1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
//
// Original Code
// Copyright (C) Jason Vertrees
// Modifications
// Copyright (C) Joao Rodrigues.
// Modifications include removal of RMSD calculation code and associated
// dependencies. Output of the module is now the best paths.
//
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The following notice is provided since the code was adapted from
// open-source Pymol.
// Open-Source PyMOL Copyright Notice
// ==================================
// The Open-Source PyMOL source code is copyrighted, but you can freely
// use and copy it as long as you don't change or remove any of the
// Copyright notices. The Open-Source PyMOL product is made available
// under the following open-source license terms:
// ----------------------------------------------------------------------
// Open-Source PyMOL is Copyright (C) Schrodinger, LLC.
// All Rights Reserved
// Permission to use, copy, modify, distribute, and distribute modified
// versions of this software and its built-in documentation for any
// purpose and without fee is hereby granted, provided that the above
// copyright notice appears in all copies and that both the copyright
// notice and this permission notice appear in supporting documentation,
// and that the name of Schrodinger, LLC not be used in advertising or
// publicity pertaining to distribution of the software without specific,
// written prior permission.
// SCHRODINGER, LLC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
// INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
// NO EVENT SHALL SCHRODINGER, LLC BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
// OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
// OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
// USE OR PERFORMANCE OF THIS SOFTWARE.
// ----------------------------------------------------------------------
// PyMOL Trademark Notice
// ======================
// PyMOL(TM) is a trademark of Schrodinger, LLC. Derivative
// software which contains PyMOL source code must be plainly
// distinguished from any and all PyMOL products distributed by Schrodinger,
// LLC in all publicity, advertising, and documentation.
// The slogans, "Includes PyMOL(TM).", "Based on PyMOL(TM) technology.",
// "Contains PyMOL(TM) source code.", and "Built using PyMOL(TM).", may
// be used in advertising, publicity, and documentation of derivative
// software provided that the notice, "PyMOL is a trademark of Schrodinger,
// LLC.", is included in a footnote or at the end of the
// document.
// All other endorsements employing the PyMOL trademark require specific,
// written prior permission.
//
#include "Python.h"
#define MAX_PATHS 20
// Typical XYZ point and array of points
typedef struct {
double x;
double y;
double z;
} cePoint, *pcePoint;
// An AFP (aligned fragment pair), and list/pointer
typedef struct {
int pA;
int pB;
} afp, *path;
// Calculate distance matrix
static double **
calcDM(pcePoint coords, int len)
{
double **dm = (double **)PyMem_RawMalloc(sizeof(double *) * len);
for (int i = 0; i < len; i++) {
dm[i] = (double *)PyMem_RawMalloc(sizeof(double) * len);
}
for (int row = 0; row < len; row++) {
for (int col = row; col < len; col++) {
double xd = coords[row].x - coords[col].x;
double yd = coords[row].y - coords[col].y;
double zd = coords[row].z - coords[col].z;
double distance = sqrt(xd * xd + yd * yd + zd * zd);
dm[row][col] = dm[col][row] = distance;
}
}
return dm;
}
//
// This similarity corresponds to distance measure (i) or
// equation (6) in the paper.
//
static double
similarityI(
double **dA,
double **dB,
const afp afpI,
const afp afpJ,
const int fragmentSize)
{
const int iA = afpI.pA;
const int iB = afpI.pB;
const int jA = afpJ.pA;
const int jB = afpJ.pB;
const int m = fragmentSize;
double similarity = fabs(dA[iA][jA] - dB[iB][jB]) +
fabs(dA[iA + m-1][jA + m-1] - dB[iB + m-1][jB + m-1]);
for (int k = 1; k < m - 1; k++) {
similarity += fabs(dA[iA + k][jA + m-1 - k] -
fabs(dB[iB + k][jB + m-1 - k]));
}
return -similarity / m;
}
//
// This similarity corresponds to distance measure (ii)
// or equation (7) in the paper.
//
static double
similarityII(
double **dA,
double **dB,
const afp afpI,
const int fragmentSize)
{
const int iA = afpI.pA;
const int iB = afpI.pB;
double similarity = 0.0;
// Term count is the number of terms in the summation
const int termCount = (fragmentSize - 1) * (fragmentSize - 2) / 2;
for (int k = 0; k < fragmentSize - 2; k++) {
for (int l = k + 2; l < fragmentSize; l++) {
similarity +=
fabs(dA[iA + k][iA + l] - dB[iB + k][iB + l]);
}
}
return -similarity / termCount;
}
// Calculate similarity matrix
static double **
calcS(
double **dA,
double **dB,
const int lenA,
const int lenB,
const int fragmentSize)
{
// Initialize the 2D similarity matrix
const int rowCount = lenA - fragmentSize + 1;
const int colCount = lenB - fragmentSize + 1;
double **S = (double **)PyMem_RawMalloc(sizeof(double *) * rowCount);
for (int i = 0; i < rowCount; i++) {
S[i] = (double *)PyMem_RawMalloc(sizeof(double) * colCount);
}
//
// This is where the magic of CE comes out. In the similarity matrix,
// for each i and j, the value of S[i][j] is how well the fragment starting
// at i in protein A matches the fragment starting at j in protein
// B. A value of 0 means absolute match; a value << -3 means bad match.
//
for (int iA = 0; iA < rowCount; iA++) {
for (int iB = 0; iB < colCount; iB++) {
S[iA][iB] = similarityII(dA, dB, (afp) {iA, iB}, fragmentSize);
}
}
return S;
}
static const double tableZtoP[] = {
1.0, 9.20e-01, 8.41e-01, 7.64e-01, 6.89e-01, 6.17e-01, 5.49e-01, 4.84e-01, 4.24e-01, 3.68e-01,
3.17e-01, 2.71e-01, 2.30e-01, 1.94e-01, 1.62e-01, 1.34e-01, 1.10e-01, 8.91e-02, 7.19e-02, 5.74e-02,
4.55e-02, 3.57e-02, 2.78e-02, 2.14e-02, 1.64e-02, 1.24e-02, 9.32e-03, 6.93e-03, 5.11e-03, 3.73e-03,
2.70e-03, 1.94e-03, 1.37e-03, 9.67e-04, 6.74e-04, 4.65e-04, 3.18e-04, 2.16e-04, 1.45e-04, 9.62e-05,
6.33e-05, 4.13e-05, 2.67e-05, 1.71e-05, 1.08e-05, 6.80e-06, 4.22e-06, 2.60e-06, 1.59e-06, 9.58e-07,
5.73e-07, 3.40e-07, 1.99e-07, 1.16e-07, 6.66e-08, 3.80e-08, 2.14e-08, 1.20e-08, 6.63e-09, 3.64e-09,
1.97e-09, 1.06e-09, 5.65e-10, 2.98e-10, 1.55e-10, 8.03e-11, 4.11e-11, 2.08e-11, 1.05e-11, 5.20e-12,
2.56e-12, 1.25e-12, 6.02e-13, 2.88e-13, 1.36e-13, 6.38e-14, 2.96e-14, 1.36e-14, 6.19e-15, 2.79e-15,
1.24e-15, 5.50e-16, 2.40e-16, 1.04e-16, 4.46e-17, 1.90e-17, 7.97e-18, 3.32e-18, 1.37e-18, 5.58e-19,
2.26e-19, 9.03e-20, 3.58e-20, 1.40e-20, 5.46e-21, 2.10e-21, 7.99e-22, 3.02e-22, 1.13e-22, 4.16e-23,
1.52e-23, 5.52e-24, 1.98e-24, 7.05e-25, 2.48e-25, 8.64e-26, 2.98e-26, 1.02e-26, 3.44e-27, 1.15e-27,
3.82e-28, 1.25e-28, 4.08e-29, 1.31e-29, 4.18e-30, 1.32e-30, 4.12e-31, 1.27e-31, 3.90e-32, 1.18e-32,
3.55e-33, 1.06e-33, 3.11e-34, 9.06e-35, 2.61e-35, 7.47e-36, 2.11e-36, 5.91e-37, 1.64e-37, 4.50e-38,
1.22e-38, 3.29e-39, 8.77e-40, 2.31e-40, 6.05e-41, 1.56e-41, 4.00e-42, 1.02e-42, 2.55e-43, 6.33e-44,
1.56e-44, 3.80e-45, 9.16e-46, 2.19e-46, 5.17e-47, 1.21e-47, 2.81e-48, 6.45e-49, 1.46e-49, 3.30e-50};
static const double tablePtoZ[] = {
0.00, 0.73, 1.24, 1.64, 1.99, 2.30, 2.58, 2.83, 3.07, 3.29,
3.50, 3.70, 3.89, 4.07, 4.25, 4.42, 4.58, 4.74, 4.89, 5.04,
5.19, 5.33, 5.46, 5.60, 5.73, 5.86, 5.99, 6.11, 6.23, 6.35,
6.47, 6.58, 6.70, 6.81, 6.92, 7.02, 7.13, 7.24, 7.34, 7.44,
7.54, 7.64, 7.74, 7.84, 7.93, 8.03, 8.12, 8.21, 8.30, 8.40,
8.49, 8.57, 8.66, 8.75, 8.84, 8.92, 9.01, 9.09, 9.17, 9.25,
9.34, 9.42, 9.50, 9.58, 9.66, 9.73, 9.81, 9.89, 9.97, 10.04,
10.12, 10.19, 10.27, 10.34, 10.41, 10.49, 10.56, 10.63, 10.70, 10.77,
10.84, 10.91, 10.98, 11.05, 11.12, 11.19, 11.26, 11.32, 11.39, 11.46,
11.52, 11.59, 11.66, 11.72, 11.79, 11.85, 11.91, 11.98, 12.04, 12.10,
12.17, 12.23, 12.29, 12.35, 12.42, 12.48, 12.54, 12.60, 12.66, 12.72,
12.78, 12.84, 12.90, 12.96, 13.02, 13.07, 13.13, 13.19, 13.25, 13.31,
13.36, 13.42, 13.48, 13.53, 13.59, 13.65, 13.70, 13.76, 13.81, 13.87,
13.92, 13.98, 14.03, 14.09, 14.14, 14.19, 14.25, 14.30, 14.35, 14.41,
14.46, 14.51, 14.57, 14.62, 14.67, 14.72, 14.77, 14.83, 14.88, 14.93};
// Convert a z-score into a probability
static double zToP(const double z)
{
int index = (int)(z / 0.1);
if (index < 0) {
index = 0;
}
if (index > 149) {
index = 149;
}
return tableZtoP[index];
}
// Convert a probability into a z-score
static double pToZ(const double p)
{
int index = (int)(-log10(p) * 3.0);
if (index < 0) {
index = 0;
}
if (index > 149) {
index = 149;
}
return tablePtoZ[index];
}
// These empirical data are reproduced from the original CE source code.
static const double similarityAvgs[] =
{2.54, 2.51, 2.72, 3.01, 3.31, 3.61, 3.90, 4.19, 4.47, 4.74,
4.99, 5.22, 5.46, 5.70, 5.94, 6.13, 6.36, 6.52, 6.68, 6.91};
static const double similaritySDs[] =
{1.33, 0.88, 0.73, 0.71, 0.74, 0.80, 0.86, 0.92, 0.98, 1.04,
1.08, 1.10, 1.15, 1.19, 1.23, 1.25, 1.32, 1.34, 1.36, 1.45};
static double zScoreSimilarity(
const int pathLength,
const double similarity)
{
// This method only works for the default fragment size
if (pathLength < 1) {
return 0.0;
}
double similarityAvg, similaritySD;
// 20 is the number of stored statistics (averages and standard deviations)
// in the arrays above.
if (pathLength <= 20) {
similarityAvg = similarityAvgs[pathLength - 1];
similaritySD = similaritySDs[pathLength - 1];
}
else {
similarityAvg = 0.209874 * pathLength + 2.944714;
similaritySD = 0.039487 * pathLength + 0.675735;
}
if (similarity > similarityAvg) {
return 0.0;
}
return (similarityAvg - similarity) / similaritySD;
}
static const double gapCountAvgs[] =
{0.00, 11.50, 23.32, 35.95, 49.02, 62.44, 76.28, 90.26,
104.86, 119.97, 134.86, 150.54, 164.86, 179.57, 194.39,
209.38, 224.74, 238.96, 253.72, 270.79};
static const double gapCountSDs[] =
{0.00, 9.88, 14.34, 17.99, 21.10, 23.89, 26.55, 29.00, 31.11,
33.10, 35.02, 36.03, 37.19, 38.82, 41.04, 43.35, 45.45,
48.41, 50.87, 52.27};
static double zScoreGapCount(
const int pathLength,
const int gapCount)
{
if (pathLength < 1) {
return 0.0;
}
double gapCountAvg, gapCountSD;
// 20 is the number of stored statistics (averages and standard deviations)
// in the arrays above.
if (pathLength <= 20) {
gapCountAvg = gapCountAvgs[pathLength - 1];
gapCountSD = gapCountSDs[pathLength - 1];
}
else {
gapCountAvg = 14.949173 * pathLength - 14.581193;
gapCountSD = 2.045067 * pathLength + 13.191095;
}
if (gapCount > gapCountAvg) {
return 0.0;
}
return (gapCountAvg - gapCount) / gapCountSD;
}
// The z-score calculation is adapted from the code in
// https://github.com/kad-ecoli/CE.
static double calcZScore(
const int fragmentSize,
const int pathLength,
const double pathSimilarity,
const int gapCount)
{
if (fragmentSize != 8) {
// Z-score calculation is only supported for the default fragment size.
return 0.0;
}
const double z1 = zScoreSimilarity(pathLength, pathSimilarity);
const double z2 = zScoreGapCount(pathLength, gapCount);
return pToZ(zToP(z1) * zToP(z2));
}
static pcePoint
getCoords(PyObject *L, int length)
{
// Make space for the current coords
pcePoint coords = (pcePoint)PyMem_RawMalloc(sizeof(cePoint) * length);
if (!coords)
return NULL;
// loop through the arguments, pulling out the
// XYZ coordinates.
for (int i = 0; i < length; i++) {
PyObject *curCoord = PyList_GetItem(L, i);
Py_INCREF(curCoord);
PyObject *curVal = PyList_GetItem(curCoord, 0);
Py_INCREF(curVal);
coords[i].x = PyFloat_AsDouble(curVal);
Py_DECREF(curVal);
curVal = PyList_GetItem(curCoord, 1);
Py_INCREF(curVal);
coords[i].y = PyFloat_AsDouble(curVal);
Py_DECREF(curVal);
curVal = PyList_GetItem(curCoord, 2);
Py_INCREF(curVal);
coords[i].z = PyFloat_AsDouble(curVal);
Py_DECREF(curVal);
Py_DECREF(curCoord);
}
return coords;
}
// Find the best N alignment paths
static PyObject *
findPath(
double **S,
double **dA,
double **dB,
const int lenA,
const int lenB,
const int fragmentSize,
const int gapMax)
{
const double D0 = -3.0;
const double D1 = -4.0;
// Length of longest possible alignment
const int smaller = (lenA < lenB) ? lenA : lenB;
// For storing the best N paths
int bufferSize = 0;
int lenBuffer[MAX_PATHS];
double similarityBuffer[MAX_PATHS];
path pathBuffer[MAX_PATHS];
for (int i = 0; i < MAX_PATHS; i++) {
// Initialize the paths
similarityBuffer[i] = -1e6;
lenBuffer[i] = 0;
pathBuffer[i] = 0;
}
//======================================================================
// Start the search through the similarity matrix.
//
for (int iA = 0; iA <= lenA - fragmentSize; iA++) {
if (bufferSize > 0 &&
iA > lenA - fragmentSize * (lenBuffer[bufferSize - 1] - 1))
break;
for (int iB = 0; iB <= lenB - fragmentSize; iB++) {
if (S[iA][iB] <= D0)
continue;
if (bufferSize > 0 &&
iB > lenB - fragmentSize * (lenBuffer[bufferSize - 1] - 1))
break;
// Initialize current path
path curPath = (path)PyMem_RawMalloc(sizeof(afp) * smaller);
int curPathLength = 1;
double curPathSimilarity = S[iA][iB];
curPath[0] = (afp) {iA, iB};
for (int i = 1; i < smaller; i++) {
curPath[i] = (afp) {-1, -1};
}
//
// Build the best path starting from iA, iB
//
while (1) {
double gapBestSimilarity = -1e6;
int gapBestIndex = -1;
//
// Check all possible gaps from here
//
for (int g = 0; g < (gapMax * 2) + 1; g++) {
int jA = curPath[curPathLength - 1].pA + fragmentSize;
int jB = curPath[curPathLength - 1].pB + fragmentSize;
if ((g + 1) % 2 == 0) {
jA += (g + 1) / 2;
} else { // ( g odd )
jB += (g + 1) / 2;
}
// Following are three heuristics to ensure high quality
// long paths and make sure we don't run over the end of
// the S, matrix.
// 1st: If jA or jB is at the end of the similarity matrix
if (jA > lenA - fragmentSize || jB > lenB - fragmentSize)
continue;
// 2nd: If this candidate AFP is bad, ignore it.
if (S[jA][jB] <= D0)
continue;
const afp afpJ = (afp) {jA, jB};
double curSimilarity = 0.0;
for (int s = 0; s < curPathLength; s++) {
curSimilarity +=
similarityI(
dA,
dB,
curPath[s],
afpJ,
fragmentSize);
}
curSimilarity /= curPathLength;
// store GAPPED best
if (curSimilarity > D1 &&
curSimilarity > gapBestSimilarity) {
curPath[curPathLength] = afpJ;
gapBestSimilarity = curSimilarity;
gapBestIndex = g;
}
} /// ROF -- END GAP SEARCHING
if (gapBestIndex == -1) {
// if here, then there was no good candidate AFP,
// so quit and restart from starting point
break;
}
// The current path has n AFPs, and we are considering adding
// the (n+1)-th AFP.
// Imagine a matrix where entry ij is D_ij of the i-th and j-th
// AFPs in the path.
// The path similarity is the average of the upper triangle of
// this matrix.
const afp afpJ = curPath[curPathLength];
const double n = (double) curPathLength;
const double curTermCount = n + n * (n - 1) / 2;
const double newTermCount = n + 1 + n * (n + 1) / 2;
// Notice that the new term count is
// the current term count plus n + 1.
const double newSimilarity =
(curTermCount * curPathSimilarity +
n * gapBestSimilarity +
S[afpJ.pA][afpJ.pB]) / newTermCount;
if (newSimilarity > D1) {
curPathSimilarity = newSimilarity;
curPathLength++;
}
else {
// Heuristic -- path is getting sloppy, stop looking
break;
}
} /// END WHILE
//
// At this point, we've found the best path starting at iA, iB.
//
for (int i = 0; i < bufferSize; i++) {
if (curPathLength > lenBuffer[i] ||
(curPathLength == lenBuffer[i] &&
curPathSimilarity > similarityBuffer[i])) {
// Swap the current path with the path in the buffer
int tempLength = lenBuffer[i];
double tempSimilarity = similarityBuffer[i];
path tempPath = pathBuffer[i];
lenBuffer[i] = curPathLength;
similarityBuffer[i] = curPathSimilarity;
pathBuffer[i] = curPath;
curPathLength = tempLength;
curPathSimilarity = tempSimilarity;
curPath = tempPath;
}
}
if (bufferSize < MAX_PATHS) {
lenBuffer[bufferSize] = curPathLength;
similarityBuffer[bufferSize] = curPathSimilarity;
pathBuffer[bufferSize] = curPath;
bufferSize += 1;
}
else {
PyMem_RawFree(curPath);
}
} // ROF -- end for iB
} // ROF -- end for iA
double zScoreBuffer[MAX_PATHS];
for (int i = 0; i < bufferSize; i++) {
const int pathLength = lenBuffer[i];
const double pathSimilarity = similarityBuffer[i];
int gapCount = 0;
for (int j = 1; j < pathLength; j++) {
gapCount += pathBuffer[i][j].pA - pathBuffer[i][j - 1].pA - 1;
gapCount += pathBuffer[i][j].pB - pathBuffer[i][j - 1].pB - 1;
}
zScoreBuffer[i] = calcZScore(fragmentSize, pathLength, pathSimilarity, gapCount);
}
// To make it simpler to use this code and more portable, we are decoupling
// the path finding (the actual CEAlign innovation) from the RMSD
// calculation.
//
// As such, we return the N best paths to Python-land. Since the paths are
// encoded as structs, it's simpler to return the each path as a list of
// lists with the corresponding atom indices. e.g. [path1, path2, path3,
// ..., pathN], where pathN is defined as,
// [[Ai, Aj, Ak, ...], [Bi, Bj, Bk, ...], where An and Bn are equivalent
// coordinates for structures A and B.
// List to store all paths
PyObject *result = PyList_New(bufferSize);
Py_INCREF(result);
for (int o = 0; o < bufferSize; o++) {
// Make a new list to store this path
PyObject *pathAList = PyList_New(0);
PyObject *pathBList = PyList_New(0);
Py_INCREF(pathAList);
Py_INCREF(pathBList);
for (int j = 0; j < lenBuffer[o]; j++) {
const int pA = pathBuffer[o][j].pA;
const int pB = pathBuffer[o][j].pB;
for (int k = 0; k < fragmentSize; k++) {
PyObject *v = Py_BuildValue("i", pA + k);
PyList_Append(pathAList, v);
Py_DECREF(v);
v = Py_BuildValue("i", pB + k);
PyList_Append(pathBList, v);
Py_DECREF(v);
}
}
const double zScore = zScoreBuffer[o];
const int length = lenBuffer[o];
PyObject *pairList = Py_BuildValue("[NN]", pathAList, pathBList);
Py_INCREF(pairList);
PyStructSequence_Field namedtupleFields[] = {
(PyStructSequence_Field) {
"path",
NULL,
},
(PyStructSequence_Field) {
"z_score",
NULL,
},
(PyStructSequence_Field) {
"length",
NULL,
},
{NULL},
};
PyStructSequence_Desc namedtupleDesc = (PyStructSequence_Desc) {
"ccealign.CEAlignment",
NULL,
namedtupleFields,
3,
};
PyTypeObject *namedtupleType =
PyStructSequence_NewType(&namedtupleDesc);
PyObject *namedtuple = PyStructSequence_New(namedtupleType);
PyStructSequence_SetItem(namedtuple, 0, pairList);
PyStructSequence_SetItem(namedtuple, 1, PyFloat_FromDouble(zScore));
PyStructSequence_SetItem(namedtuple, 2, PyLong_FromLong(length * fragmentSize));
PyList_SET_ITEM(result, o, namedtuple);
Py_DECREF(namedtupleType);
}
return result;
}
// Main Function
PyObject *
PyCealign(PyObject *Py_UNUSED(self), PyObject *args)
{
int fragmentSize = 8;
int gapMax = 30;
PyObject *listA, *listB, *result;
/* Unpack the arguments from Python */
PyArg_ParseTuple(args, "OO|ii", &listA, &listB, &fragmentSize, &gapMax);
/* Get the list lengths */
const int lenA = (int)PyList_Size(listA);
const int lenB = (int)PyList_Size(listB);
/* get the coodinates from the Python objects */
pcePoint coordsA = (pcePoint)getCoords(listA, lenA);
pcePoint coordsB = (pcePoint)getCoords(listB, lenB);
/* calculate the distance matrix for each protein */
double **dA = (double **)calcDM(coordsA, lenA);
double **dB = (double **)calcDM(coordsB, lenB);
/* calculate the CE Similarity matrix */
double **S = (double **)calcS(dA, dB, lenA, lenB, fragmentSize);
// Calculate Top N Paths
result = (PyObject *)findPath(S, dA, dB, lenA, lenB, fragmentSize, gapMax);
/* release memory */
PyMem_RawFree(coordsA);
PyMem_RawFree(coordsB);
/* distance matrices */
for (int i = 0; i < lenA; i++)
PyMem_RawFree(dA[i]);
PyMem_RawFree(dA);
for (int i = 0; i < lenB; i++)
PyMem_RawFree(dB[i]);
PyMem_RawFree(dB);
// Similarity matrix
for (int i = 0; i <= lenA - fragmentSize; i++)
PyMem_RawFree(S[i]);
PyMem_RawFree(S);
return result;
}
//
// Python Interface
//
PyDoc_STRVAR(method_doc,
"run_cealign(coordsA, coordsB, fragmentSize, gapMax) -> list\
\n\n\
Find the optimal alignments between two structures, using CEAlign.\
\n\n\
Arguments:\n\
- listA: List of lists with coordinates for structure A.\n\
- listB: List of lists with coordinates for structure B.\n\
- fragmentSize: Size of fragments to be used in alignment.\n\
- gapMax: Maximum gap allowed between two aligned fragment pairs.");
static PyMethodDef CEAlignMethods[] = {
{"run_cealign", PyCealign, METH_VARARGS, method_doc},
{NULL, NULL, 0, NULL}
};
PyDoc_STRVAR(module_doc,
"Pairwise structure alignment of 3D structures using combinatorial extension.\
\n\n\
This module implements a single function: run_cealign. \
Refer to its docstring for more documentation on usage and implementation.");
PyObject *PyInit_ccealign(void)
{
static struct PyModuleDef moduledef = {PyModuleDef_HEAD_INIT,
"ccealign",
module_doc,
-1,
CEAlignMethods,
NULL,
NULL,
NULL,
NULL};
return PyModule_Create(&moduledef);
}
|