1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
# Copyright 2019 by Michiel de Hoon.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Substitution matrices."""
import os
import string
import numpy as np
from Bio.File import as_handle
class Array(np.ndarray):
"""numpy array subclass indexed by integers and by letters."""
def __new__(cls, alphabet=None, dims=None, data=None, dtype=float):
"""Create a new Array instance."""
if isinstance(data, dict):
if alphabet is not None:
raise ValueError("alphabet should be None if data is a dict")
if dims is not None:
raise ValueError("dims should be None if data is a dict")
alphabet = []
single_letters = True
for key in data:
if isinstance(key, str):
if dims is None:
dims = 1
elif dims != 1:
raise ValueError("inconsistent dimensions in data")
alphabet.append(key)
elif isinstance(key, tuple):
if dims is None:
dims = len(key)
elif dims != len(key):
raise ValueError("inconsistent dimensions in data")
if dims == 1:
if not isinstance(key, str):
raise ValueError("expected string")
if len(key) > 1:
single_letters = False
alphabet.append(key)
elif dims == 2:
for letter in key:
if not isinstance(letter, str):
raise ValueError("expected string")
if len(letter) > 1:
single_letters = False
alphabet.append(letter)
else:
raise ValueError(
"data array should be 1- or 2- dimensional "
"(found %d dimensions) in key" % dims
)
alphabet = sorted(set(alphabet))
if single_letters:
alphabet = "".join(alphabet)
else:
alphabet = tuple(alphabet)
n = len(alphabet)
if dims == 1:
shape = (n,)
elif dims == 2:
shape = (n, n)
else: # dims is None
raise ValueError("data is an empty dictionary")
obj = super().__new__(cls, shape, dtype)
if dims == 1:
for i, key in enumerate(alphabet):
obj[i] = data.get(letter, 0.0)
elif dims == 2:
for i1, letter1 in enumerate(alphabet):
for i2, letter2 in enumerate(alphabet):
key = (letter1, letter2)
value = data.get(key, 0.0)
obj[i1, i2] = value
obj._alphabet = alphabet
return obj
if alphabet is None:
alphabet = string.ascii_uppercase
elif not (isinstance(alphabet, (str, tuple))):
raise ValueError("alphabet should be a string or a tuple")
n = len(alphabet)
if data is None:
if dims is None:
dims = 1
elif dims not in (1, 2):
raise ValueError("dims should be 1 or 2 (found %s)" % dims)
shape = (n,) * dims
else:
if dims is None:
shape = data.shape
dims = len(shape)
if dims == 1:
pass
elif dims == 2:
if shape[0] != shape[1]:
raise ValueError("data array is not square")
else:
raise ValueError(
"data array should be 1- or 2- dimensional "
"(found %d dimensions) " % dims
)
else:
shape = (n,) * dims
if data.shape != shape:
raise ValueError(
"data shape has inconsistent shape (expected (%s), found (%s))"
% (shape, data.shape)
)
obj = super().__new__(cls, shape, dtype)
if data is None:
obj[:] = 0.0
else:
obj[:] = data
obj._alphabet = alphabet
return obj
def __array_finalize__(self, obj):
if obj is None:
return
self._alphabet = getattr(obj, "_alphabet", None)
def _convert_key(self, key):
if isinstance(key, tuple):
indices = []
for index in key:
if isinstance(index, str):
try:
index = self._alphabet.index(index)
except ValueError:
raise IndexError("'%s'" % index) from None
indices.append(index)
key = tuple(indices)
elif isinstance(key, str):
try:
key = self._alphabet.index(key)
except ValueError:
raise IndexError("'%s'" % key) from None
return key
def __getitem__(self, key):
key = self._convert_key(key)
value = np.ndarray.__getitem__(self, key)
if value.ndim == 2:
if self.ndim == 2:
if value.shape != self.shape:
raise IndexError("Requesting truncated array")
elif self.ndim == 1:
length = self.shape[0]
if value.shape[0] == length and value.shape[1] == 1:
pass
elif value.shape[0] == 1 and value.shape[1] == length:
pass
else:
raise IndexError("Requesting truncated array")
elif value.ndim == 1:
if value.shape[0] != self.shape[0]:
value._alphabet = self.alphabet[key]
elif value.ndim == 0:
return value.item()
return value.view(Array)
def __setitem__(self, key, value):
key = self._convert_key(key)
np.ndarray.__setitem__(self, key, value)
def __contains__(self, key):
# Follow dict definition of __contains__
return key in self.keys()
def __array_prepare__(self, out_arr, context=None):
# needed for numpy older than 1.13.0
ufunc, inputs, i = context
alphabet = self.alphabet
for arg in inputs:
if isinstance(arg, Array):
if arg.alphabet != alphabet:
raise ValueError("alphabets are inconsistent")
return np.ndarray.__array_prepare__(self, out_arr, context)
def __array_wrap__(self, out_arr, context=None):
if len(out_arr) == 1:
return out_arr[0]
return np.ndarray.__array_wrap__(self, out_arr, context)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
args = []
alphabet = self._alphabet
for arg in inputs:
if isinstance(arg, Array):
if arg.alphabet != alphabet:
raise ValueError("alphabets are inconsistent")
args.append(arg.view(np.ndarray))
else:
args.append(arg)
outputs = kwargs.pop("out", None)
if outputs:
out_args = []
for arg in outputs:
if isinstance(arg, Array):
if arg.alphabet != alphabet:
raise ValueError("alphabets are inconsistent")
out_args.append(arg.view(np.ndarray))
else:
out_args.append(arg)
kwargs["out"] = tuple(out_args)
else:
outputs = (None,) * ufunc.nout
raw_results = super().__array_ufunc__(ufunc, method, *args, **kwargs)
if raw_results is NotImplemented:
return NotImplemented
if method == "at":
return
if ufunc.nout == 1:
raw_results = (raw_results,)
results = []
for raw_result, output in zip(raw_results, outputs):
if raw_result.ndim == 0:
result = raw_result
elif output is None:
result = np.asarray(raw_result).view(Array)
result._alphabet = self._alphabet
else:
result = output
result._alphabet = self._alphabet
results.append(result)
return results[0] if len(results) == 1 else results
def __reduce__(self):
import pickle
values = np.array(self)
state = pickle.dumps(values)
alphabet = self._alphabet
dims = len(self.shape)
dtype = self.dtype
arguments = (Array, alphabet, dims, None, dtype)
return (Array.__new__, arguments, state)
def __setstate__(self, state):
import pickle
self[:, :] = pickle.loads(state)
def transpose(self, axes=None):
"""Transpose the array."""
other = np.ndarray.transpose(self, axes)
other._alphabet = self._alphabet
return other
@property
def alphabet(self):
"""Return the alphabet property."""
return self._alphabet
def get(self, key, value=None):
"""Return the value of the key if found; return value otherwise."""
try:
return self[key]
except IndexError:
return value
def items(self):
"""Return an iterator of (key, value) pairs in the array."""
dims = len(self.shape)
if dims == 1:
for index, key in enumerate(self._alphabet):
value = np.ndarray.__getitem__(self, index)
yield key, value
elif dims == 2:
for i1, c1 in enumerate(self._alphabet):
for i2, c2 in enumerate(self._alphabet):
key = (c1, c2)
value = np.ndarray.__getitem__(self, (i1, i2))
yield key, value
else:
raise RuntimeError("array has unexpected shape %s" % self.shape)
def keys(self):
"""Return a tuple with the keys associated with the array."""
dims = len(self.shape)
alphabet = self._alphabet
if dims == 1:
return tuple(alphabet)
elif dims == 2:
return tuple((c1, c2) for c2 in alphabet for c1 in alphabet)
else:
raise RuntimeError("array has unexpected shape %s" % self.shape)
def values(self):
"""Return a tuple with the values stored in the array."""
dims = len(self.shape)
alphabet = self._alphabet
if dims == 1:
return tuple(self)
elif dims == 2:
n1, n2 = self.shape
return tuple(
np.ndarray.__getitem__(self, (i1, i2))
for i2 in range(n2)
for i1 in range(n1)
)
else:
raise RuntimeError("array has unexpected shape %s" % self.shape)
def update(self, E=None, **F):
"""Update the array from dict/iterable E and F."""
if E is not None:
try:
alphabet = E.keys()
except AttributeError:
for key, value in E:
self[key] = value
else:
for key in E:
self[key] = E[key]
for key in F:
self[key] = F[key]
def select(self, alphabet):
"""Subset the array by selecting the letters from the specified alphabet."""
ii = []
jj = []
for i, key in enumerate(alphabet):
try:
j = self._alphabet.index(key)
except ValueError:
continue
ii.append(i)
jj.append(j)
dims = len(self.shape)
a = Array(alphabet, dims=dims)
ii = np.ix_(*[ii] * dims)
jj = np.ix_(*[jj] * dims)
a[ii] = np.ndarray.__getitem__(self, jj)
return a
def _format_1D(self, fmt):
_alphabet = self._alphabet
n = len(_alphabet)
words = [None] * n
lines = []
try:
header = self.header
except AttributeError:
pass
else:
for line in header:
line = "# %s\n" % line
lines.append(line)
maxwidth = 0
for i, key in enumerate(_alphabet):
value = self[key]
word = fmt % value
width = len(word)
if width > maxwidth:
maxwidth = width
words[i] = word
fmt2 = " %" + str(maxwidth) + "s"
for letter, word in zip(_alphabet, words):
word = fmt2 % word
line = letter + word + "\n"
lines.append(line)
text = "".join(lines)
return text
def _format_2D(self, fmt):
alphabet = self.alphabet
n = len(alphabet)
words = [[None] * n for _ in range(n)]
lines = []
try:
header = self.header
except AttributeError:
pass
else:
for line in header:
line = "# %s\n" % line
lines.append(line)
keywidth = max(len(c) for c in alphabet)
keyfmt = "%" + str(keywidth) + "s"
line = " " * keywidth
for j, c2 in enumerate(alphabet):
maxwidth = 0
for i, c1 in enumerate(alphabet):
key = (c1, c2)
value = self[key]
word = fmt % value
width = len(word)
if width > maxwidth:
maxwidth = width
words[i][j] = word
fmt2 = " %" + str(maxwidth) + "s"
word = fmt2 % c2
line += word
for i, c1 in enumerate(alphabet):
word = words[i][j]
words[i][j] = fmt2 % word
line = line.rstrip() + "\n"
lines.append(line)
for letter, row in zip(alphabet, words):
key = keyfmt % letter
line = key + "".join(row) + "\n"
lines.append(line)
text = "".join(lines)
return text
def __format__(self, fmt):
return self.format(fmt)
def format(self, fmt=""):
"""Return a string representation of the array.
The argument ``fmt`` specifies the number format to be used.
By default, the number format is "%i" if the array contains integer
numbers, and "%.1f" otherwise.
"""
if fmt == "":
if np.issubdtype(self.dtype, np.integer):
fmt = "%i"
else:
fmt = "%.1f"
n = len(self.shape)
if n == 1:
return self._format_1D(fmt)
elif n == 2:
return self._format_2D(fmt)
else:
raise RuntimeError("Array has unexpected rank %d" % n)
def __str__(self):
return self.format()
def __repr__(self):
text = np.ndarray.__repr__(self)
alphabet = self._alphabet
if isinstance(alphabet, str):
assert text.endswith(")")
text = text[:-1] + ",\n alphabet='%s')" % self._alphabet
return text
def read(handle, dtype=float):
"""Parse the file and return an Array object."""
with as_handle(handle) as fp:
lines = fp.readlines()
header = []
for i, line in enumerate(lines):
if not line.startswith("#"):
break
header.append(line[1:].strip())
rows = [line.split() for line in lines[i:]]
if len(rows[0]) == len(rows[1]) == 2:
alphabet = [key for key, value in rows]
for key in alphabet:
if len(key) > 1:
alphabet = tuple(alphabet)
break
else:
alphabet = "".join(alphabet)
matrix = Array(alphabet=alphabet, dims=1, dtype=dtype)
matrix.update(rows)
else:
alphabet = rows.pop(0)
for key in alphabet:
if len(key) > 1:
alphabet = tuple(alphabet)
break
else:
alphabet = "".join(alphabet)
matrix = Array(alphabet=alphabet, dims=2, dtype=dtype)
for letter1, row in zip(alphabet, rows):
letter = row.pop(0)
assert letter1 == letter
for letter2, word in zip(alphabet, row):
matrix[letter1, letter2] = float(word)
matrix.header = header
return matrix
def load(name=None):
"""Load and return a precalculated substitution matrix.
>>> from Bio.Align import substitution_matrices
>>> names = substitution_matrices.load()
"""
path = os.path.realpath(__file__)
directory = os.path.dirname(path)
subdirectory = os.path.join(directory, "data")
if name is None:
filenames = os.listdir(subdirectory)
try:
filenames.remove("README.txt")
# The README.txt file is not present in usual Biopython
# installations, but is included in a development install.
except ValueError:
pass
return sorted(filenames)
path = os.path.join(subdirectory, name)
matrix = read(path)
return matrix
|