File: chapter_entrez.rst

package info (click to toggle)
python-biopython 1.85%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 126,372 kB
  • sloc: xml: 1,047,995; python: 332,722; ansic: 16,944; sql: 1,208; makefile: 140; sh: 81
file content (2122 lines) | stat: -rw-r--r-- 77,279 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
.. _`chapter:entrez`:

Accessing NCBI’s Entrez databases
=================================

Entrez (https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html) is a data
retrieval system that provides users access to NCBI’s databases such as
PubMed, GenBank, GEO, and many others. You can access Entrez from a web
browser to manually enter queries, or you can use Biopython’s
``Bio.Entrez`` module for programmatic access to Entrez. The latter
allows you for example to search PubMed or download GenBank records from
within a Python script.

The ``Bio.Entrez`` module makes use of the Entrez Programming Utilities
(also known as EUtils), consisting of eight tools that are described in
detail on NCBI’s page at https://www.ncbi.nlm.nih.gov/books/NBK25501/.
Each of these tools corresponds to one Python function in the
``Bio.Entrez`` module, as described in the sections below. This module
makes sure that the correct URL is used for the queries, and that NCBI’s
guidelines for responsible data access are being followed.

The output returned by the Entrez Programming Utilities is typically in
XML format. To parse such output, you have several options:

#. Use ``Bio.Entrez``\ ’s parser to parse the XML output into a Python
   object;

#. Use one of the XML parsers available in Python’s standard library;

#. Read the XML output as raw text, and parse it by string searching and
   manipulation.

See the Python documentation for a description of the XML parsers in
Python’s standard library. Here, we discuss the parser in Biopython’s
``Bio.Entrez`` module. This parser can be used to parse data as provided
through ``Bio.Entrez``\ ’s programmatic access functions to Entrez, but
can also be used to parse XML data from NCBI Entrez that are stored in a
file. In the latter case, the XML file should be opened in binary mode
(e.g. ``open("myfile.xml", "rb")``) for the XML parser in ``Bio.Entrez``
to work correctly. Alternatively, you can pass the file name or path to
the XML file, and let ``Bio.Entrez`` take care of opening and closing
the file.

NCBI uses DTD (Document Type Definition) files to describe the structure
of the information contained in XML files. Most of the DTD files used by
NCBI are included in the Biopython distribution. The ``Bio.Entrez``
parser makes use of the DTD files when parsing an XML file returned by
NCBI Entrez.

Occasionally, you may find that the DTD file associated with a specific
XML file is missing in the Biopython distribution. In particular, this
may happen when NCBI updates its DTD files. If this happens,
``Entrez.read`` will show a warning message with the name and URL of the
missing DTD file. The parser will proceed to access the missing DTD file
through the internet, allowing the parsing of the XML file to continue.
However, the parser is much faster if the DTD file is available locally.
For this purpose, please download the DTD file from the URL in the
warning message and place it in the directory
``...site-packages/Bio/Entrez/DTDs``, containing the other DTD files. If
you don’t have write access to this directory, you can also place the
DTD file in ``~/.biopython/Bio/Entrez/DTDs``, where ``~`` represents
your home directory. Since this directory is read before the directory
``...site-packages/Bio/Entrez/DTDs``, you can also put newer versions of
DTD files there if the ones in ``...site-packages/Bio/Entrez/DTDs``
become outdated. Alternatively, if you installed Biopython from source,
you can add the DTD file to the source code’s ``Bio/Entrez/DTDs``
directory, and reinstall Biopython. This will install the new DTD file
in the correct location together with the other DTD files.

The Entrez Programming Utilities can also generate output in other
formats, such as the Fasta or GenBank file formats for sequence
databases, or the MedLine format for the literature database, discussed
in Section :ref:`sec:entrez-specialized-parsers`.

The functions in ``Bio.Entrez`` for programmatic access to Entrez return
data either in binary format or in text format, depending on the type of
data requested. In most cases, these functions return data in text
format by decoding the data obtained from NCBI Entrez to Python strings
under the assumption that the encoding is UTF-8. However, XML data are
returned in binary format. The reason for this is that the encoding is
specified in the XML document itself, which means that we won’t know the
correct encoding to use until we start parsing the file.
``Bio.Entrez``\ ’s parser therefore accepts data in binary format,
extracts the encoding from the XML, and uses it to decode all text in
the XML document to Python strings, ensuring that all text (in
particular in languages other than English) are interpreted correctly.
This is also the reason why you should open an XML file a binary mode
when you want to use ``Bio.Entrez``\ ’s parser to parse the file.

.. _`sec:entrez-guidelines`:

Entrez Guidelines
-----------------

Before using Biopython to access the NCBI’s online resources (via
``Bio.Entrez`` or some of the other modules), please read the `NCBI’s
Entrez User
Requirements <https://www.ncbi.nlm.nih.gov/books/NBK25497/>`__. If the
NCBI finds you are abusing their systems, they can and will ban your
access!

To paraphrase:

-  For any series of more than 100 requests, do this at weekends or
   outside USA peak times. This is up to you to obey.

-  Use the https://eutils.ncbi.nlm.nih.gov address, not the standard
   NCBI Web address. Biopython uses this web address.

-  If you are using a API key, you can make at most 10 queries per
   second, otherwise at most 3 queries per second. This is automatically
   enforced by Biopython. Include ``api_key="MyAPIkey"`` in the argument
   list or set it as a module level variable:

   .. code:: pycon

      >>> from Bio import Entrez
      >>> Entrez.api_key = "MyAPIkey"

-  Use the optional email parameter so the NCBI can contact you if there
   is a problem. You can either explicitly set this as a parameter with
   each call to Entrez (e.g. include ``email="A.N.Other@example.com"``
   in the argument list), or you can set a global email address:

   .. doctest

   .. code:: pycon

      >>> from Bio import Entrez
      >>> Entrez.email = "A.N.Other@example.com"

   ``Bio.Entrez`` will then use this email address with each call to
   Entrez. The ``example.com`` address is a reserved domain name
   specifically for documentation (RFC 2606). Please DO NOT use a random
   email – it’s better not to give an email at all. The email parameter
   has been mandatory since June 1, 2010. In case of excessive usage,
   NCBI will attempt to contact a user at the e-mail address provided
   prior to blocking access to the E-utilities.

-  If you are using Biopython within some larger software suite, use the
   tool parameter to specify this. You can either explicitly set the
   tool name as a parameter with each call to Entrez (e.g. include
   ``tool="MyLocalScript"`` in the argument list), or you can set a
   global tool name:

   .. doctest

   .. code:: pycon

      >>> from Bio import Entrez
      >>> Entrez.tool = "MyLocalScript"

   The tool parameter will default to Biopython.

-  For large queries, the NCBI also recommend using their session
   history feature (the WebEnv session cookie string, see
   Section :ref:`sec:entrez-webenv`). This is only slightly more
   complicated.

In conclusion, be sensible with your usage levels. If you plan to
download lots of data, consider other options. For example, if you want
easy access to all the human genes, consider fetching each chromosome by
FTP as a GenBank file, and importing these into your own BioSQL database
(see Section :ref:`sec:BioSQL`).

.. _`sec:entrez-einfo`:

EInfo: Obtaining information about the Entrez databases
-------------------------------------------------------

EInfo provides field index term counts, last update, and available links
for each of NCBI’s databases. In addition, you can use EInfo to obtain a
list of all database names accessible through the Entrez utilities:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.einfo()
   >>> result = stream.read()
   >>> stream.close()

The variable ``result`` now contains a list of databases in XML format:

.. code:: pycon

   >>> print(result)
   <?xml version="1.0"?>
   <!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN"
    "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">
   <eInfoResult>
   <DbList>
           <DbName>pubmed</DbName>
           <DbName>protein</DbName>
           <DbName>nucleotide</DbName>
           <DbName>nuccore</DbName>
           <DbName>nucgss</DbName>
           <DbName>nucest</DbName>
           <DbName>structure</DbName>
           <DbName>genome</DbName>
           <DbName>books</DbName>
           <DbName>cancerchromosomes</DbName>
           <DbName>cdd</DbName>
           <DbName>gap</DbName>
           <DbName>domains</DbName>
           <DbName>gene</DbName>
           <DbName>genomeprj</DbName>
           <DbName>gensat</DbName>
           <DbName>geo</DbName>
           <DbName>gds</DbName>
           <DbName>homologene</DbName>
           <DbName>journals</DbName>
           <DbName>mesh</DbName>
           <DbName>ncbisearch</DbName>
           <DbName>nlmcatalog</DbName>
           <DbName>omia</DbName>
           <DbName>omim</DbName>
           <DbName>pmc</DbName>
           <DbName>popset</DbName>
           <DbName>probe</DbName>
           <DbName>proteinclusters</DbName>
           <DbName>pcassay</DbName>
           <DbName>pccompound</DbName>
           <DbName>pcsubstance</DbName>
           <DbName>snp</DbName>
           <DbName>taxonomy</DbName>
           <DbName>toolkit</DbName>
           <DbName>unigene</DbName>
           <DbName>unists</DbName>
   </DbList>
   </eInfoResult>

Since this is a fairly simple XML file, we could extract the information
it contains simply by string searching. Using ``Bio.Entrez``\ ’s parser
instead, we can directly parse this XML file into a Python object:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> stream = Entrez.einfo()
   >>> record = Entrez.read(stream)

Now ``record`` is a dictionary with exactly one key:

.. cont-doctest

.. code:: pycon

   >>> record.keys()
   dict_keys(['DbList'])

The values stored in this key is the list of database names shown in the
XML above:

.. code:: pycon

   >>> record["DbList"]
   ['pubmed', 'protein', 'nucleotide', 'nuccore', 'nucgss', 'nucest',
    'structure', 'genome', 'books', 'cancerchromosomes', 'cdd', 'gap',
    'domains', 'gene', 'genomeprj', 'gensat', 'geo', 'gds', 'homologene',
    'journals', 'mesh', 'ncbisearch', 'nlmcatalog', 'omia', 'omim', 'pmc',
    'popset', 'probe', 'proteinclusters', 'pcassay', 'pccompound',
    'pcsubstance', 'snp', 'taxonomy', 'toolkit', 'unigene', 'unists']

For each of these databases, we can use EInfo again to obtain more
information:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.einfo(db="pubmed")
   >>> record = Entrez.read(stream)
   >>> record["DbInfo"]["Description"]
   'PubMed bibliographic record'

.. code:: pycon

   >>> record["DbInfo"]["Count"]
   '17989604'
   >>> record["DbInfo"]["LastUpdate"]
   '2008/05/24 06:45'

Try ``record["DbInfo"].keys()`` for other information stored in this
record. One of the most useful is a list of possible search fields for
use with ESearch:

.. code:: pycon

   >>> for field in record["DbInfo"]["FieldList"]:
   ...     print("%(Name)s, %(FullName)s, %(Description)s" % field)
   ...
   ALL, All Fields, All terms from all searchable fields
   UID, UID, Unique number assigned to publication
   FILT, Filter, Limits the records
   TITL, Title, Words in title of publication
   WORD, Text Word, Free text associated with publication
   MESH, MeSH Terms, Medical Subject Headings assigned to publication
   MAJR, MeSH Major Topic, MeSH terms of major importance to publication
   AUTH, Author, Author(s) of publication
   JOUR, Journal, Journal abbreviation of publication
   AFFL, Affiliation, Author's institutional affiliation and address
   ...

That’s a long list, but indirectly this tells you that for the PubMed
database, you can do things like ``Jones[AUTH]`` to search the author
field, or ``Sanger[AFFL]`` to restrict to authors at the Sanger Centre.
This can be very handy - especially if you are not so familiar with a
particular database.

.. _`sec:entrez-esearch`:

ESearch: Searching the Entrez databases
---------------------------------------

To search any of these databases, we use ``Bio.Entrez.esearch()``. For
example, let’s search in PubMed for publications that include Biopython
in their title:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esearch(db="pubmed", term="biopython[title]", retmax="40")
   >>> record = Entrez.read(stream)
   >>> "19304878" in record["IdList"]
   True

.. code:: pycon

   >>> print(record["IdList"])
   ['22909249', '19304878']

In this output, you see PubMed IDs (including 19304878 which is the PMID
for the Biopython application note), which can be retrieved by EFetch
(see section :ref:`sec:efetch`).

You can also use ESearch to search GenBank. Here we’ll do a quick search
for the *matK* gene in *Cypripedioideae* orchids (see
Section :ref:`sec:entrez-einfo` about EInfo for one way to find out
which fields you can search in each Entrez database):

.. code:: pycon

   >>> stream = Entrez.esearch(
   ...     db="nucleotide", term="Cypripedioideae[Orgn] AND matK[Gene]", idtype="acc"
   ... )
   >>> record = Entrez.read(stream)
   >>> record["Count"]
   '348'
   >>> record["IdList"]
   ['JQ660909.1', 'JQ660908.1', 'JQ660907.1', 'JQ660906.1', ..., 'JQ660890.1']

Each of the IDs (JQ660909.1, JQ660908.1, JQ660907.1, …) is a GenBank
identifier (Accession number). See section :ref:`sec:efetch` for
information on how to actually download these GenBank records.

Note that instead of a species name like ``Cypripedioideae[Orgn]``, you
can restrict the search using an NCBI taxon identifier, here this would
be ``txid158330[Orgn]``. This isn’t currently documented on the ESearch
help page - the NCBI explained this in reply to an email query. You can
often deduce the search term formatting by playing with the Entrez web
interface. For example, including ``complete[prop]`` in a genome search
restricts to just completed genomes.

As a final example, let’s get a list of computational journal titles:

.. code:: pycon

   >>> stream = Entrez.esearch(db="nlmcatalog", term="computational[Journal]", retmax="20")
   >>> record = Entrez.read(stream)
   >>> print("{} computational journals found".format(record["Count"]))
   117 computational Journals found
   >>> print("The first 20 are\n{}".format(record["IdList"]))
   ['101660833', '101664671', '101661657', '101659814', '101657941',
    '101653734', '101669877', '101649614', '101647835', '101639023',
    '101627224', '101647801', '101589678', '101585369', '101645372',
    '101586429', '101582229', '101574747', '101564639', '101671907']

Again, we could use EFetch to obtain more information for each of these
journal IDs.

ESearch has many useful options — see the `ESearch help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch>`__
for more information.

EPost: Uploading a list of identifiers
--------------------------------------

EPost uploads a list of UIs for use in subsequent search strategies; see
the `EPost help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EPost>`__
for more information. It is available from Biopython through the
``Bio.Entrez.epost()`` function.

To give an example of when this is useful, suppose you have a long list
of IDs you want to download using EFetch (maybe sequences, maybe
citations – anything). When you make a request with EFetch your list of
IDs, the database etc, are all turned into a long URL sent to the
server. If your list of IDs is long, this URL gets long, and long URLs
can break (e.g. some proxies don’t cope well).

Instead, you can break this up into two steps, first uploading the list
of IDs using EPost (this uses an “HTML post” internally, rather than an
“HTML get”, getting round the long URL problem). With the history
support, you can then refer to this long list of IDs, and download the
associated data with EFetch.

Let’s look at a simple example to see how EPost works – uploading some
PubMed identifiers:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> id_list = ["19304878", "18606172", "16403221", "16377612", "14871861", "14630660"]
   >>> print(Entrez.epost("pubmed", id=",".join(id_list)).read())
   <?xml version="1.0"?>
   <!DOCTYPE ePostResult PUBLIC "-//NLM//DTD ePostResult, 11 May 2002//EN"
    "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/ePost_020511.dtd">
   <ePostResult>
       <QueryKey>1</QueryKey>
       <WebEnv>NCID_01_206841095_130.14.22.101_9001_1242061629</WebEnv>
   </ePostResult>

The returned XML includes two important strings, ``QueryKey`` and
``WebEnv`` which together define your history session. You would extract
these values for use with another Entrez call such as EFetch:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> id_list = ["19304878", "18606172", "16403221", "16377612", "14871861", "14630660"]
   >>> search_results = Entrez.read(Entrez.epost("pubmed", id=",".join(id_list)))
   >>> webenv = search_results["WebEnv"]
   >>> query_key = search_results["QueryKey"]

Section :ref:`sec:entrez-webenv` shows how to use the history
feature.

ESummary: Retrieving summaries from primary IDs
-----------------------------------------------

ESummary retrieves document summaries from a list of primary IDs (see
the `ESummary help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESummary>`__
for more information). In Biopython, ESummary is available as
``Bio.Entrez.esummary()``. Using the search result above, we can for
example find out more about the journal with ID 30367:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esummary(db="nlmcatalog", id="101660833")
   >>> record = Entrez.read(stream)
   >>> info = record[0]["TitleMainList"][0]
   >>> print("Journal info\nid: {}\nTitle: {}".format(record[0]["Id"], info["Title"]))
   Journal info
   id: 101660833
   Title: IEEE transactions on computational imaging.

.. _`sec:efetch`:

EFetch: Downloading full records from Entrez
--------------------------------------------

EFetch is what you use when you want to retrieve a full record from
Entrez. This covers several possible databases, as described on the main
`EFetch Help page <https://www.ncbi.nlm.nih.gov/books/NBK3837/>`__.

For most of their databases, the NCBI support several different file
formats. Requesting a specific file format from Entrez using
``Bio.Entrez.efetch()`` requires specifying the ``rettype`` and/or
``retmode`` optional arguments. The different combinations are described
for each database type on the pages linked to on `NCBI efetch
webpage <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__.

One common usage is downloading sequences in the FASTA or
GenBank/GenPept plain text formats (which can then be parsed with
``Bio.SeqIO``, see
Sections :ref:`sec:SeqIO_GenBank_Online`
and :ref:`sec:efetch`). From the *Cypripedioideae* example above, we
can download GenBank record EU490707 using ``Bio.Entrez.efetch``:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")
   >>> print(stream.read())
   LOCUS       EU490707                1302 bp    DNA     linear   PLN 26-JUL-2016
   DEFINITION  Selenipedium aequinoctiale maturase K (matK) gene, partial cds;
               chloroplast.
   ACCESSION   EU490707
   VERSION     EU490707.1
   KEYWORDS    .
   SOURCE      chloroplast Selenipedium aequinoctiale
     ORGANISM  Selenipedium aequinoctiale
               Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
               Spermatophyta; Magnoliopsida; Liliopsida; Asparagales; Orchidaceae;
               Cypripedioideae; Selenipedium.
   REFERENCE   1  (bases 1 to 1302)
     AUTHORS   Neubig,K.M., Whitten,W.M., Carlsward,B.S., Blanco,M.A., Endara,L.,
               Williams,N.H. and Moore,M.
     TITLE     Phylogenetic utility of ycf1 in orchids: a plastid gene more
               variable than matK
     JOURNAL   Plant Syst. Evol. 277 (1-2), 75-84 (2009)
   REFERENCE   2  (bases 1 to 1302)
     AUTHORS   Neubig,K.M., Whitten,W.M., Carlsward,B.S., Blanco,M.A.,
               Endara,C.L., Williams,N.H. and Moore,M.J.
     TITLE     Direct Submission
     JOURNAL   Submitted (14-FEB-2008) Department of Botany, University of
               Florida, 220 Bartram Hall, Gainesville, FL 32611-8526, USA
   FEATURES             Location/Qualifiers
        source          1..1302
                        /organism="Selenipedium aequinoctiale"
                        /organelle="plastid:chloroplast"
                        /mol_type="genomic DNA"
                        /specimen_voucher="FLAS:Blanco 2475"
                        /db_xref="taxon:256374"
        gene            <1..>1302
                        /gene="matK"
        CDS             <1..>1302
                        /gene="matK"
                        /codon_start=1
                        /transl_table=11
                        /product="maturase K"
                        /protein_id="ACC99456.1"
                        /translation="IFYEPVEIFGYDNKSSLVLVKRLITRMYQQNFLISSVNDSNQKG
                        FWGHKHFFSSHFSSQMVSEGFGVILEIPFSSQLVSSLEEKKIPKYQNLRSIHSIFPFL
                        EDKFLHLNYVSDLLIPHPIHLEILVQILQCRIKDVPSLHLLRLLFHEYHNLNSLITSK
                        KFIYAFSKRKKRFLWLLYNSYVYECEYLFQFLRKQSSYLRSTSSGVFLERTHLYVKIE
                        HLLVVCCNSFQRILCFLKDPFMHYVRYQGKAILASKGTLILMKKWKFHLVNFWQSYFH
                        FWSQPYRIHIKQLSNYSFSFLGYFSSVLENHLVVRNQMLENSFIINLLTKKFDTIAPV
                        ISLIGSLSKAQFCTVLGHPISKPIWTDFSDSDILDRFCRICRNLCRYHSGSSKKQVLY
                        RIKYILRLSCARTLARKHKSTVRTFMRRLGSGLLEEFFMEEE"
   ORIGIN      
           1 attttttacg aacctgtgga aatttttggt tatgacaata aatctagttt agtacttgtg
          61 aaacgtttaa ttactcgaat gtatcaacag aattttttga tttcttcggt taatgattct
         121 aaccaaaaag gattttgggg gcacaagcat tttttttctt ctcatttttc ttctcaaatg
         181 gtatcagaag gttttggagt cattctggaa attccattct cgtcgcaatt agtatcttct
         241 cttgaagaaa aaaaaatacc aaaatatcag aatttacgat ctattcattc aatatttccc
         301 tttttagaag acaaattttt acatttgaat tatgtgtcag atctactaat accccatccc
         361 atccatctgg aaatcttggt tcaaatcctt caatgccgga tcaaggatgt tccttctttg
         421 catttattgc gattgctttt ccacgaatat cataatttga atagtctcat tacttcaaag
         481 aaattcattt acgccttttc aaaaagaaag aaaagattcc tttggttact atataattct
         541 tatgtatatg aatgcgaata tctattccag tttcttcgta aacagtcttc ttatttacga
         601 tcaacatctt ctggagtctt tcttgagcga acacatttat atgtaaaaat agaacatctt
         661 ctagtagtgt gttgtaattc ttttcagagg atcctatgct ttctcaagga tcctttcatg
         721 cattatgttc gatatcaagg aaaagcaatt ctggcttcaa agggaactct tattctgatg
         781 aagaaatgga aatttcatct tgtgaatttt tggcaatctt attttcactt ttggtctcaa
         841 ccgtatagga ttcatataaa gcaattatcc aactattcct tctcttttct ggggtatttt
         901 tcaagtgtac tagaaaatca tttggtagta agaaatcaaa tgctagagaa ttcatttata
         961 ataaatcttc tgactaagaa attcgatacc atagccccag ttatttctct tattggatca
        1021 ttgtcgaaag ctcaattttg tactgtattg ggtcatccta ttagtaaacc gatctggacc
        1081 gatttctcgg attctgatat tcttgatcga ttttgccgga tatgtagaaa tctttgtcgt
        1141 tatcacagcg gatcctcaaa aaaacaggtt ttgtatcgta taaaatatat acttcgactt
        1201 tcgtgtgcta gaactttggc acggaaacat aaaagtacag tacgcacttt tatgcgaaga
        1261 ttaggttcgg gattattaga agaattcttt atggaagaag aa
   //
   <BLANKLINE>
   <BLANKLINE>

Please be aware that as of October 2016 GI identifiers are discontinued
in favor of accession numbers. You can still fetch sequences based on
their GI, but new sequences are no longer given this identifier. You
should instead refer to them by the “Accession number” as done in the
example.

The arguments ``rettype="gb"`` and ``retmode="text"`` let us download
this record in the GenBank format.

Note that until Easter 2009, the Entrez EFetch API let you use “genbank”
as the return type, however the NCBI now insist on using the official
return types of “gb” or “gbwithparts” (or “gp” for proteins) as
described on online. Also note that until Feb 2012, the Entrez EFetch
API would default to returning plain text files, but now defaults to
XML.

Alternatively, you could for example use ``rettype="fasta"`` to get the
Fasta-format; see the `EFetch Sequences Help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__
for other options. Remember – the available formats depend on which
database you are downloading from - see the main `EFetch Help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__.

If you fetch the record in one of the formats accepted by ``Bio.SeqIO``
(see Chapter :ref:`chapter:seqio`), you could directly
parse it into a ``SeqRecord``:

.. doctest . internet

.. code:: pycon

   >>> from Bio import SeqIO
   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")
   >>> record = SeqIO.read(stream, "genbank")
   >>> stream.close()
   >>> print(record.id)
   EU490707.1
   >>> print(record.name)
   EU490707
   >>> print(record.description)
   Selenipedium aequinoctiale maturase K (matK) gene, partial cds; chloroplast
   >>> print(len(record.features))
   3
   >>> record.seq
   Seq('ATTTTTTACGAACCTGTGGAAATTTTTGGTTATGACAATAAATCTAGTTTAGTA...GAA')

Note that a more typical use would be to save the sequence data to a
local file, and *then* parse it with ``Bio.SeqIO``. This can save you
having to re-download the same file repeatedly while working on your
script, and places less load on the NCBI’s servers. For example:

.. code:: python

   import os
   from Bio import SeqIO
   from Bio import Entrez

   Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   filename = "EU490707.gbk"
   if not os.path.isfile(filename):
       # Downloading...
       stream = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")
       output = open(filename, "w")
       output.write(streame.read())
       output.close()
       stream.close()
       print("Saved")

   print("Parsing...")
   record = SeqIO.read(filename, "genbank")
   print(record)

To get the output in XML format, which you can parse using the
``Bio.Entrez.read()`` function, use ``retmode="xml"``:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.efetch(db="nucleotide", id="EU490707", retmode="xml")
   >>> record = Entrez.read(stream)
   >>> stream.close()
   >>> record[0]["GBSeq_definition"]
   'Selenipedium aequinoctiale maturase K (matK) gene, partial cds; chloroplast'
   >>> record[0]["GBSeq_source"]
   'chloroplast Selenipedium aequinoctiale'

So, that dealt with sequences. For examples of parsing file formats
specific to the other databases (e.g. the ``MEDLINE`` format used in
PubMed), see Section :ref:`sec:entrez-specialized-parsers`.

If you want to perform a search with ``Bio.Entrez.esearch()``, and then
download the records with ``Bio.Entrez.efetch()``, you should use the
WebEnv history feature – see Section :ref:`sec:entrez-webenv`.

.. _`sec:elink`:

ELink: Searching for related items in NCBI Entrez
-------------------------------------------------

ELink, available from Biopython as ``Bio.Entrez.elink()``, can be used
to find related items in the NCBI Entrez databases. For example, you can
us this to find nucleotide entries for an entry in the gene database,
and other cool stuff.

Let’s use ELink to find articles related to the Biopython application
note published in *Bioinformatics* in 2009. The PubMed ID of this
article is 19304878:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> pmid = "19304878"
   >>> record = Entrez.read(Entrez.elink(dbfrom="pubmed", id=pmid))

The ``record`` variable consists of a Python list, one for each database
in which we searched. Since we specified only one PubMed ID to search
for, ``record`` contains only one item. This item is a dictionary
containing information about our search term, as well as all the related
items that were found:

.. cont-doctest

.. code:: pycon

   >>> record[0]["DbFrom"]
   'pubmed'
   >>> record[0]["IdList"]
   ['19304878']

The ``"LinkSetDb"`` key contains the search results, stored as a list
consisting of one item for each target database. In our search results,
we only find hits in the PubMed database (although sub-divided into
categories):

.. cont-doctest

.. code:: pycon

   >>> len(record[0]["LinkSetDb"])
   8

The exact numbers should increase over time:

.. code:: pycon

   >>> for linksetdb in record[0]["LinkSetDb"]:
   ...     print(linksetdb["DbTo"], linksetdb["LinkName"], len(linksetdb["Link"]))
   ...
   pubmed pubmed_pubmed 284
   pubmed pubmed_pubmed_alsoviewed 7
   pubmed pubmed_pubmed_citedin 926
   pubmed pubmed_pubmed_combined 6
   pubmed pubmed_pubmed_five 6
   pubmed pubmed_pubmed_refs 17
   pubmed pubmed_pubmed_reviews 12
   pubmed pubmed_pubmed_reviews_five 6

The actual search results are stored as under the ``"Link"`` key.

Let’s now at the first search result:

.. code:: pycon

   >>> record[0]["LinkSetDb"][0]["Link"][0]
   {'Id': '19304878'}

This is the article we searched for, which doesn’t help us much, so
let’s look at the second search result:

.. code:: pycon

   >>> record[0]["LinkSetDb"][0]["Link"][1]
   {'Id': '14630660'}

This paper, with PubMed ID 14630660, is about the Biopython PDB parser.

We can use a loop to print out all PubMed IDs:

.. code:: pycon

   >>> for link in record[0]["LinkSetDb"][0]["Link"]:
   ...     print(link["Id"])
   ...
   19304878
   14630660
   18689808
   17121776
   16377612
   12368254
   ......

Now that was nice, but personally I am often more interested to find out
if a paper has been cited. Well, ELink can do that too – at least for
journals in Pubmed Central (see
Section :ref:`sec:elink-citations`).

For help on ELink, see the `ELink help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ELink>`__.
There is an entire sub-page just for the `link
names <https://eutils.ncbi.nlm.nih.gov/corehtml/query/static/entrezlinks.html>`__,
describing how different databases can be cross referenced.

EGQuery: Global Query - counts for search terms
-----------------------------------------------

EGQuery provides counts for a search term in each of the Entrez
databases (i.e. a global query). This is particularly useful to find out
how many items your search terms would find in each database without
actually performing lots of separate searches with ESearch (see the
example in :ref:`sec:entrez_example_genbank` below).

In this example, we use ``Bio.Entrez.egquery()`` to obtain the counts
for “Biopython”:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.egquery(term="biopython")
   >>> record = Entrez.read(stream)
   >>> for row in record["eGQueryResult"]:
   ...     print(row["DbName"], row["Count"])
   ...
   pubmed 6
   pmc 62
   journals 0
   ...

See the `EGQuery help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EGQuery>`__
for more information.

ESpell: Obtaining spelling suggestions
--------------------------------------

ESpell retrieves spelling suggestions. In this example, we use
``Bio.Entrez.espell()`` to obtain the correct spelling of Biopython:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.espell(term="biopythooon")
   >>> record = Entrez.read(stream)
   >>> record["Query"]
   'biopythooon'
   >>> record["CorrectedQuery"]
   'biopython'

See the `ESpell help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESpell>`__
for more information. The main use of this is for GUI tools to provide
automatic suggestions for search terms.

Parsing huge Entrez XML files
-----------------------------

The ``Entrez.read`` function reads the entire XML file returned by
Entrez into a single Python object, which is kept in memory. To parse
Entrez XML files too large to fit in memory, you can use the function
``Entrez.parse``. This is a generator function that reads records in the
XML file one by one. This function is only useful if the XML file
reflects a Python list object (in other words, if ``Entrez.read`` on a
computer with infinite memory resources would return a Python list).

For example, you can download the entire Entrez Gene database for a
given organism as a file from NCBI’s ftp site. These files can be very
large. As an example, on September 4, 2009, the file
``Homo_sapiens.ags.gz``, containing the Entrez Gene database for human,
had a size of 116576 kB. This file, which is in the ``ASN`` format, can
be converted into an XML file using NCBI’s ``gene2xml`` program (see
NCBI’s ftp site for more information):

.. code:: console

   $ gene2xml -b T -i Homo_sapiens.ags -o Homo_sapiens.xml

The resulting XML file has a size of 6.1 GB. Attempting ``Entrez.read``
on this file will result in a ``MemoryError`` on many computers.

The XML file ``Homo_sapiens.xml`` consists of a list of Entrez gene
records, each corresponding to one Entrez gene in human.
``Entrez.parse`` retrieves these gene records one by one. You can then
print out or store the relevant information in each record by iterating
over the records. For example, this script iterates over the Entrez gene
records and prints out the gene numbers and names for all current genes:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = open("Homo_sapiens.xml", "rb")
   >>> records = Entrez.parse(stream)

Alternatively, you can use

.. code:: pycon

   >>> records = Entrez.parse("Homo_sapiens.xml")

and let ``Bio.Entrez`` take care of opening and closing the file. This
is safer, as the file will then automatically be closed after parsing
it, or if an error occurs.

.. code:: pycon

   >>> for record in records:
   ...     status = record["Entrezgene_track-info"]["Gene-track"]["Gene-track_status"]
   ...     if status.attributes["value"] == "discontinued":
   ...         continue
   ...     geneid = record["Entrezgene_track-info"]["Gene-track"]["Gene-track_geneid"]
   ...     genename = record["Entrezgene_gene"]["Gene-ref"]["Gene-ref_locus"]
   ...     print(geneid, genename)
   ...
   1 A1BG
   2 A2M
   3 A2MP
   8 AA
   9 NAT1
   10 NAT2
   11 AACP
   12 SERPINA3
   13 AADAC
   14 AAMP
   15 AANAT
   16 AARS
   17 AAVS1
   ...

HTML escape characters
----------------------

Pubmed records may contain HTML tags to indicate e.g. subscripts,
superscripts, or italic text, as well as mathematical symbols via
MathML. By default, the ``Bio.Entrez`` parser treats all text as plain
text without markup; for example, the fragment “:math:`P < 0.05`” in the
abstract of a Pubmed record, which is encoded as

.. code:: text

   <i>P</i> &lt; 0.05

in the XML returned by Entrez, is converted to the Python string

.. code:: text

   '<i>P</i> < 0.05'

by the ``Bio.Entrez`` parser. While this is more human-readable, it is
not valid HTML due to the less-than sign, and makes further processing
of the text e.g. by an HTML parser impractical. To ensure that all
strings returned by the parser are valid HTML, call ``Entrez.read`` or
``Entrez.parse`` with the ``escape`` argument set to ``True``:

.. code:: pycon

   >>> record = Entrez.read(stream, escape=True)

The parser will then replace all characters disallowed in HTML by their
HTML-escaped equivalent; in the example above, the parser will generate

.. code:: text

   '<i>P</i> &lt; 0.05'

which is a valid HTML fragment. By default, ``escape`` is ``False``.

Handling errors
---------------

The file is not an XML file
~~~~~~~~~~~~~~~~~~~~~~~~~~~

For example, this error occurs if you try to parse a Fasta file as if it
were an XML file:

.. doctest ../Tests/GenBank

.. code:: pycon

   >>> from Bio import Entrez
   >>> stream = open("NC_005816.fna", "rb")  # a Fasta file
   >>> record = Entrez.read(stream)
   Traceback (most recent call last):
     ...
   Bio.Entrez.Parser.NotXMLError: Failed to parse the XML data (syntax error: line 1, column 0). Please make sure that the input data are in XML format.

Here, the parser didn’t find the ``<?xml ...`` tag with which an XML
file is supposed to start, and therefore decides (correctly) that the
file is not an XML file.

The file ends prematurely or is otherwise corrupted
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When your file is in the XML format but is corrupted (for example, by
ending prematurely), the parser will raise a CorruptedXMLError.

Here is an example of an XML file that ends prematurely:

.. code:: text

   <?xml version="1.0"?>
   <!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">
   <eInfoResult>
   <DbList>
           <DbName>pubmed</DbName>
           <DbName>protein</DbName>
           <DbName>nucleotide</DbName>
           <DbName>nuccore</DbName>
           <DbName>nucgss</DbName>
           <DbName>nucest</DbName>
           <DbName>structure</DbName>
           <DbName>genome</DbName>
           <DbName>books</DbName>
           <DbName>cancerchromosomes</DbName>
           <DbName>cdd</DbName>

which will generate the following traceback:

.. code:: pycon

   >>> Entrez.read(stream)
   Traceback (most recent call last):
     ...
   Bio.Entrez.Parser.CorruptedXMLError: Failed to parse the XML data (no element found: line 16, column 0). Please make sure that the input data are not corrupted.

Note that the error message tells you at what point in the XML file the
error was detected.

The file contains items that are missing from the associated DTD
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is an example of an XML file containing tags that do not have a
description in the corresponding DTD file:

.. code:: text

   <?xml version="1.0"?>
   <!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">
   <eInfoResult>
           <DbInfo>
           <DbName>pubmed</DbName>
           <MenuName>PubMed</MenuName>
           <Description>PubMed bibliographic record</Description>
           <Count>20161961</Count>
           <LastUpdate>2010/09/10 04:52</LastUpdate>
           <FieldList>
                   <Field>
   ...
                   </Field>
           </FieldList>
           <DocsumList>
                   <Docsum>
                           <DsName>PubDate</DsName>
                           <DsType>4</DsType>
                           <DsTypeName>string</DsTypeName>
                   </Docsum>
                   <Docsum>
                           <DsName>EPubDate</DsName>
   ...
           </DbInfo>
   </eInfoResult>

In this file, for some reason the tag ``<DocsumList>`` (and several
others) are not listed in the DTD file ``eInfo_020511.dtd``, which is
specified on the second line as the DTD for this XML file. By default,
the parser will stop and raise a ValidationError if it cannot find some
tag in the DTD:

.. doctest ../Tests/Entrez/

.. code:: pycon

   >>> from Bio import Entrez
   >>> stream = open("einfo3.xml", "rb")
   >>> record = Entrez.read(stream)
   Traceback (most recent call last):
     ...
   Bio.Entrez.Parser.ValidationError: Failed to find tag 'DocsumList' in the DTD. To skip all tags that are not represented in the DTD, please call Bio.Entrez.read or Bio.Entrez.parse with validate=False.

Optionally, you can instruct the parser to skip such tags instead of
raising a ValidationError. This is done by calling ``Entrez.read`` or
``Entrez.parse`` with the argument ``validate`` equal to False:

.. doctest ../Tests/Entrez/

.. code:: pycon

   >>> from Bio import Entrez
   >>> stream = open("einfo3.xml", "rb")
   >>> record = Entrez.read(stream, validate=False)
   >>> stream.close()

Of course, the information contained in the XML tags that are not in the
DTD are not present in the record returned by ``Entrez.read``.

The file contains an error message
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This may occur, for example, when you attempt to access a PubMed record
for a nonexistent PubMed ID. By default, this will raise a
``RuntimeError``:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esummary(db="pubmed", id="99999999")
   >>> record = Entrez.read(stream)
   Traceback (most recent call last):
   ...
   RuntimeError: UID=99999999: cannot get document summary

If you are accessing multiple PubMed records, the ``RuntimeError`` would
prevent you from receiving results for any of the PubMed records if one
of the PubMed IDs is incorrect. To circumvent this, you can set the
``ignore_errors`` argument to ``True``. This will return the requested
results for the valid PubMed IDs, and an ``ErrorElement`` for the
incorrect ID:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esummary(db="pubmed", id="19304878,99999999,31278684")
   >>> record = Entrez.read(stream, ignore_errors=True)
   >>> len(record)
   3
   >>> record[0].tag
   'DocSum'
   >>> record[0]["Title"]
   'Biopython: freely available Python tools for computational molecular biology and bioinformatics.'
   >>> record[1].tag
   'ERROR'
   >>> record[1]
   ErrorElement('UID=99999999: cannot get document summary')
   >>> record[2].tag
   'DocSum'
   >>> record[2]["Title"]
   'Sharing Programming Resources Between Bio* Projects.'

.. _`sec:entrez-specialized-parsers`:

Specialized parsers
-------------------

The ``Bio.Entrez.read()`` function can parse most (if not all) XML
output returned by Entrez. Entrez typically allows you to retrieve
records in other formats, which may have some advantages compared to the
XML format in terms of readability (or download size).

To request a specific file format from Entrez using
``Bio.Entrez.efetch()`` requires specifying the ``rettype`` and/or
``retmode`` optional arguments. The different combinations are described
for each database type on the `NCBI efetch
webpage <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__.

One obvious case is you may prefer to download sequences in the FASTA or
GenBank/GenPept plain text formats (which can then be parsed with
``Bio.SeqIO``, see
Sections :ref:`sec:SeqIO_GenBank_Online`
and :ref:`sec:efetch`). For the literature databases, Biopython
contains a parser for the ``MEDLINE`` format used in PubMed.

.. _`sec:entrez-and-medline`:

Parsing Medline records
~~~~~~~~~~~~~~~~~~~~~~~

You can find the Medline parser in ``Bio.Medline``. Suppose we want to
parse the file ``pubmed_result1.txt``, containing one Medline record.
You can find this file in Biopython’s ``Tests\Medline`` directory. The
file looks like this:

.. code:: text

   PMID- 12230038
   OWN - NLM
   STAT- MEDLINE
   DA  - 20020916
   DCOM- 20030606
   LR  - 20041117
   PUBM- Print
   IS  - 1467-5463 (Print)
   VI  - 3
   IP  - 3
   DP  - 2002 Sep
   TI  - The Bio* toolkits--a brief overview.
   PG  - 296-302
   AB  - Bioinformatics research is often difficult to do with commercial software. The
         Open Source BioPerl, BioPython and Biojava projects provide toolkits with
   ...

We first open the file and then parse it:

.. doctest ../Tests/Medline

.. code:: pycon

   >>> from Bio import Medline
   >>> with open("pubmed_result1.txt") as stream:
   ...     record = Medline.read(stream)
   ...

The ``record`` now contains the Medline record as a Python dictionary:

.. cont-doctest

.. code:: pycon

   >>> record["PMID"]
   '12230038'

.. code:: pycon

   >>> record["AB"]
   'Bioinformatics research is often difficult to do with commercial software.
   The Open Source BioPerl, BioPython and Biojava projects provide toolkits with
   multiple functionality that make it easier to create customized pipelines or
   analysis. This review briefly compares the quirks of the underlying languages
   and the functionality, documentation, utility and relative advantages of the
   Bio counterparts, particularly from the point of view of the beginning
   biologist programmer.'

The key names used in a Medline record can be rather obscure; use

.. code:: pycon

   >>> help(record)

for a brief summary.

To parse a file containing multiple Medline records, you can use the
``parse`` function instead:

.. doctest ../Tests/Medline

.. code:: pycon

   >>> from Bio import Medline
   >>> with open("pubmed_result2.txt") as stream:
   ...     for record in Medline.parse(stream):
   ...         print(record["TI"])
   ...
   A high level interface to SCOP and ASTRAL implemented in python.
   GenomeDiagram: a python package for the visualization of large-scale genomic data.
   Open source clustering software.
   PDB file parser and structure class implemented in Python.

Instead of parsing Medline records stored in files, you can also parse
Medline records downloaded by ``Bio.Entrez.efetch``. For example, let’s
look at all Medline records in PubMed related to Biopython:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esearch(db="pubmed", term="biopython")
   >>> record = Entrez.read(stream)
   >>> record["IdList"]
   ['19304878', '18606172', '16403221', '16377612', '14871861', '14630660', '12230038']

We now use ``Bio.Entrez.efetch`` to download these Medline records:

.. code:: pycon

   >>> idlist = record["IdList"]
   >>> stream = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text")

Here, we specify ``rettype="medline", retmode="text"`` to obtain the
Medline records in plain-text Medline format. Now we use ``Bio.Medline``
to parse these records:

.. code:: pycon

   >>> from Bio import Medline
   >>> records = Medline.parse(stream)
   >>> for record in records:
   ...     print(record["AU"])
   ...
   ['Cock PJ', 'Antao T', 'Chang JT', 'Chapman BA', 'Cox CJ', 'Dalke A', ..., 'de Hoon MJ']
   ['Munteanu CR', 'Gonzalez-Diaz H', 'Magalhaes AL']
   ['Casbon JA', 'Crooks GE', 'Saqi MA']
   ['Pritchard L', 'White JA', 'Birch PR', 'Toth IK']
   ['de Hoon MJ', 'Imoto S', 'Nolan J', 'Miyano S']
   ['Hamelryck T', 'Manderick B']
   ['Mangalam H']

For comparison, here we show an example using the XML format:

.. code:: pycon

   >>> stream = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="xml")
   >>> records = Entrez.read(stream)
   >>> for record in records["PubmedArticle"]:
   ...     print(record["MedlineCitation"]["Article"]["ArticleTitle"])
   ...
   Biopython: freely available Python tools for computational molecular biology and
    bioinformatics.
   Enzymes/non-enzymes classification model complexity based on composition, sequence,
    3D and topological indices.
   A high level interface to SCOP and ASTRAL implemented in python.
   GenomeDiagram: a python package for the visualization of large-scale genomic data.
   Open source clustering software.
   PDB file parser and structure class implemented in Python.
   The Bio* toolkits--a brief overview.

Note that in both of these examples, for simplicity we have naively
combined ESearch and EFetch. In this situation, the NCBI would expect
you to use their history feature, as illustrated in
Section :ref:`sec:entrez-webenv`.

Parsing GEO records
~~~~~~~~~~~~~~~~~~~

GEO (`Gene Expression Omnibus <https://www.ncbi.nlm.nih.gov/geo/>`__) is
a data repository of high-throughput gene expression and hybridization
array data. The ``Bio.Geo`` module can be used to parse GEO-formatted
data.

The following code fragment shows how to parse the example GEO file
``GSE16.txt`` into a record and print the record:

.. code:: pycon

   >>> from Bio import Geo
   >>> stream = open("GSE16.txt")
   >>> records = Geo.parse(stream)
   >>> for record in records:
   ...     print(record)
   ...

You can search the “gds” database (GEO datasets) with ESearch:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esearch(db="gds", term="GSE16")
   >>> record = Entrez.read(stream)
   >>> stream.close()
   >>> record["Count"]
   '27'

.. code:: pycon

   >>> record["IdList"]
   ['200000016', '100000028', ...]

From the Entrez website, UID “200000016” is GDS16 while the other hit
“100000028” is for the associated platform, GPL28. Unfortunately, at the
time of writing the NCBI don’t seem to support downloading GEO files
using Entrez (not as XML, nor in the *Simple Omnibus Format in Text*
(SOFT) format).

However, it is actually pretty straight forward to download the GEO
files by FTP from ftp://ftp.ncbi.nih.gov/pub/geo/ instead. In this case
you might want
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SOFT/by_series/GSE16/GSE16_family.soft.gz
(a compressed file, see the Python module gzip).

Parsing UniGene records
~~~~~~~~~~~~~~~~~~~~~~~

UniGene is an NCBI database of the transcriptome, with each UniGene
record showing the set of transcripts that are associated with a
particular gene in a specific organism. A typical UniGene record looks
like this:

.. code:: text

   ID          Hs.2
   TITLE       N-acetyltransferase 2 (arylamine N-acetyltransferase)
   GENE        NAT2
   CYTOBAND    8p22
   GENE_ID     10
   LOCUSLINK   10
   HOMOL       YES
   EXPRESS      bone| connective tissue| intestine| liver| liver tumor| normal| soft tissue/muscle tissue tumor| adult
   RESTR_EXPR   adult
   CHROMOSOME  8
   STS         ACC=PMC310725P3 UNISTS=272646
   STS         ACC=WIAF-2120 UNISTS=44576
   STS         ACC=G59899 UNISTS=137181
   ...
   STS         ACC=GDB:187676 UNISTS=155563
   PROTSIM     ORG=10090; PROTGI=6754794; PROTID=NP_035004.1; PCT=76.55; ALN=288
   PROTSIM     ORG=9796; PROTGI=149742490; PROTID=XP_001487907.1; PCT=79.66; ALN=288
   PROTSIM     ORG=9986; PROTGI=126722851; PROTID=NP_001075655.1; PCT=76.90; ALN=288
   ...
   PROTSIM     ORG=9598; PROTGI=114619004; PROTID=XP_519631.2; PCT=98.28; ALN=288

   SCOUNT      38
   SEQUENCE    ACC=BC067218.1; NID=g45501306; PID=g45501307; SEQTYPE=mRNA
   SEQUENCE    ACC=NM_000015.2; NID=g116295259; PID=g116295260; SEQTYPE=mRNA
   SEQUENCE    ACC=D90042.1; NID=g219415; PID=g219416; SEQTYPE=mRNA
   SEQUENCE    ACC=D90040.1; NID=g219411; PID=g219412; SEQTYPE=mRNA
   SEQUENCE    ACC=BC015878.1; NID=g16198419; PID=g16198420; SEQTYPE=mRNA
   SEQUENCE    ACC=CR407631.1; NID=g47115198; PID=g47115199; SEQTYPE=mRNA
   SEQUENCE    ACC=BG569293.1; NID=g13576946; CLONE=IMAGE:4722596; END=5'; LID=6989; SEQTYPE=EST; TRACE=44157214
   ...
   SEQUENCE    ACC=AU099534.1; NID=g13550663; CLONE=HSI08034; END=5'; LID=8800; SEQTYPE=EST
   //

This particular record shows the set of transcripts (shown in the
``SEQUENCE`` lines) that originate from the human gene NAT2, encoding en
N-acetyltransferase. The ``PROTSIM`` lines show proteins with
significant similarity to NAT2, whereas the ``STS`` lines show the
corresponding sequence-tagged sites in the genome.

To parse UniGene files, use the ``Bio.UniGene`` module:

.. code:: pycon

   >>> from Bio import UniGene
   >>> input = open("myunigenefile.data")
   >>> record = UniGene.read(input)

The ``record`` returned by ``UniGene.read`` is a Python object with
attributes corresponding to the fields in the UniGene record. For
example,

.. code:: pycon

   >>> record.ID
   "Hs.2"
   >>> record.title
   "N-acetyltransferase 2 (arylamine N-acetyltransferase)"

The ``EXPRESS`` and ``RESTR_EXPR`` lines are stored as Python lists of
strings:

.. code:: python

   [
       "bone",
       "connective tissue",
       "intestine",
       "liver",
       "liver tumor",
       "normal",
       "soft tissue/muscle tissue tumor",
       "adult",
   ]

Specialized objects are returned for the ``STS``, ``PROTSIM``, and
``SEQUENCE`` lines, storing the keys shown in each line as attributes:

.. code:: pycon

   >>> record.sts[0].acc
   'PMC310725P3'
   >>> record.sts[0].unists
   '272646'

and similarly for the ``PROTSIM`` and ``SEQUENCE`` lines.

To parse a file containing more than one UniGene record, use the
``parse`` function in ``Bio.UniGene``:

.. code:: pycon

   >>> from Bio import UniGene
   >>> input = open("unigenerecords.data")
   >>> records = UniGene.parse(input)
   >>> for record in records:
   ...     print(record.ID)
   ...

Using a proxy
-------------

Normally you won’t have to worry about using a proxy, but if this is an
issue on your network here is how to deal with it. Internally,
``Bio.Entrez`` uses the standard Python library ``urllib`` for accessing
the NCBI servers. This will check an environment variable called
``http_proxy`` to configure any simple proxy automatically.
Unfortunately this module does not support the use of proxies which
require authentication.

You may choose to set the ``http_proxy`` environment variable once (how
you do this will depend on your operating system). Alternatively you can
set this within Python at the start of your script, for example:

.. code:: python

   import os

   os.environ["http_proxy"] = "http://proxyhost.example.com:8080"

See the `urllib
documentation <https://docs.python.org/2/library/urllib.html>`__ for
more details.

.. _`sec:entrez_examples`:

Examples
--------

.. _`sec:pub_med`:

PubMed and Medline
~~~~~~~~~~~~~~~~~~

If you are in the medical field or interested in human issues (and many
times even if you are not!), PubMed
(https://www.ncbi.nlm.nih.gov/PubMed/) is an excellent source of all
kinds of goodies. So like other things, we’d like to be able to grab
information from it and use it in Python scripts.

In this example, we will query PubMed for all articles having to do with
orchids (see section :ref:`sec:orchids` for our
motivation). We first check how many of such articles there are:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.egquery(term="orchid")
   >>> record = Entrez.read(stream)
   >>> for row in record["eGQueryResult"]:
   ...     if row["DbName"] == "pubmed":
   ...         print(row["Count"])
   ...
   463

Now we use the ``Bio.Entrez.efetch`` function to download the PubMed IDs
of these 463 articles:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esearch(db="pubmed", term="orchid", retmax=463)
   >>> record = Entrez.read(stream)
   >>> stream.close()
   >>> idlist = record["IdList"]

This returns a Python list containing all of the PubMed IDs of articles
related to orchids:

.. code:: pycon

   >>> print(idlist)
   ['18680603', '18665331', '18661158', '18627489', '18627452', '18612381',
   '18594007', '18591784', '18589523', '18579475', '18575811', '18575690',
   ...

Now that we’ve got them, we obviously want to get the corresponding
Medline records and extract the information from them. Here, we’ll
download the Medline records in the Medline flat-file format, and use
the ``Bio.Medline`` module to parse them:

.. cont-doctest

.. code:: pycon

   >>> from Bio import Medline
   >>> stream = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text")
   >>> records = Medline.parse(stream)

NOTE - We’ve just done a separate search and fetch here, the NCBI much
prefer you to take advantage of their history support in this situation.
See Section :ref:`sec:entrez-webenv`.

Keep in mind that ``records`` is an iterator, so you can iterate through
the records only once. If you want to save the records, you can convert
them to a list:

.. cont-doctest

.. code:: pycon

   >>> records = list(records)

Let’s now iterate over the records to print out some information about
each record:

.. code:: pycon

   >>> for record in records:
   ...     print("title:", record.get("TI", "?"))
   ...     print("authors:", record.get("AU", "?"))
   ...     print("source:", record.get("SO", "?"))
   ...     print("")
   ...

The output for this looks like:

.. code:: text

   title: Sex pheromone mimicry in the early spider orchid (ophrys sphegodes):
   patterns of hydrocarbons as the key mechanism for pollination by sexual
   deception [In Process Citation]
   authors: ['Schiestl FP', 'Ayasse M', 'Paulus HF', 'Lofstedt C', 'Hansson BS',
   'Ibarra F', 'Francke W']
   source: J Comp Physiol [A] 2000 Jun;186(6):567-74

Especially interesting to note is the list of authors, which is returned
as a standard Python list. This makes it easy to manipulate and search
using standard Python tools. For instance, we could loop through a whole
bunch of entries searching for a particular author with code like the
following:

.. code:: pycon

   >>> search_author = "Waits T"
   >>> for record in records:
   ...     if not "AU" in record:
   ...         continue
   ...     if search_author in record["AU"]:
   ...         print("Author %s found: %s" % (search_author, record["SO"]))
   ...

Hopefully this section gave you an idea of the power and flexibility of
the Entrez and Medline interfaces and how they can be used together.

.. _`sec:entrez_example_genbank`:

Searching, downloading, and parsing Entrez Nucleotide records
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here we’ll show a simple example of performing a remote Entrez query. In
section :ref:`sec:orchids` of the parsing examples, we
talked about using NCBI’s Entrez website to search the NCBI nucleotide
databases for info on Cypripedioideae, our friends the lady slipper
orchids. Now, we’ll look at how to automate that process using a Python
script. In this example, we’ll just show how to connect, get the
results, and parse them, with the Entrez module doing all of the work.

First, we use EGQuery to find out the number of results we will get
before actually downloading them. EGQuery will tell us how many search
results were found in each of the databases, but for this example we are
only interested in nucleotides:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.egquery(term="Cypripedioideae")
   >>> record = Entrez.read(stream)
   >>> for row in record["eGQueryResult"]:
   ...     if row["DbName"] == "nuccore":
   ...         print(row["Count"])
   ...
   4457

So, we expect to find 4457 Entrez Nucleotide records (this increased
from 814 records in 2008; it is likely to continue to increase in the
future). If you find some ridiculously high number of hits, you may want
to reconsider if you really want to download all of them, which is our
next step. Let’s use the ``retmax`` argument to restrict the maximum
number of records retrieved to the number available in 2008:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esearch(
   ...     db="nucleotide", term="Cypripedioideae", retmax=814, idtype="acc"
   ... )
   >>> record = Entrez.read(stream)
   >>> stream.close()

Here, ``record`` is a Python dictionary containing the search results
and some auxiliary information. Just for information, let’s look at what
is stored in this dictionary:

.. code:: pycon

   >>> print(record.keys())
   ['Count', 'RetMax', 'IdList', 'TranslationSet', 'RetStart', 'QueryTranslation']

First, let’s check how many results were found:

.. code:: pycon

   >>> print(record["Count"])
   '4457'

You might have expected this to be 814, the maximum number of records we
asked to retrieve. However, ``Count`` represents the total number of
records available for that search, not how many were retrieved. The
retrieved records are stored in ``record['IdList']``, which should
contain the total number we asked for:

.. code:: pycon

   >>> len(record["IdList"])
   814

Let’s look at the first five results:

.. code:: pycon

   >>> record["IdList"][:5]
   ['KX265015.1', 'KX265014.1', 'KX265013.1', 'KX265012.1', 'KX265011.1']

We can download these records using ``efetch``. While you could download
these records one by one, to reduce the load on NCBI’s servers, it is
better to fetch a bunch of records at the same time, shown below.
However, in this situation you should ideally be using the history
feature described later in Section :ref:`sec:entrez-webenv`.

.. code:: pycon

   >>> idlist = ",".join(record["IdList"][:5])
   >>> print(idlist)
   KX265015.1, KX265014.1, KX265013.1, KX265012.1, KX265011.1]
   >>> stream = Entrez.efetch(db="nucleotide", id=idlist, retmode="xml")
   >>> records = Entrez.read(stream)
   >>> len(records)
   5

Each of these records corresponds to one GenBank record.

.. code:: pycon

   >>> print(records[0].keys())
   ['GBSeq_moltype', 'GBSeq_source', 'GBSeq_sequence',
    'GBSeq_primary-accession', 'GBSeq_definition', 'GBSeq_accession-version',
    'GBSeq_topology', 'GBSeq_length', 'GBSeq_feature-table',
    'GBSeq_create-date', 'GBSeq_other-seqids', 'GBSeq_division',
    'GBSeq_taxonomy', 'GBSeq_references', 'GBSeq_update-date',
    'GBSeq_organism', 'GBSeq_locus', 'GBSeq_strandedness']

   >>> print(records[0]["GBSeq_primary-accession"])
   DQ110336

   >>> print(records[0]["GBSeq_other-seqids"])
   ['gb|DQ110336.1|', 'gi|187237168']

   >>> print(records[0]["GBSeq_definition"])
   Cypripedium calceolus voucher Davis 03-03 A maturase (matR) gene, partial cds;
   mitochondrial

   >>> print(records[0]["GBSeq_organism"])
   Cypripedium calceolus

You could use this to quickly set up searches – but for heavy usage, see
Section :ref:`sec:entrez-webenv`.

.. _`sec:entrez-search-fetch-genbank`:

Searching, downloading, and parsing GenBank records
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The GenBank record format is a very popular method of holding
information about sequences, sequence features, and other associated
sequence information. The format is a good way to get information from
the NCBI databases at https://www.ncbi.nlm.nih.gov/.

In this example we’ll show how to query the NCBI databases,to retrieve
the records from the query, and then parse them using ``Bio.SeqIO`` -
something touched on in
Section :ref:`sec:SeqIO_GenBank_Online`. For
simplicity, this example *does not* take advantage of the WebEnv history
feature – see Section :ref:`sec:entrez-webenv` for this.

First, we want to make a query and find out the ids of the records to
retrieve. Here we’ll do a quick search for one of our favorite
organisms, *Opuntia* (prickly-pear cacti). We can do quick search and
get back the GIs (GenBank identifiers) for all of the corresponding
records. First we check how many records there are:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.egquery(term="Opuntia AND rpl16")
   >>> record = Entrez.read(stream)
   >>> for row in record["eGQueryResult"]:
   ...     if row["DbName"] == "nuccore":
   ...         print(row["Count"])
   ...
   9

Now we download the list of GenBank identifiers:

.. code:: pycon

   >>> stream = Entrez.esearch(db="nuccore", term="Opuntia AND rpl16")
   >>> record = Entrez.read(stream)
   >>> gi_list = record["IdList"]
   >>> gi_list
   ['57240072', '57240071', '6273287', '6273291', '6273290', '6273289', '6273286',
   '6273285', '6273284']

Now we use these GIs to download the GenBank records - note that with
older versions of Biopython you had to supply a comma separated list of
GI numbers to Entrez, as of Biopython 1.59 you can pass a list and this
is converted for you:

.. code:: pycon

   >>> gi_str = ",".join(gi_list)
   >>> stream = Entrez.efetch(db="nuccore", id=gi_str, rettype="gb", retmode="text")

If you want to look at the raw GenBank files, you can read from this
stream and print out the result:

.. code:: pycon

   >>> text = stream.read()
   >>> print(text)
   LOCUS       AY851612                 892 bp    DNA     linear   PLN 10-APR-2007
   DEFINITION  Opuntia subulata rpl16 gene, intron; chloroplast.
   ACCESSION   AY851612
   VERSION     AY851612.1  GI:57240072
   KEYWORDS    .
   SOURCE      chloroplast Austrocylindropuntia subulata
     ORGANISM  Austrocylindropuntia subulata
               Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
               Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons;
               Caryophyllales; Cactaceae; Opuntioideae; Austrocylindropuntia.
   REFERENCE   1  (bases 1 to 892)
     AUTHORS   Butterworth,C.A. and Wallace,R.S.
   ...

In this case, we are just getting the raw records. To get the records in
a more Python-friendly form, we can use ``Bio.SeqIO`` to parse the
GenBank data into ``SeqRecord`` objects, including ``SeqFeature``
objects (see Chapter :ref:`chapter:seqio`):

.. code:: pycon

   >>> from Bio import SeqIO
   >>> stream = Entrez.efetch(db="nuccore", id=gi_str, rettype="gb", retmode="text")
   >>> records = SeqIO.parse(stream, "gb")

We can now step through the records and look at the information we are
interested in:

.. code:: pycon

   >>> for record in records:
   ...     print(f"{record.name}, length {len(record)}, with {len(record.features)} features")
   ...
   AY851612, length 892, with 3 features
   AY851611, length 881, with 3 features
   AF191661, length 895, with 3 features
   AF191665, length 902, with 3 features
   AF191664, length 899, with 3 features
   AF191663, length 899, with 3 features
   AF191660, length 893, with 3 features
   AF191659, length 894, with 3 features
   AF191658, length 896, with 3 features

Using these automated query retrieval functionality is a big plus over
doing things by hand. Although the module should obey the NCBI’s max
three queries per second rule, the NCBI have other recommendations like
avoiding peak hours. See Section :ref:`sec:entrez-guidelines`. In
particular, please note that for simplicity, this example does not use
the WebEnv history feature. You should use this for any non-trivial
search and download work, see Section :ref:`sec:entrez-webenv`.

Finally, if plan to repeat your analysis, rather than downloading the
files from the NCBI and parsing them immediately (as shown in this
example), you should just download the records *once* and save them to
your hard disk, and then parse the local file.

Finding the lineage of an organism
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Staying with a plant example, let’s now find the lineage of the
Cypripedioideae orchid family. First, we search the Taxonomy database
for Cypripedioideae, which yields exactly one NCBI taxonomy identifier:

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esearch(db="Taxonomy", term="Cypripedioideae")
   >>> record = Entrez.read(stream)
   >>> record["IdList"]
   ['158330']
   >>> record["IdList"][0]
   '158330'

Now, we use ``efetch`` to download this entry in the Taxonomy database,
and then parse it:

.. cont-doctest

.. code:: pycon

   >>> stream = Entrez.efetch(db="Taxonomy", id="158330", retmode="xml")
   >>> records = Entrez.read(stream)

Again, this record stores lots of information:

.. code:: pycon

   >>> records[0].keys()
   ['Lineage', 'Division', 'ParentTaxId', 'PubDate', 'LineageEx',
    'CreateDate', 'TaxId', 'Rank', 'GeneticCode', 'ScientificName',
    'MitoGeneticCode', 'UpdateDate']

We can get the lineage directly from this record:

.. code:: pycon

   >>> records[0]["Lineage"]
   'cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina;
    Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliopsida;
    Liliopsida; Asparagales; Orchidaceae'

The record data contains much more than just the information shown here
- for example look under ``"LineageEx"`` instead of ``"Lineage"`` and
you’ll get the NCBI taxon identifiers of the lineage entries too.

.. _`sec:entrez-webenv`:

Using the history and WebEnv
----------------------------

Often you will want to make a series of linked queries. Most typically,
running a search, perhaps refining the search, and then retrieving
detailed search results. You *can* do this by making a series of
separate calls to Entrez. However, the NCBI prefer you to take advantage
of their history support - for example combining ESearch and EFetch.

Another typical use of the history support would be to combine EPost and
EFetch. You use EPost to upload a list of identifiers, which starts a
new history session. You then download the records with EFetch by
referring to the session (instead of the identifiers).

Searching for and downloading sequences using the history
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Suppose we want to search and download all the *Opuntia* rpl16
nucleotide sequences, and store them in a FASTA file. As shown in
Section :ref:`sec:entrez-search-fetch-genbank`, we can naively
combine ``Bio.Entrez.esearch()`` to get a list of Accession numbers, and
then call ``Bio.Entrez.efetch()`` to download them all.

However, the approved approach is to run the search with the history
feature. Then, we can fetch the results by reference to the search
results - which the NCBI can anticipate and cache.

To do this, call ``Bio.Entrez.esearch()`` as normal, but with the
additional argument of ``usehistory="y"``,

.. doctest . internet

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "history.user@example.com"  # Always tell NCBI who you are
   >>> stream = Entrez.esearch(
   ...     db="nucleotide", term="Opuntia[orgn] and rpl16", usehistory="y", idtype="acc"
   ... )
   >>> search_results = Entrez.read(stream)
   >>> stream.close()

As before (see Section :ref:`sec:entrez_example_genbank`), the
XML output includes the first ``retmax`` search results, with ``retmax``
defaulting to 20:

.. cont-doctest

.. code:: pycon

   >>> acc_list = search_results["IdList"]
   >>> count = int(search_results["Count"])
   >>> len(acc_list)
   20

.. code:: pycon

   >>> count
   28

You also get given two additional pieces of information, the ``WebEnv``
session cookie, and the ``QueryKey``:

.. cont-doctest

.. code:: pycon

   >>> webenv = search_results["WebEnv"]
   >>> query_key = search_results["QueryKey"]

Having stored these values in variables ``session_cookie`` and
``query_key`` we can use them as parameters to ``Bio.Entrez.efetch()``
instead of giving the GI numbers as identifiers.

While for small searches you might be OK downloading everything at once,
it is better to download in batches. You use the ``retstart`` and
``retmax`` parameters to specify which range of search results you want
returned (starting entry using zero-based counting, and maximum number
of results to return). Note that if Biopython encounters a transient
failure like a HTTP 500 response when communicating with NCBI, it will
automatically try again a couple of times. For example,

.. code:: python

   # This assumes you have already run a search as shown above,
   # and set the variables count, webenv, query_key

   batch_size = 3
   output = open("orchid_rpl16.fasta", "w")
   for start in range(0, count, batch_size):
       end = min(count, start + batch_size)
       print("Going to download record %i to %i" % (start + 1, end))
       stream = Entrez.efetch(
           db="nucleotide",
           rettype="fasta",
           retmode="text",
           retstart=start,
           retmax=batch_size,
           webenv=webenv,
           query_key=query_key,
           idtype="acc",
       )
       data = stream.read()
       stream.close()
       output.write(data)
   output.close()

For illustrative purposes, this example downloaded the FASTA records in
batches of three. Unless you are downloading genomes or chromosomes, you
would normally pick a larger batch size.

Searching for and downloading abstracts using the history
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here is another history example, searching for papers published in the
last year about the *Opuntia*, and then downloading them into a file in
MedLine format:

.. code:: python

   from Bio import Entrez

   Entrez.email = "history.user@example.com"
   search_results = Entrez.read(
       Entrez.esearch(
           db="pubmed", term="Opuntia[ORGN]", reldate=365, datetype="pdat", usehistory="y"
       )
   )
   count = int(search_results["Count"])
   print("Found %i results" % count)

   batch_size = 10
   output = open("recent_orchid_papers.txt", "w")
   for start in range(0, count, batch_size):
       end = min(count, start + batch_size)
       print("Going to download record %i to %i" % (start + 1, end))
       stream = Entrez.efetch(
           db="pubmed",
           rettype="medline",
           retmode="text",
           retstart=start,
           retmax=batch_size,
           webenv=search_results["WebEnv"],
           query_key=search_results["QueryKey"],
       )
       data = stream.read()
       stream.close()
       output.write(data)
   output.close()

At the time of writing, this gave 28 matches - but because this is a
date dependent search, this will of course vary. As described in
Section :ref:`sec:entrez-and-medline` above, you can then use
``Bio.Medline`` to parse the saved records.

.. _`sec:elink-citations`:

Searching for citations
~~~~~~~~~~~~~~~~~~~~~~~

Back in Section :ref:`sec:elink` we mentioned ELink can be used to
search for citations of a given paper. Unfortunately this only covers
journals indexed for PubMed Central (doing it for all the journals in
PubMed would mean a lot more work for the NIH). Let’s try this for the
Biopython PDB parser paper, PubMed ID 14630660:

.. code:: pycon

   >>> from Bio import Entrez
   >>> Entrez.email = "A.N.Other@example.com"  # Always tell NCBI who you are
   >>> pmid = "14630660"
   >>> results = Entrez.read(
   ...     Entrez.elink(dbfrom="pubmed", db="pmc", LinkName="pubmed_pmc_refs", id=pmid)
   ... )
   >>> pmc_ids = [link["Id"] for link in results[0]["LinkSetDb"][0]["Link"]]
   >>> pmc_ids
   ['2744707', '2705363', '2682512', ..., '1190160']

Great - eleven articles. But why hasn’t the Biopython application note
been found (PubMed ID 19304878)? Well, as you might have guessed from
the variable names, there are not actually PubMed IDs, but PubMed
Central IDs. Our application note is the third citing paper in that
list, PMCID 2682512.

So, what if (like me) you’d rather get back a list of PubMed IDs? Well
we can call ELink again to translate them. This becomes a two step
process, so by now you should expect to use the history feature to
accomplish it (Section :ref:`sec:entrez-webenv`).

But first, taking the more straightforward approach of making a second
(separate) call to ELink:

.. code:: pycon

   >>> results2 = Entrez.read(
   ...     Entrez.elink(dbfrom="pmc", db="pubmed", LinkName="pmc_pubmed", id=",".join(pmc_ids))
   ... )
   >>> pubmed_ids = [link["Id"] for link in results2[0]["LinkSetDb"][0]["Link"]]
   >>> pubmed_ids
   ['19698094', '19450287', '19304878', ..., '15985178']

This time you can immediately spot the Biopython application note as the
third hit (PubMed ID 19304878).

Now, let’s do that all again but with the history … *TODO*.

And finally, don’t forget to include your *own* email address in the
Entrez calls.