_table.forward_table.copy()
    for stop in codon_table.stop_codons:
        codon_dict[stop] = "stop"
    # count site
    num = len(codons)
    G = {}  # graph for substitution
    nonsyn_G = {}  # graph for nonsynonymous substitution
    graph = {}
    graph_nonsyn = {}
    for i, codon in enumerate(codons):
        graph[codon] = {}
        graph_nonsyn[codon] = {}
        for p in range(3):
            for base in bases:
                tmp_codon = codon[0:p] + base + codon[p + 1 :]
                if codon_dict[codon] != codon_dict[tmp_codon]:
                    graph_nonsyn[codon][tmp_codon] = 1
                    graph[codon][tmp_codon] = 1
                else:
                    if codon != tmp_codon:
                        graph_nonsyn[codon][tmp_codon] = 0.1
                        graph[codon][tmp_codon] = 1
    for codon1 in codons:
        nonsyn_G[codon1] = {}
        G[codon1] = {}
        for codon2 in codons:
            if codon1 == codon2:
                nonsyn_G[codon1][codon2] = 0
                G[codon1][codon2] = 0
            else:
                nonsyn_G[codon1][codon2] = _dijkstra(graph_nonsyn, codon1, codon2)
                G[codon1][codon2] = _dijkstra(graph, codon1, codon2)
    return G, nonsyn_G


def _dijkstra(graph, start, end):
    """Dijkstra's algorithm Python implementation (PRIVATE).

    Algorithm adapted from
    http://thomas.pelletier.im/2010/02/dijkstras-algorithm-python-implementation/.
    However, an obvious bug in::

        if D[child_node] >(<) D[node] + child_value:

    is fixed.
    This function will return the distance between start and end.

    Arguments:
     - graph: Dictionary of dictionary (keys are vertices).
     - start: Start vertex.
     - end: End vertex.

    Output:
       List of vertices from the beginning to the end.

    """
    D = {}  # Final distances dict
    P = {}  # Predecessor dict
    # Fill the dicts with default values
    for node in graph.keys():
        D[node] = 100  # Vertices are unreachable
        P[node] = ""  # Vertices have no predecessors
    D[start] = 0  # The start vertex needs no move
    unseen_nodes = list(graph.keys())  # All nodes are unseen
    while len(unseen_nodes) > 0:
        # Select the node with the lowest value in D (final distance)
        shortest = None
        node = ""
        for temp_node in unseen_nodes:
            if shortest is None:
                shortest = D[temp_node]
                node = temp_node
            elif D[temp_node] < shortest:
                shortest = D[temp_node]
                node = temp_node
        # Remove the selected node from unseen_nodes
        unseen_nodes.remove(node)
        # For each child (ie: connected vertex) of the current node
        for child_node, child_value in graph[node].items():
            if D[child_node] > D[node] + child_value:
                D[child_node] = D[node] + child_value
                # To go to child_node, you have to go through node
                P[child_node] = node
        if node == end:
            break
    # Set a clean path
    path = []
    # We begin from the end
    node = end
    distance = 0
    # While we are not arrived at the beginning
    while not (node == start):
        if path.count(node) == 0:
            path.insert(0, node)  # Insert the predecessor of the current node
            node = P[node]  # The current node becomes its predecessor
        else:
            break
    path.insert(0, start)  # Finally, insert the start vertex
    for i in range(len(path) - 1):
        distance += graph[path[i]][path[i + 1]]
    return distance


def _count_replacement(codons, G):
    """Count replacement needed for a given codon_set (PRIVATE)."""
    if len(codons) == 1:
        return 0, 0
    elif len(codons) == 2:
        codons = list(codons)
        return floor(G[codons[0]][codons[1]])
    else:
        subgraph = {
            codon1: {codon2: G[codon1][codon2] for codon2 in codons if codon1 != codon2}
            for codon1 in codons
        }
        return _prim(subgraph)


def _prim(G):
    """Prim's algorithm to find minimum spanning tree (PRIVATE).

    Code is adapted from
    http://programmingpraxis.com/2010/04/09/minimum-spanning-tree-prims-algorithm/
    """
    nodes = []
    edges = []
    for i in G.keys():
        nodes.append(i)
        for j in G[i]:
            if (i, j, G[i][j]) not in edges and (j, i, G[i][j]) not in edges:
                edges.append((i, j, G[i][j]))
    conn = defaultdict(list)
    for n1, n2, c in edges:
        conn[n1].append((c, n1, n2))
        conn[n2].append((c, n2, n1))
    mst = []  # minimum spanning tree
    used = set(nodes[0])
    usable_edges = conn[nodes[0]][:]
    heapify(usable_edges)
    while usable_edges:
        cost, n1, n2 = heappop(usable_edges)
        if n2 not in used:
            used.add(n2)
            mst.append((n1, n2, cost))
            for e in conn[n2]:
                if e[2] not in used:
                    heappush(usable_edges, e)
    length = 0
    for p in mst:
        length += floor(p[2])
    return length


def _G_test(site_counts):
    """G test for 2x2 contingency table (PRIVATE).

    Arguments:
     - site_counts - [syn_fix, nonsyn_fix, syn_poly, nonsyn_poly]

    >>> print("%0.6f" % _G_test([17, 7, 42, 2]))
    0.004924
    """
    # TODO:
    #   Apply continuity correction for Chi-square test.
    G = 0
    tot = sum(site_counts)
    tot_syn = site_counts[0] + site_counts[2]
    tot_non = site_counts[1] + site_counts[3]
    tot_fix = sum(site_counts[:2])
    tot_poly = sum(site_counts[2:])
    exp = [
        tot_fix * tot_syn / tot,
        tot_fix * tot_non / tot,
        tot_poly * tot_syn / tot,
        tot_poly * tot_non / tot,
    ]
    for obs, ex in zip(site_counts, exp):
        G += obs * log(obs / ex)
    # with only 1 degree of freedom for a 2x2 table,
    # the cumulative chi-square distribution reduces to a simple form:
    return erfc(sqrt(G))


if __name__ == "__main__":
    from Bio._utils import run_doctest

    run_doctest()