1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
|
.. _`chapter:entrez`:
Accessing NCBI’s Entrez databases
=================================
Entrez (https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html) is a data
retrieval system that provides users access to NCBI’s databases such as
PubMed, GenBank, GEO, and many others. You can access Entrez from a web
browser to manually enter queries, or you can use Biopython’s
``Bio.Entrez`` module for programmatic access to Entrez. The latter
allows you for example to search PubMed or download GenBank records from
within a Python script.
The ``Bio.Entrez`` module makes use of the Entrez Programming Utilities
(also known as EUtils), consisting of eight tools that are described in
detail on NCBI’s page at https://www.ncbi.nlm.nih.gov/books/NBK25501/.
Each of these tools corresponds to one Python function in the
``Bio.Entrez`` module, as described in the sections below. This module
makes sure that the correct URL is used for the queries, and that NCBI’s
guidelines for responsible data access are being followed.
The output returned by the Entrez Programming Utilities is typically in
XML format. To parse such output, you have several options:
#. Use ``Bio.Entrez``\ ’s parser to parse the XML output into a Python
object;
#. Use one of the XML parsers available in Python’s standard library;
#. Read the XML output as raw text, and parse it by string searching and
manipulation.
See the Python documentation for a description of the XML parsers in
Python’s standard library. Here, we discuss the parser in Biopython’s
``Bio.Entrez`` module. This parser can be used to parse data as provided
through ``Bio.Entrez``\ ’s programmatic access functions to Entrez, but
can also be used to parse XML data from NCBI Entrez that are stored in a
file. In the latter case, the XML file should be opened in binary mode
(e.g. ``open("myfile.xml", "rb")``) for the XML parser in ``Bio.Entrez``
to work correctly. Alternatively, you can pass the file name or path to
the XML file, and let ``Bio.Entrez`` take care of opening and closing
the file.
NCBI uses DTD (Document Type Definition) files to describe the structure
of the information contained in XML files. Most of the DTD files used by
NCBI are included in the Biopython distribution. The ``Bio.Entrez``
parser makes use of the DTD files when parsing an XML file returned by
NCBI Entrez.
Occasionally, you may find that the DTD file associated with a specific
XML file is missing in the Biopython distribution. In particular, this
may happen when NCBI updates its DTD files. If this happens,
``Entrez.read`` will show a warning message with the name and URL of the
missing DTD file. The parser will proceed to access the missing DTD file
through the internet, allowing the parsing of the XML file to continue.
However, the parser is much faster if the DTD file is available locally.
For this purpose, please download the DTD file from the URL in the
warning message and place it in the directory
``...site-packages/Bio/Entrez/DTDs``, containing the other DTD files. If
you don’t have write access to this directory, you can also place the
DTD file in ``~/.biopython/Bio/Entrez/DTDs``, where ``~`` represents
your home directory. Since this directory is read before the directory
``...site-packages/Bio/Entrez/DTDs``, you can also put newer versions of
DTD files there if the ones in ``...site-packages/Bio/Entrez/DTDs``
become outdated. Alternatively, if you installed Biopython from source,
you can add the DTD file to the source code’s ``Bio/Entrez/DTDs``
directory, and reinstall Biopython. This will install the new DTD file
in the correct location together with the other DTD files.
The Entrez Programming Utilities can also generate output in other
formats, such as the Fasta or GenBank file formats for sequence
databases, or the MedLine format for the literature database, discussed
in Section :ref:`sec:entrez-specialized-parsers`.
The functions in ``Bio.Entrez`` for programmatic access to Entrez return
data either in binary format or in text format, depending on the type of
data requested. In most cases, these functions return data in text
format by decoding the data obtained from NCBI Entrez to Python strings
under the assumption that the encoding is UTF-8. However, XML data are
returned in binary format. The reason for this is that the encoding is
specified in the XML document itself, which means that we won’t know the
correct encoding to use until we start parsing the file.
``Bio.Entrez``\ ’s parser therefore accepts data in binary format,
extracts the encoding from the XML, and uses it to decode all text in
the XML document to Python strings, ensuring that all text (in
particular in languages other than English) are interpreted correctly.
This is also the reason why you should open an XML file a binary mode
when you want to use ``Bio.Entrez``\ ’s parser to parse the file.
.. _`sec:entrez-guidelines`:
Entrez Guidelines
-----------------
Before using Biopython to access the NCBI’s online resources (via
``Bio.Entrez`` or some of the other modules), please read the `NCBI’s
Entrez User
Requirements <https://www.ncbi.nlm.nih.gov/books/NBK25497/>`__. If the
NCBI finds you are abusing their systems, they can and will ban your
access!
To paraphrase:
- For any series of more than 100 requests, do this at weekends or
outside USA peak times. This is up to you to obey.
- Use the https://eutils.ncbi.nlm.nih.gov address, not the standard
NCBI Web address. Biopython uses this web address.
- If you are using a API key, you can make at most 10 queries per
second, otherwise at most 3 queries per second. This is automatically
enforced by Biopython. Include ``api_key="MyAPIkey"`` in the argument
list or set it as a module level variable:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.api_key = "MyAPIkey"
- Use the optional email parameter so the NCBI can contact you if there
is a problem. You can either explicitly set this as a parameter with
each call to Entrez (e.g. include ``email="A.N.Other@example.com"``
in the argument list), or you can set a global email address:
.. doctest
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com"
``Bio.Entrez`` will then use this email address with each call to
Entrez. The ``example.com`` address is a reserved domain name
specifically for documentation (RFC 2606). Please DO NOT use a random
email – it’s better not to give an email at all. The email parameter
has been mandatory since June 1, 2010. In case of excessive usage,
NCBI will attempt to contact a user at the e-mail address provided
prior to blocking access to the E-utilities.
- If you are using Biopython within some larger software suite, use the
tool parameter to specify this. You can either explicitly set the
tool name as a parameter with each call to Entrez (e.g. include
``tool="MyLocalScript"`` in the argument list), or you can set a
global tool name:
.. doctest
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.tool = "MyLocalScript"
The tool parameter will default to Biopython.
- For large queries, the NCBI also recommend using their session
history feature (the WebEnv session cookie string, see
Section :ref:`sec:entrez-webenv`). This is only slightly more
complicated.
In conclusion, be sensible with your usage levels. If you plan to
download lots of data, consider other options. For example, if you want
easy access to all the human genes, consider fetching each chromosome by
FTP as a GenBank file, and importing these into your own BioSQL database
(see Section :ref:`sec:BioSQL`).
.. _`sec:entrez-einfo`:
EInfo: Obtaining information about the Entrez databases
-------------------------------------------------------
EInfo provides field index term counts, last update, and available links
for each of NCBI’s databases. In addition, you can use EInfo to obtain a
list of all database names accessible through the Entrez utilities:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.einfo()
>>> result = stream.read()
>>> stream.close()
The variable ``result`` now contains a list of databases in XML format:
.. code:: pycon
>>> print(result)
<?xml version="1.0"?>
<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN"
"https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">
<eInfoResult>
<DbList>
<DbName>pubmed</DbName>
<DbName>protein</DbName>
<DbName>nucleotide</DbName>
<DbName>nuccore</DbName>
<DbName>nucgss</DbName>
<DbName>nucest</DbName>
<DbName>structure</DbName>
<DbName>genome</DbName>
<DbName>books</DbName>
<DbName>cancerchromosomes</DbName>
<DbName>cdd</DbName>
<DbName>gap</DbName>
<DbName>domains</DbName>
<DbName>gene</DbName>
<DbName>genomeprj</DbName>
<DbName>gensat</DbName>
<DbName>geo</DbName>
<DbName>gds</DbName>
<DbName>homologene</DbName>
<DbName>journals</DbName>
<DbName>mesh</DbName>
<DbName>ncbisearch</DbName>
<DbName>nlmcatalog</DbName>
<DbName>omia</DbName>
<DbName>omim</DbName>
<DbName>pmc</DbName>
<DbName>popset</DbName>
<DbName>probe</DbName>
<DbName>proteinclusters</DbName>
<DbName>pcassay</DbName>
<DbName>pccompound</DbName>
<DbName>pcsubstance</DbName>
<DbName>snp</DbName>
<DbName>taxonomy</DbName>
<DbName>toolkit</DbName>
<DbName>unigene</DbName>
<DbName>unists</DbName>
</DbList>
</eInfoResult>
Since this is a fairly simple XML file, we could extract the information
it contains simply by string searching. Using ``Bio.Entrez``\ ’s parser
instead, we can directly parse this XML file into a Python object:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> stream = Entrez.einfo()
>>> record = Entrez.read(stream)
Now ``record`` is a dictionary with exactly one key:
.. cont-doctest
.. code:: pycon
>>> record.keys()
dict_keys(['DbList'])
The values stored in this key is the list of database names shown in the
XML above:
.. code:: pycon
>>> record["DbList"]
['pubmed', 'protein', 'nucleotide', 'nuccore', 'nucgss', 'nucest',
'structure', 'genome', 'books', 'cancerchromosomes', 'cdd', 'gap',
'domains', 'gene', 'genomeprj', 'gensat', 'geo', 'gds', 'homologene',
'journals', 'mesh', 'ncbisearch', 'nlmcatalog', 'omia', 'omim', 'pmc',
'popset', 'probe', 'proteinclusters', 'pcassay', 'pccompound',
'pcsubstance', 'snp', 'taxonomy', 'toolkit', 'unigene', 'unists']
For each of these databases, we can use EInfo again to obtain more
information:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.einfo(db="pubmed")
>>> record = Entrez.read(stream)
>>> record["DbInfo"]["Description"]
'PubMed bibliographic record'
.. code:: pycon
>>> record["DbInfo"]["Count"]
'17989604'
>>> record["DbInfo"]["LastUpdate"]
'2008/05/24 06:45'
Try ``record["DbInfo"].keys()`` for other information stored in this
record. One of the most useful is a list of possible search fields for
use with ESearch:
.. code:: pycon
>>> for field in record["DbInfo"]["FieldList"]:
... print("%(Name)s, %(FullName)s, %(Description)s" % field)
...
ALL, All Fields, All terms from all searchable fields
UID, UID, Unique number assigned to publication
FILT, Filter, Limits the records
TITL, Title, Words in title of publication
WORD, Text Word, Free text associated with publication
MESH, MeSH Terms, Medical Subject Headings assigned to publication
MAJR, MeSH Major Topic, MeSH terms of major importance to publication
AUTH, Author, Author(s) of publication
JOUR, Journal, Journal abbreviation of publication
AFFL, Affiliation, Author's institutional affiliation and address
...
That’s a long list, but indirectly this tells you that for the PubMed
database, you can do things like ``Jones[AUTH]`` to search the author
field, or ``Sanger[AFFL]`` to restrict to authors at the Sanger Centre.
This can be very handy - especially if you are not so familiar with a
particular database.
.. _`sec:entrez-esearch`:
ESearch: Searching the Entrez databases
---------------------------------------
To search any of these databases, we use ``Bio.Entrez.esearch()``. For
example, let’s search in PubMed for publications that include Biopython
in their title:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esearch(db="pubmed", term="biopython[title]", retmax="40")
>>> record = Entrez.read(stream)
>>> "19304878" in record["IdList"]
True
.. code:: pycon
>>> print(record["IdList"])
['22909249', '19304878']
In this output, you see PubMed IDs (including 19304878 which is the PMID
for the Biopython application note), which can be retrieved by EFetch
(see section :ref:`sec:efetch`).
You can also use ESearch to search GenBank. Here we’ll do a quick search
for the *matK* gene in *Cypripedioideae* orchids (see
Section :ref:`sec:entrez-einfo` about EInfo for one way to find out
which fields you can search in each Entrez database):
.. code:: pycon
>>> stream = Entrez.esearch(
... db="nucleotide", term="Cypripedioideae[Orgn] AND matK[Gene]", idtype="acc"
... )
>>> record = Entrez.read(stream)
>>> record["Count"]
'348'
>>> record["IdList"]
['JQ660909.1', 'JQ660908.1', 'JQ660907.1', 'JQ660906.1', ..., 'JQ660890.1']
Each of the IDs (JQ660909.1, JQ660908.1, JQ660907.1, …) is a GenBank
identifier (Accession number). See section :ref:`sec:efetch` for
information on how to actually download these GenBank records.
Note that instead of a species name like ``Cypripedioideae[Orgn]``, you
can restrict the search using an NCBI taxon identifier, here this would
be ``txid158330[Orgn]``. This isn’t currently documented on the ESearch
help page - the NCBI explained this in reply to an email query. You can
often deduce the search term formatting by playing with the Entrez web
interface. For example, including ``complete[prop]`` in a genome search
restricts to just completed genomes.
As a final example, let’s get a list of computational journal titles:
.. code:: pycon
>>> stream = Entrez.esearch(db="nlmcatalog", term="computational[Journal]", retmax="20")
>>> record = Entrez.read(stream)
>>> print("{} computational journals found".format(record["Count"]))
117 computational Journals found
>>> print("The first 20 are\n{}".format(record["IdList"]))
['101660833', '101664671', '101661657', '101659814', '101657941',
'101653734', '101669877', '101649614', '101647835', '101639023',
'101627224', '101647801', '101589678', '101585369', '101645372',
'101586429', '101582229', '101574747', '101564639', '101671907']
Again, we could use EFetch to obtain more information for each of these
journal IDs.
ESearch has many useful options — see the `ESearch help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch>`__
for more information.
EPost: Uploading a list of identifiers
--------------------------------------
EPost uploads a list of UIs for use in subsequent search strategies; see
the `EPost help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EPost>`__
for more information. It is available from Biopython through the
``Bio.Entrez.epost()`` function.
To give an example of when this is useful, suppose you have a long list
of IDs you want to download using EFetch (maybe sequences, maybe
citations – anything). When you make a request with EFetch your list of
IDs, the database etc, are all turned into a long URL sent to the
server. If your list of IDs is long, this URL gets long, and long URLs
can break (e.g. some proxies don’t cope well).
Instead, you can break this up into two steps, first uploading the list
of IDs using EPost (this uses an “HTML post” internally, rather than an
“HTML get”, getting round the long URL problem). With the history
support, you can then refer to this long list of IDs, and download the
associated data with EFetch.
Let’s look at a simple example to see how EPost works – uploading some
PubMed identifiers:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> id_list = ["19304878", "18606172", "16403221", "16377612", "14871861", "14630660"]
>>> print(Entrez.epost("pubmed", id=",".join(id_list)).read())
<?xml version="1.0"?>
<!DOCTYPE ePostResult PUBLIC "-//NLM//DTD ePostResult, 11 May 2002//EN"
"https://www.ncbi.nlm.nih.gov/entrez/query/DTD/ePost_020511.dtd">
<ePostResult>
<QueryKey>1</QueryKey>
<WebEnv>NCID_01_206841095_130.14.22.101_9001_1242061629</WebEnv>
</ePostResult>
The returned XML includes two important strings, ``QueryKey`` and
``WebEnv`` which together define your history session. You would extract
these values for use with another Entrez call such as EFetch:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> id_list = ["19304878", "18606172", "16403221", "16377612", "14871861", "14630660"]
>>> search_results = Entrez.read(Entrez.epost("pubmed", id=",".join(id_list)))
>>> webenv = search_results["WebEnv"]
>>> query_key = search_results["QueryKey"]
Section :ref:`sec:entrez-webenv` shows how to use the history
feature.
ESummary: Retrieving summaries from primary IDs
-----------------------------------------------
ESummary retrieves document summaries from a list of primary IDs (see
the `ESummary help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESummary>`__
for more information). In Biopython, ESummary is available as
``Bio.Entrez.esummary()``. Using the search result above, we can for
example find out more about the journal with ID 30367:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esummary(db="nlmcatalog", id="101660833")
>>> record = Entrez.read(stream)
>>> info = record[0]["TitleMainList"][0]
>>> print("Journal info\nid: {}\nTitle: {}".format(record[0]["Id"], info["Title"]))
Journal info
id: 101660833
Title: IEEE transactions on computational imaging.
.. _`sec:efetch`:
EFetch: Downloading full records from Entrez
--------------------------------------------
EFetch is what you use when you want to retrieve a full record from
Entrez. This covers several possible databases, as described on the main
`EFetch Help page <https://www.ncbi.nlm.nih.gov/books/NBK3837/>`__.
For most of their databases, the NCBI support several different file
formats. Requesting a specific file format from Entrez using
``Bio.Entrez.efetch()`` requires specifying the ``rettype`` and/or
``retmode`` optional arguments. The different combinations are described
for each database type on the pages linked to on `NCBI efetch
webpage <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__.
One common usage is downloading sequences in the FASTA or
GenBank/GenPept plain text formats (which can then be parsed with
``Bio.SeqIO``, see
Sections :ref:`sec:SeqIO_GenBank_Online`
and :ref:`sec:efetch`). From the *Cypripedioideae* example above, we
can download GenBank record EU490707 using ``Bio.Entrez.efetch``:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")
>>> print(stream.read())
LOCUS EU490707 1302 bp DNA linear PLN 26-JUL-2016
DEFINITION Selenipedium aequinoctiale maturase K (matK) gene, partial cds;
chloroplast.
ACCESSION EU490707
VERSION EU490707.1
KEYWORDS .
SOURCE chloroplast Selenipedium aequinoctiale
ORGANISM Selenipedium aequinoctiale
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
Spermatophyta; Magnoliopsida; Liliopsida; Asparagales; Orchidaceae;
Cypripedioideae; Selenipedium.
REFERENCE 1 (bases 1 to 1302)
AUTHORS Neubig,K.M., Whitten,W.M., Carlsward,B.S., Blanco,M.A., Endara,L.,
Williams,N.H. and Moore,M.
TITLE Phylogenetic utility of ycf1 in orchids: a plastid gene more
variable than matK
JOURNAL Plant Syst. Evol. 277 (1-2), 75-84 (2009)
REFERENCE 2 (bases 1 to 1302)
AUTHORS Neubig,K.M., Whitten,W.M., Carlsward,B.S., Blanco,M.A.,
Endara,C.L., Williams,N.H. and Moore,M.J.
TITLE Direct Submission
JOURNAL Submitted (14-FEB-2008) Department of Botany, University of
Florida, 220 Bartram Hall, Gainesville, FL 32611-8526, USA
FEATURES Location/Qualifiers
source 1..1302
/organism="Selenipedium aequinoctiale"
/organelle="plastid:chloroplast"
/mol_type="genomic DNA"
/specimen_voucher="FLAS:Blanco 2475"
/db_xref="taxon:256374"
gene <1..>1302
/gene="matK"
CDS <1..>1302
/gene="matK"
/codon_start=1
/transl_table=11
/product="maturase K"
/protein_id="ACC99456.1"
/translation="IFYEPVEIFGYDNKSSLVLVKRLITRMYQQNFLISSVNDSNQKG
FWGHKHFFSSHFSSQMVSEGFGVILEIPFSSQLVSSLEEKKIPKYQNLRSIHSIFPFL
EDKFLHLNYVSDLLIPHPIHLEILVQILQCRIKDVPSLHLLRLLFHEYHNLNSLITSK
KFIYAFSKRKKRFLWLLYNSYVYECEYLFQFLRKQSSYLRSTSSGVFLERTHLYVKIE
HLLVVCCNSFQRILCFLKDPFMHYVRYQGKAILASKGTLILMKKWKFHLVNFWQSYFH
FWSQPYRIHIKQLSNYSFSFLGYFSSVLENHLVVRNQMLENSFIINLLTKKFDTIAPV
ISLIGSLSKAQFCTVLGHPISKPIWTDFSDSDILDRFCRICRNLCRYHSGSSKKQVLY
RIKYILRLSCARTLARKHKSTVRTFMRRLGSGLLEEFFMEEE"
ORIGIN
1 attttttacg aacctgtgga aatttttggt tatgacaata aatctagttt agtacttgtg
61 aaacgtttaa ttactcgaat gtatcaacag aattttttga tttcttcggt taatgattct
121 aaccaaaaag gattttgggg gcacaagcat tttttttctt ctcatttttc ttctcaaatg
181 gtatcagaag gttttggagt cattctggaa attccattct cgtcgcaatt agtatcttct
241 cttgaagaaa aaaaaatacc aaaatatcag aatttacgat ctattcattc aatatttccc
301 tttttagaag acaaattttt acatttgaat tatgtgtcag atctactaat accccatccc
361 atccatctgg aaatcttggt tcaaatcctt caatgccgga tcaaggatgt tccttctttg
421 catttattgc gattgctttt ccacgaatat cataatttga atagtctcat tacttcaaag
481 aaattcattt acgccttttc aaaaagaaag aaaagattcc tttggttact atataattct
541 tatgtatatg aatgcgaata tctattccag tttcttcgta aacagtcttc ttatttacga
601 tcaacatctt ctggagtctt tcttgagcga acacatttat atgtaaaaat agaacatctt
661 ctagtagtgt gttgtaattc ttttcagagg atcctatgct ttctcaagga tcctttcatg
721 cattatgttc gatatcaagg aaaagcaatt ctggcttcaa agggaactct tattctgatg
781 aagaaatgga aatttcatct tgtgaatttt tggcaatctt attttcactt ttggtctcaa
841 ccgtatagga ttcatataaa gcaattatcc aactattcct tctcttttct ggggtatttt
901 tcaagtgtac tagaaaatca tttggtagta agaaatcaaa tgctagagaa ttcatttata
961 ataaatcttc tgactaagaa attcgatacc atagccccag ttatttctct tattggatca
1021 ttgtcgaaag ctcaattttg tactgtattg ggtcatccta ttagtaaacc gatctggacc
1081 gatttctcgg attctgatat tcttgatcga ttttgccgga tatgtagaaa tctttgtcgt
1141 tatcacagcg gatcctcaaa aaaacaggtt ttgtatcgta taaaatatat acttcgactt
1201 tcgtgtgcta gaactttggc acggaaacat aaaagtacag tacgcacttt tatgcgaaga
1261 ttaggttcgg gattattaga agaattcttt atggaagaag aa
//
<BLANKLINE>
<BLANKLINE>
Please be aware that as of October 2016 GI identifiers are discontinued
in favor of accession numbers. You can still fetch sequences based on
their GI, but new sequences are no longer given this identifier. You
should instead refer to them by the “Accession number” as done in the
example.
The arguments ``rettype="gb"`` and ``retmode="text"`` let us download
this record in the GenBank format.
Note that until Easter 2009, the Entrez EFetch API let you use “genbank”
as the return type, however the NCBI now insist on using the official
return types of “gb” or “gbwithparts” (or “gp” for proteins) as
described on online. Also note that until Feb 2012, the Entrez EFetch
API would default to returning plain text files, but now defaults to
XML.
Alternatively, you could for example use ``rettype="fasta"`` to get the
Fasta-format; see the `EFetch Sequences Help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__
for other options. Remember – the available formats depend on which
database you are downloading from - see the main `EFetch Help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__.
If you fetch the record in one of the formats accepted by ``Bio.SeqIO``
(see Chapter :ref:`chapter:seqio`), you could directly
parse it into a ``SeqRecord``:
.. doctest . internet
.. code:: pycon
>>> from Bio import SeqIO
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")
>>> record = SeqIO.read(stream, "genbank")
>>> stream.close()
>>> print(record.id)
EU490707.1
>>> print(record.name)
EU490707
>>> print(record.description)
Selenipedium aequinoctiale maturase K (matK) gene, partial cds; chloroplast
>>> print(len(record.features))
3
>>> record.seq
Seq('ATTTTTTACGAACCTGTGGAAATTTTTGGTTATGACAATAAATCTAGTTTAGTA...GAA')
Note that a more typical use would be to save the sequence data to a
local file, and *then* parse it with ``Bio.SeqIO``. This can save you
having to re-download the same file repeatedly while working on your
script, and places less load on the NCBI’s servers. For example:
.. code:: python
import os
from Bio import SeqIO
from Bio import Entrez
Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
filename = "EU490707.gbk"
if not os.path.isfile(filename):
# Downloading...
stream = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")
output = open(filename, "w")
output.write(streame.read())
output.close()
stream.close()
print("Saved")
print("Parsing...")
record = SeqIO.read(filename, "genbank")
print(record)
To get the output in XML format, which you can parse using the
``Bio.Entrez.read()`` function, use ``retmode="xml"``:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.efetch(db="nucleotide", id="EU490707", retmode="xml")
>>> record = Entrez.read(stream)
>>> stream.close()
>>> record[0]["GBSeq_definition"]
'Selenipedium aequinoctiale maturase K (matK) gene, partial cds; chloroplast'
>>> record[0]["GBSeq_source"]
'chloroplast Selenipedium aequinoctiale'
So, that dealt with sequences. For examples of parsing file formats
specific to the other databases (e.g. the ``MEDLINE`` format used in
PubMed), see Section :ref:`sec:entrez-specialized-parsers`.
If you want to perform a search with ``Bio.Entrez.esearch()``, and then
download the records with ``Bio.Entrez.efetch()``, you should use the
WebEnv history feature – see Section :ref:`sec:entrez-webenv`.
.. _`sec:elink`:
ELink: Searching for related items in NCBI Entrez
-------------------------------------------------
ELink, available from Biopython as ``Bio.Entrez.elink()``, can be used
to find related items in the NCBI Entrez databases. For example, you can
us this to find nucleotide entries for an entry in the gene database,
and other cool stuff.
Let’s use ELink to find articles related to the Biopython application
note published in *Bioinformatics* in 2009. The PubMed ID of this
article is 19304878:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> pmid = "19304878"
>>> record = Entrez.read(Entrez.elink(dbfrom="pubmed", id=pmid))
The ``record`` variable consists of a Python list, one for each database
in which we searched. Since we specified only one PubMed ID to search
for, ``record`` contains only one item. This item is a dictionary
containing information about our search term, as well as all the related
items that were found:
.. cont-doctest
.. code:: pycon
>>> record[0]["DbFrom"]
'pubmed'
>>> record[0]["IdList"]
['19304878']
The ``"LinkSetDb"`` key contains the search results, stored as a list
consisting of one item for each target database. In our search results,
we only find hits in the PubMed database (although sub-divided into
categories):
.. cont-doctest
.. code:: pycon
>>> len(record[0]["LinkSetDb"])
8
The exact numbers should increase over time:
.. code:: pycon
>>> for linksetdb in record[0]["LinkSetDb"]:
... print(linksetdb["DbTo"], linksetdb["LinkName"], len(linksetdb["Link"]))
...
pubmed pubmed_pubmed 284
pubmed pubmed_pubmed_alsoviewed 7
pubmed pubmed_pubmed_citedin 926
pubmed pubmed_pubmed_combined 6
pubmed pubmed_pubmed_five 6
pubmed pubmed_pubmed_refs 17
pubmed pubmed_pubmed_reviews 12
pubmed pubmed_pubmed_reviews_five 6
The actual search results are stored as under the ``"Link"`` key.
Let’s now at the first search result:
.. code:: pycon
>>> record[0]["LinkSetDb"][0]["Link"][0]
{'Id': '19304878'}
This is the article we searched for, which doesn’t help us much, so
let’s look at the second search result:
.. code:: pycon
>>> record[0]["LinkSetDb"][0]["Link"][1]
{'Id': '14630660'}
This paper, with PubMed ID 14630660, is about the Biopython PDB parser.
We can use a loop to print out all PubMed IDs:
.. code:: pycon
>>> for link in record[0]["LinkSetDb"][0]["Link"]:
... print(link["Id"])
...
19304878
14630660
18689808
17121776
16377612
12368254
......
Now that was nice, but personally I am often more interested to find out
if a paper has been cited. Well, ELink can do that too – at least for
journals in Pubmed Central (see
Section :ref:`sec:elink-citations`).
For help on ELink, see the `ELink help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ELink>`__.
There is an entire sub-page just for the `link
names <https://eutils.ncbi.nlm.nih.gov/corehtml/query/static/entrezlinks.html>`__,
describing how different databases can be cross referenced.
EGQuery: Global Query - counts for search terms
-----------------------------------------------
EGQuery provides counts for a search term in each of the Entrez
databases (i.e. a global query). This is particularly useful to find out
how many items your search terms would find in each database without
actually performing lots of separate searches with ESearch (see the
example in :ref:`sec:entrez_example_genbank` below).
In this example, we use ``Bio.Entrez.egquery()`` to obtain the counts
for “Biopython”:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.egquery(term="biopython")
>>> record = Entrez.read(stream)
>>> for row in record["eGQueryResult"]:
... print(row["DbName"], row["Count"])
...
pubmed 6
pmc 62
journals 0
...
See the `EGQuery help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EGQuery>`__
for more information.
ESpell: Obtaining spelling suggestions
--------------------------------------
ESpell retrieves spelling suggestions. In this example, we use
``Bio.Entrez.espell()`` to obtain the correct spelling of Biopython:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.espell(term="biopythooon")
>>> record = Entrez.read(stream)
>>> record["Query"]
'biopythooon'
>>> record["CorrectedQuery"]
'biopython'
See the `ESpell help
page <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESpell>`__
for more information. The main use of this is for GUI tools to provide
automatic suggestions for search terms.
Parsing huge Entrez XML files
-----------------------------
The ``Entrez.read`` function reads the entire XML file returned by
Entrez into a single Python object, which is kept in memory. To parse
Entrez XML files too large to fit in memory, you can use the function
``Entrez.parse``. This is a generator function that reads records in the
XML file one by one. This function is only useful if the XML file
reflects a Python list object (in other words, if ``Entrez.read`` on a
computer with infinite memory resources would return a Python list).
For example, you can download the entire Entrez Gene database for a
given organism as a file from NCBI’s ftp site. These files can be very
large. As an example, on September 4, 2009, the file
``Homo_sapiens.ags.gz``, containing the Entrez Gene database for human,
had a size of 116576 kB. This file, which is in the ``ASN`` format, can
be converted into an XML file using NCBI’s ``gene2xml`` program (see
NCBI’s ftp site for more information):
.. code:: console
$ gene2xml -b T -i Homo_sapiens.ags -o Homo_sapiens.xml
The resulting XML file has a size of 6.1 GB. Attempting ``Entrez.read``
on this file will result in a ``MemoryError`` on many computers.
The XML file ``Homo_sapiens.xml`` consists of a list of Entrez gene
records, each corresponding to one Entrez gene in human.
``Entrez.parse`` retrieves these gene records one by one. You can then
print out or store the relevant information in each record by iterating
over the records. For example, this script iterates over the Entrez gene
records and prints out the gene numbers and names for all current genes:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = open("Homo_sapiens.xml", "rb")
>>> records = Entrez.parse(stream)
Alternatively, you can use
.. code:: pycon
>>> records = Entrez.parse("Homo_sapiens.xml")
and let ``Bio.Entrez`` take care of opening and closing the file. This
is safer, as the file will then automatically be closed after parsing
it, or if an error occurs.
.. code:: pycon
>>> for record in records:
... status = record["Entrezgene_track-info"]["Gene-track"]["Gene-track_status"]
... if status.attributes["value"] == "discontinued":
... continue
... geneid = record["Entrezgene_track-info"]["Gene-track"]["Gene-track_geneid"]
... genename = record["Entrezgene_gene"]["Gene-ref"]["Gene-ref_locus"]
... print(geneid, genename)
...
1 A1BG
2 A2M
3 A2MP
8 AA
9 NAT1
10 NAT2
11 AACP
12 SERPINA3
13 AADAC
14 AAMP
15 AANAT
16 AARS
17 AAVS1
...
HTML escape characters
----------------------
Pubmed records may contain HTML tags to indicate e.g. subscripts,
superscripts, or italic text, as well as mathematical symbols via
MathML. By default, the ``Bio.Entrez`` parser treats all text as plain
text without markup; for example, the fragment “:math:`P < 0.05`” in the
abstract of a Pubmed record, which is encoded as
.. code:: text
<i>P</i> < 0.05
in the XML returned by Entrez, is converted to the Python string
.. code:: text
'<i>P</i> < 0.05'
by the ``Bio.Entrez`` parser. While this is more human-readable, it is
not valid HTML due to the less-than sign, and makes further processing
of the text e.g. by an HTML parser impractical. To ensure that all
strings returned by the parser are valid HTML, call ``Entrez.read`` or
``Entrez.parse`` with the ``escape`` argument set to ``True``:
.. code:: pycon
>>> record = Entrez.read(stream, escape=True)
The parser will then replace all characters disallowed in HTML by their
HTML-escaped equivalent; in the example above, the parser will generate
.. code:: text
'<i>P</i> < 0.05'
which is a valid HTML fragment. By default, ``escape`` is ``False``.
Handling errors
---------------
The file is not an XML file
~~~~~~~~~~~~~~~~~~~~~~~~~~~
For example, this error occurs if you try to parse a Fasta file as if it
were an XML file:
.. doctest ../Tests/GenBank
.. code:: pycon
>>> from Bio import Entrez
>>> stream = open("NC_005816.fna", "rb") # a Fasta file
>>> record = Entrez.read(stream)
Traceback (most recent call last):
...
Bio.Entrez.Parser.NotXMLError: Failed to parse the XML data (syntax error: line 1, column 0). Please make sure that the input data are in XML format.
Here, the parser didn’t find the ``<?xml ...`` tag with which an XML
file is supposed to start, and therefore decides (correctly) that the
file is not an XML file.
The file ends prematurely or is otherwise corrupted
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When your file is in the XML format but is corrupted (for example, by
ending prematurely), the parser will raise a CorruptedXMLError.
Here is an example of an XML file that ends prematurely:
.. code:: text
<?xml version="1.0"?>
<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">
<eInfoResult>
<DbList>
<DbName>pubmed</DbName>
<DbName>protein</DbName>
<DbName>nucleotide</DbName>
<DbName>nuccore</DbName>
<DbName>nucgss</DbName>
<DbName>nucest</DbName>
<DbName>structure</DbName>
<DbName>genome</DbName>
<DbName>books</DbName>
<DbName>cancerchromosomes</DbName>
<DbName>cdd</DbName>
which will generate the following traceback:
.. code:: pycon
>>> Entrez.read(stream)
Traceback (most recent call last):
...
Bio.Entrez.Parser.CorruptedXMLError: Failed to parse the XML data (no element found: line 16, column 0). Please make sure that the input data are not corrupted.
Note that the error message tells you at what point in the XML file the
error was detected.
The file contains items that are missing from the associated DTD
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is an example of an XML file containing tags that do not have a
description in the corresponding DTD file:
.. code:: text
<?xml version="1.0"?>
<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD eInfoResult, 11 May 2002//EN" "https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eInfo_020511.dtd">
<eInfoResult>
<DbInfo>
<DbName>pubmed</DbName>
<MenuName>PubMed</MenuName>
<Description>PubMed bibliographic record</Description>
<Count>20161961</Count>
<LastUpdate>2010/09/10 04:52</LastUpdate>
<FieldList>
<Field>
...
</Field>
</FieldList>
<DocsumList>
<Docsum>
<DsName>PubDate</DsName>
<DsType>4</DsType>
<DsTypeName>string</DsTypeName>
</Docsum>
<Docsum>
<DsName>EPubDate</DsName>
...
</DbInfo>
</eInfoResult>
In this file, for some reason the tag ``<DocsumList>`` (and several
others) are not listed in the DTD file ``eInfo_020511.dtd``, which is
specified on the second line as the DTD for this XML file. By default,
the parser will stop and raise a ValidationError if it cannot find some
tag in the DTD:
.. doctest ../Tests/Entrez/
.. code:: pycon
>>> from Bio import Entrez
>>> stream = open("einfo3.xml", "rb")
>>> record = Entrez.read(stream)
Traceback (most recent call last):
...
Bio.Entrez.Parser.ValidationError: Failed to find tag 'DocsumList' in the DTD. To skip all tags that are not represented in the DTD, please call Bio.Entrez.read or Bio.Entrez.parse with validate=False.
Optionally, you can instruct the parser to skip such tags instead of
raising a ValidationError. This is done by calling ``Entrez.read`` or
``Entrez.parse`` with the argument ``validate`` equal to False:
.. doctest ../Tests/Entrez/
.. code:: pycon
>>> from Bio import Entrez
>>> stream = open("einfo3.xml", "rb")
>>> record = Entrez.read(stream, validate=False)
>>> stream.close()
Of course, the information contained in the XML tags that are not in the
DTD are not present in the record returned by ``Entrez.read``.
The file contains an error message
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This may occur, for example, when you attempt to access a PubMed record
for a nonexistent PubMed ID. By default, this will raise a
``RuntimeError``:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esummary(db="pubmed", id="99999999")
>>> record = Entrez.read(stream)
Traceback (most recent call last):
...
RuntimeError: UID=99999999: cannot get document summary
If you are accessing multiple PubMed records, the ``RuntimeError`` would
prevent you from receiving results for any of the PubMed records if one
of the PubMed IDs is incorrect. To circumvent this, you can set the
``ignore_errors`` argument to ``True``. This will return the requested
results for the valid PubMed IDs, and an ``ErrorElement`` for the
incorrect ID:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esummary(db="pubmed", id="19304878,99999999,31278684")
>>> record = Entrez.read(stream, ignore_errors=True)
>>> len(record)
3
>>> record[0].tag
'DocSum'
>>> record[0]["Title"]
'Biopython: freely available Python tools for computational molecular biology and bioinformatics.'
>>> record[1].tag
'ERROR'
>>> record[1]
ErrorElement('UID=99999999: cannot get document summary')
>>> record[2].tag
'DocSum'
>>> record[2]["Title"]
'Sharing Programming Resources Between Bio* Projects.'
.. _`sec:entrez-specialized-parsers`:
Specialized parsers
-------------------
The ``Bio.Entrez.read()`` function can parse most (if not all) XML
output returned by Entrez. Entrez typically allows you to retrieve
records in other formats, which may have some advantages compared to the
XML format in terms of readability (or download size).
To request a specific file format from Entrez using
``Bio.Entrez.efetch()`` requires specifying the ``rettype`` and/or
``retmode`` optional arguments. The different combinations are described
for each database type on the `NCBI efetch
webpage <https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch>`__.
One obvious case is you may prefer to download sequences in the FASTA or
GenBank/GenPept plain text formats (which can then be parsed with
``Bio.SeqIO``, see
Sections :ref:`sec:SeqIO_GenBank_Online`
and :ref:`sec:efetch`). For the literature databases, Biopython
contains a parser for the ``MEDLINE`` format used in PubMed.
.. _`sec:entrez-and-medline`:
Parsing Medline records
~~~~~~~~~~~~~~~~~~~~~~~
You can find the Medline parser in ``Bio.Medline``. Suppose we want to
parse the file ``pubmed_result1.txt``, containing one Medline record.
You can find this file in Biopython’s ``Tests\Medline`` directory. The
file looks like this:
.. code:: text
PMID- 12230038
OWN - NLM
STAT- MEDLINE
DA - 20020916
DCOM- 20030606
LR - 20041117
PUBM- Print
IS - 1467-5463 (Print)
VI - 3
IP - 3
DP - 2002 Sep
TI - The Bio* toolkits--a brief overview.
PG - 296-302
AB - Bioinformatics research is often difficult to do with commercial software. The
Open Source BioPerl, BioPython and Biojava projects provide toolkits with
...
We first open the file and then parse it:
.. doctest ../Tests/Medline
.. code:: pycon
>>> from Bio import Medline
>>> with open("pubmed_result1.txt") as stream:
... record = Medline.read(stream)
...
The ``record`` now contains the Medline record as a Python dictionary:
.. cont-doctest
.. code:: pycon
>>> record["PMID"]
'12230038'
.. code:: pycon
>>> record["AB"]
'Bioinformatics research is often difficult to do with commercial software.
The Open Source BioPerl, BioPython and Biojava projects provide toolkits with
multiple functionality that make it easier to create customized pipelines or
analysis. This review briefly compares the quirks of the underlying languages
and the functionality, documentation, utility and relative advantages of the
Bio counterparts, particularly from the point of view of the beginning
biologist programmer.'
The key names used in a Medline record can be rather obscure; use
.. code:: pycon
>>> help(record)
for a brief summary.
To parse a file containing multiple Medline records, you can use the
``parse`` function instead:
.. doctest ../Tests/Medline
.. code:: pycon
>>> from Bio import Medline
>>> with open("pubmed_result2.txt") as stream:
... for record in Medline.parse(stream):
... print(record["TI"])
...
A high level interface to SCOP and ASTRAL implemented in python.
GenomeDiagram: a python package for the visualization of large-scale genomic data.
Open source clustering software.
PDB file parser and structure class implemented in Python.
Instead of parsing Medline records stored in files, you can also parse
Medline records downloaded by ``Bio.Entrez.efetch``. For example, let’s
look at all Medline records in PubMed related to Biopython:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esearch(db="pubmed", term="biopython")
>>> record = Entrez.read(stream)
>>> record["IdList"]
['19304878', '18606172', '16403221', '16377612', '14871861', '14630660', '12230038']
We now use ``Bio.Entrez.efetch`` to download these Medline records:
.. code:: pycon
>>> idlist = record["IdList"]
>>> stream = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text")
Here, we specify ``rettype="medline", retmode="text"`` to obtain the
Medline records in plain-text Medline format. Now we use ``Bio.Medline``
to parse these records:
.. code:: pycon
>>> from Bio import Medline
>>> records = Medline.parse(stream)
>>> for record in records:
... print(record["AU"])
...
['Cock PJ', 'Antao T', 'Chang JT', 'Chapman BA', 'Cox CJ', 'Dalke A', ..., 'de Hoon MJ']
['Munteanu CR', 'Gonzalez-Diaz H', 'Magalhaes AL']
['Casbon JA', 'Crooks GE', 'Saqi MA']
['Pritchard L', 'White JA', 'Birch PR', 'Toth IK']
['de Hoon MJ', 'Imoto S', 'Nolan J', 'Miyano S']
['Hamelryck T', 'Manderick B']
['Mangalam H']
For comparison, here we show an example using the XML format:
.. code:: pycon
>>> stream = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="xml")
>>> records = Entrez.read(stream)
>>> for record in records["PubmedArticle"]:
... print(record["MedlineCitation"]["Article"]["ArticleTitle"])
...
Biopython: freely available Python tools for computational molecular biology and
bioinformatics.
Enzymes/non-enzymes classification model complexity based on composition, sequence,
3D and topological indices.
A high level interface to SCOP and ASTRAL implemented in python.
GenomeDiagram: a python package for the visualization of large-scale genomic data.
Open source clustering software.
PDB file parser and structure class implemented in Python.
The Bio* toolkits--a brief overview.
Note that in both of these examples, for simplicity we have naively
combined ESearch and EFetch. In this situation, the NCBI would expect
you to use their history feature, as illustrated in
Section :ref:`sec:entrez-webenv`.
Parsing GEO records
~~~~~~~~~~~~~~~~~~~
GEO (`Gene Expression Omnibus <https://www.ncbi.nlm.nih.gov/geo/>`__) is
a data repository of high-throughput gene expression and hybridization
array data. The ``Bio.Geo`` module can be used to parse GEO-formatted
data.
The following code fragment shows how to parse the example GEO file
``GSE16.txt`` into a record and print the record:
.. code:: pycon
>>> from Bio import Geo
>>> stream = open("GSE16.txt")
>>> records = Geo.parse(stream)
>>> for record in records:
... print(record)
...
You can search the “gds” database (GEO datasets) with ESearch:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esearch(db="gds", term="GSE16")
>>> record = Entrez.read(stream)
>>> stream.close()
>>> record["Count"]
'27'
.. code:: pycon
>>> record["IdList"]
['200000016', '100000028', ...]
From the Entrez website, UID “200000016” is GDS16 while the other hit
“100000028” is for the associated platform, GPL28. Unfortunately, at the
time of writing the NCBI don’t seem to support downloading GEO files
using Entrez (not as XML, nor in the *Simple Omnibus Format in Text*
(SOFT) format).
However, it is actually pretty straight forward to download the GEO
files by FTP from ftp://ftp.ncbi.nih.gov/pub/geo/ instead. In this case
you might want
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SOFT/by_series/GSE16/GSE16_family.soft.gz
(a compressed file, see the Python module gzip).
Parsing UniGene records
~~~~~~~~~~~~~~~~~~~~~~~
UniGene is an NCBI database of the transcriptome, with each UniGene
record showing the set of transcripts that are associated with a
particular gene in a specific organism. A typical UniGene record looks
like this:
.. code:: text
ID Hs.2
TITLE N-acetyltransferase 2 (arylamine N-acetyltransferase)
GENE NAT2
CYTOBAND 8p22
GENE_ID 10
LOCUSLINK 10
HOMOL YES
EXPRESS bone| connective tissue| intestine| liver| liver tumor| normal| soft tissue/muscle tissue tumor| adult
RESTR_EXPR adult
CHROMOSOME 8
STS ACC=PMC310725P3 UNISTS=272646
STS ACC=WIAF-2120 UNISTS=44576
STS ACC=G59899 UNISTS=137181
...
STS ACC=GDB:187676 UNISTS=155563
PROTSIM ORG=10090; PROTGI=6754794; PROTID=NP_035004.1; PCT=76.55; ALN=288
PROTSIM ORG=9796; PROTGI=149742490; PROTID=XP_001487907.1; PCT=79.66; ALN=288
PROTSIM ORG=9986; PROTGI=126722851; PROTID=NP_001075655.1; PCT=76.90; ALN=288
...
PROTSIM ORG=9598; PROTGI=114619004; PROTID=XP_519631.2; PCT=98.28; ALN=288
SCOUNT 38
SEQUENCE ACC=BC067218.1; NID=g45501306; PID=g45501307; SEQTYPE=mRNA
SEQUENCE ACC=NM_000015.2; NID=g116295259; PID=g116295260; SEQTYPE=mRNA
SEQUENCE ACC=D90042.1; NID=g219415; PID=g219416; SEQTYPE=mRNA
SEQUENCE ACC=D90040.1; NID=g219411; PID=g219412; SEQTYPE=mRNA
SEQUENCE ACC=BC015878.1; NID=g16198419; PID=g16198420; SEQTYPE=mRNA
SEQUENCE ACC=CR407631.1; NID=g47115198; PID=g47115199; SEQTYPE=mRNA
SEQUENCE ACC=BG569293.1; NID=g13576946; CLONE=IMAGE:4722596; END=5'; LID=6989; SEQTYPE=EST; TRACE=44157214
...
SEQUENCE ACC=AU099534.1; NID=g13550663; CLONE=HSI08034; END=5'; LID=8800; SEQTYPE=EST
//
This particular record shows the set of transcripts (shown in the
``SEQUENCE`` lines) that originate from the human gene NAT2, encoding en
N-acetyltransferase. The ``PROTSIM`` lines show proteins with
significant similarity to NAT2, whereas the ``STS`` lines show the
corresponding sequence-tagged sites in the genome.
To parse UniGene files, use the ``Bio.UniGene`` module:
.. code:: pycon
>>> from Bio import UniGene
>>> input = open("myunigenefile.data")
>>> record = UniGene.read(input)
The ``record`` returned by ``UniGene.read`` is a Python object with
attributes corresponding to the fields in the UniGene record. For
example,
.. code:: pycon
>>> record.ID
"Hs.2"
>>> record.title
"N-acetyltransferase 2 (arylamine N-acetyltransferase)"
The ``EXPRESS`` and ``RESTR_EXPR`` lines are stored as Python lists of
strings:
.. code:: python
[
"bone",
"connective tissue",
"intestine",
"liver",
"liver tumor",
"normal",
"soft tissue/muscle tissue tumor",
"adult",
]
Specialized objects are returned for the ``STS``, ``PROTSIM``, and
``SEQUENCE`` lines, storing the keys shown in each line as attributes:
.. code:: pycon
>>> record.sts[0].acc
'PMC310725P3'
>>> record.sts[0].unists
'272646'
and similarly for the ``PROTSIM`` and ``SEQUENCE`` lines.
To parse a file containing more than one UniGene record, use the
``parse`` function in ``Bio.UniGene``:
.. code:: pycon
>>> from Bio import UniGene
>>> input = open("unigenerecords.data")
>>> records = UniGene.parse(input)
>>> for record in records:
... print(record.ID)
...
Using a proxy
-------------
Normally you won’t have to worry about using a proxy, but if this is an
issue on your network here is how to deal with it. Internally,
``Bio.Entrez`` uses the standard Python library ``urllib`` for accessing
the NCBI servers. This will check an environment variable called
``http_proxy`` to configure any simple proxy automatically.
Unfortunately this module does not support the use of proxies which
require authentication.
You may choose to set the ``http_proxy`` environment variable once (how
you do this will depend on your operating system). Alternatively you can
set this within Python at the start of your script, for example:
.. code:: python
import os
os.environ["http_proxy"] = "http://proxyhost.example.com:8080"
See the `urllib
documentation <https://docs.python.org/2/library/urllib.html>`__ for
more details.
.. _`sec:entrez_examples`:
Examples
--------
.. _`sec:pub_med`:
PubMed and Medline
~~~~~~~~~~~~~~~~~~
If you are in the medical field or interested in human issues (and many
times even if you are not!), PubMed
(https://www.ncbi.nlm.nih.gov/PubMed/) is an excellent source of all
kinds of goodies. So like other things, we’d like to be able to grab
information from it and use it in Python scripts.
In this example, we will query PubMed for all articles having to do with
orchids (see section :ref:`sec:orchids` for our
motivation). We first check how many of such articles there are:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.egquery(term="orchid")
>>> record = Entrez.read(stream)
>>> for row in record["eGQueryResult"]:
... if row["DbName"] == "pubmed":
... print(row["Count"])
...
463
Now we use the ``Bio.Entrez.efetch`` function to download the PubMed IDs
of these 463 articles:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esearch(db="pubmed", term="orchid", retmax=463)
>>> record = Entrez.read(stream)
>>> stream.close()
>>> idlist = record["IdList"]
This returns a Python list containing all of the PubMed IDs of articles
related to orchids:
.. code:: pycon
>>> print(idlist)
['18680603', '18665331', '18661158', '18627489', '18627452', '18612381',
'18594007', '18591784', '18589523', '18579475', '18575811', '18575690',
...
Now that we’ve got them, we obviously want to get the corresponding
Medline records and extract the information from them. Here, we’ll
download the Medline records in the Medline flat-file format, and use
the ``Bio.Medline`` module to parse them:
.. cont-doctest
.. code:: pycon
>>> from Bio import Medline
>>> stream = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text")
>>> records = Medline.parse(stream)
NOTE - We’ve just done a separate search and fetch here, the NCBI much
prefer you to take advantage of their history support in this situation.
See Section :ref:`sec:entrez-webenv`.
Keep in mind that ``records`` is an iterator, so you can iterate through
the records only once. If you want to save the records, you can convert
them to a list:
.. cont-doctest
.. code:: pycon
>>> records = list(records)
Let’s now iterate over the records to print out some information about
each record:
.. code:: pycon
>>> for record in records:
... print("title:", record.get("TI", "?"))
... print("authors:", record.get("AU", "?"))
... print("source:", record.get("SO", "?"))
... print("")
...
The output for this looks like:
.. code:: text
title: Sex pheromone mimicry in the early spider orchid (ophrys sphegodes):
patterns of hydrocarbons as the key mechanism for pollination by sexual
deception [In Process Citation]
authors: ['Schiestl FP', 'Ayasse M', 'Paulus HF', 'Lofstedt C', 'Hansson BS',
'Ibarra F', 'Francke W']
source: J Comp Physiol [A] 2000 Jun;186(6):567-74
Especially interesting to note is the list of authors, which is returned
as a standard Python list. This makes it easy to manipulate and search
using standard Python tools. For instance, we could loop through a whole
bunch of entries searching for a particular author with code like the
following:
.. code:: pycon
>>> search_author = "Waits T"
>>> for record in records:
... if not "AU" in record:
... continue
... if search_author in record["AU"]:
... print("Author %s found: %s" % (search_author, record["SO"]))
...
Hopefully this section gave you an idea of the power and flexibility of
the Entrez and Medline interfaces and how they can be used together.
.. _`sec:entrez_example_genbank`:
Searching, downloading, and parsing Entrez Nucleotide records
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here we’ll show a simple example of performing a remote Entrez query. In
section :ref:`sec:orchids` of the parsing examples, we
talked about using NCBI’s Entrez website to search the NCBI nucleotide
databases for info on Cypripedioideae, our friends the lady slipper
orchids. Now, we’ll look at how to automate that process using a Python
script. In this example, we’ll just show how to connect, get the
results, and parse them, with the Entrez module doing all of the work.
First, we use EGQuery to find out the number of results we will get
before actually downloading them. EGQuery will tell us how many search
results were found in each of the databases, but for this example we are
only interested in nucleotides:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.egquery(term="Cypripedioideae")
>>> record = Entrez.read(stream)
>>> for row in record["eGQueryResult"]:
... if row["DbName"] == "nuccore":
... print(row["Count"])
...
4457
So, we expect to find 4457 Entrez Nucleotide records (this increased
from 814 records in 2008; it is likely to continue to increase in the
future). If you find some ridiculously high number of hits, you may want
to reconsider if you really want to download all of them, which is our
next step. Let’s use the ``retmax`` argument to restrict the maximum
number of records retrieved to the number available in 2008:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esearch(
... db="nucleotide", term="Cypripedioideae", retmax=814, idtype="acc"
... )
>>> record = Entrez.read(stream)
>>> stream.close()
Here, ``record`` is a Python dictionary containing the search results
and some auxiliary information. Just for information, let’s look at what
is stored in this dictionary:
.. code:: pycon
>>> print(record.keys())
['Count', 'RetMax', 'IdList', 'TranslationSet', 'RetStart', 'QueryTranslation']
First, let’s check how many results were found:
.. code:: pycon
>>> print(record["Count"])
'4457'
You might have expected this to be 814, the maximum number of records we
asked to retrieve. However, ``Count`` represents the total number of
records available for that search, not how many were retrieved. The
retrieved records are stored in ``record['IdList']``, which should
contain the total number we asked for:
.. code:: pycon
>>> len(record["IdList"])
814
Let’s look at the first five results:
.. code:: pycon
>>> record["IdList"][:5]
['KX265015.1', 'KX265014.1', 'KX265013.1', 'KX265012.1', 'KX265011.1']
We can download these records using ``efetch``. While you could download
these records one by one, to reduce the load on NCBI’s servers, it is
better to fetch a bunch of records at the same time, shown below.
However, in this situation you should ideally be using the history
feature described later in Section :ref:`sec:entrez-webenv`.
.. code:: pycon
>>> idlist = ",".join(record["IdList"][:5])
>>> print(idlist)
KX265015.1, KX265014.1, KX265013.1, KX265012.1, KX265011.1]
>>> stream = Entrez.efetch(db="nucleotide", id=idlist, retmode="xml")
>>> records = Entrez.read(stream)
>>> len(records)
5
Each of these records corresponds to one GenBank record.
.. code:: pycon
>>> print(records[0].keys())
['GBSeq_moltype', 'GBSeq_source', 'GBSeq_sequence',
'GBSeq_primary-accession', 'GBSeq_definition', 'GBSeq_accession-version',
'GBSeq_topology', 'GBSeq_length', 'GBSeq_feature-table',
'GBSeq_create-date', 'GBSeq_other-seqids', 'GBSeq_division',
'GBSeq_taxonomy', 'GBSeq_references', 'GBSeq_update-date',
'GBSeq_organism', 'GBSeq_locus', 'GBSeq_strandedness']
>>> print(records[0]["GBSeq_primary-accession"])
DQ110336
>>> print(records[0]["GBSeq_other-seqids"])
['gb|DQ110336.1|', 'gi|187237168']
>>> print(records[0]["GBSeq_definition"])
Cypripedium calceolus voucher Davis 03-03 A maturase (matR) gene, partial cds;
mitochondrial
>>> print(records[0]["GBSeq_organism"])
Cypripedium calceolus
You could use this to quickly set up searches – but for heavy usage, see
Section :ref:`sec:entrez-webenv`.
.. _`sec:entrez-search-fetch-genbank`:
Searching, downloading, and parsing GenBank records
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The GenBank record format is a very popular method of holding
information about sequences, sequence features, and other associated
sequence information. The format is a good way to get information from
the NCBI databases at https://www.ncbi.nlm.nih.gov/.
In this example we’ll show how to query the NCBI databases,to retrieve
the records from the query, and then parse them using ``Bio.SeqIO`` -
something touched on in
Section :ref:`sec:SeqIO_GenBank_Online`. For
simplicity, this example *does not* take advantage of the WebEnv history
feature – see Section :ref:`sec:entrez-webenv` for this.
First, we want to make a query and find out the ids of the records to
retrieve. Here we’ll do a quick search for one of our favorite
organisms, *Opuntia* (prickly-pear cacti). We can do quick search and
get back the GIs (GenBank identifiers) for all of the corresponding
records. First we check how many records there are:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.egquery(term="Opuntia AND rpl16")
>>> record = Entrez.read(stream)
>>> for row in record["eGQueryResult"]:
... if row["DbName"] == "nuccore":
... print(row["Count"])
...
9
Now we download the list of GenBank identifiers:
.. code:: pycon
>>> stream = Entrez.esearch(db="nuccore", term="Opuntia AND rpl16")
>>> record = Entrez.read(stream)
>>> gi_list = record["IdList"]
>>> gi_list
['57240072', '57240071', '6273287', '6273291', '6273290', '6273289', '6273286',
'6273285', '6273284']
Now we use these GIs to download the GenBank records - note that with
older versions of Biopython you had to supply a comma separated list of
GI numbers to Entrez, as of Biopython 1.59 you can pass a list and this
is converted for you:
.. code:: pycon
>>> gi_str = ",".join(gi_list)
>>> stream = Entrez.efetch(db="nuccore", id=gi_str, rettype="gb", retmode="text")
If you want to look at the raw GenBank files, you can read from this
stream and print out the result:
.. code:: pycon
>>> text = stream.read()
>>> print(text)
LOCUS AY851612 892 bp DNA linear PLN 10-APR-2007
DEFINITION Opuntia subulata rpl16 gene, intron; chloroplast.
ACCESSION AY851612
VERSION AY851612.1 GI:57240072
KEYWORDS .
SOURCE chloroplast Austrocylindropuntia subulata
ORGANISM Austrocylindropuntia subulata
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons;
Caryophyllales; Cactaceae; Opuntioideae; Austrocylindropuntia.
REFERENCE 1 (bases 1 to 892)
AUTHORS Butterworth,C.A. and Wallace,R.S.
...
In this case, we are just getting the raw records. To get the records in
a more Python-friendly form, we can use ``Bio.SeqIO`` to parse the
GenBank data into ``SeqRecord`` objects, including ``SeqFeature``
objects (see Chapter :ref:`chapter:seqio`):
.. code:: pycon
>>> from Bio import SeqIO
>>> stream = Entrez.efetch(db="nuccore", id=gi_str, rettype="gb", retmode="text")
>>> records = SeqIO.parse(stream, "gb")
We can now step through the records and look at the information we are
interested in:
.. code:: pycon
>>> for record in records:
... print(f"{record.name}, length {len(record)}, with {len(record.features)} features")
...
AY851612, length 892, with 3 features
AY851611, length 881, with 3 features
AF191661, length 895, with 3 features
AF191665, length 902, with 3 features
AF191664, length 899, with 3 features
AF191663, length 899, with 3 features
AF191660, length 893, with 3 features
AF191659, length 894, with 3 features
AF191658, length 896, with 3 features
Using these automated query retrieval functionality is a big plus over
doing things by hand. Although the module should obey the NCBI’s max
three queries per second rule, the NCBI have other recommendations like
avoiding peak hours. See Section :ref:`sec:entrez-guidelines`. In
particular, please note that for simplicity, this example does not use
the WebEnv history feature. You should use this for any non-trivial
search and download work, see Section :ref:`sec:entrez-webenv`.
Finally, if plan to repeat your analysis, rather than downloading the
files from the NCBI and parsing them immediately (as shown in this
example), you should just download the records *once* and save them to
your hard disk, and then parse the local file.
Finding the lineage of an organism
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Staying with a plant example, let’s now find the lineage of the
Cypripedioideae orchid family. First, we search the Taxonomy database
for Cypripedioideae, which yields exactly one NCBI taxonomy identifier:
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esearch(db="Taxonomy", term="Cypripedioideae")
>>> record = Entrez.read(stream)
>>> record["IdList"]
['158330']
>>> record["IdList"][0]
'158330'
Now, we use ``efetch`` to download this entry in the Taxonomy database,
and then parse it:
.. cont-doctest
.. code:: pycon
>>> stream = Entrez.efetch(db="Taxonomy", id="158330", retmode="xml")
>>> records = Entrez.read(stream)
Again, this record stores lots of information:
.. code:: pycon
>>> records[0].keys()
['Lineage', 'Division', 'ParentTaxId', 'PubDate', 'LineageEx',
'CreateDate', 'TaxId', 'Rank', 'GeneticCode', 'ScientificName',
'MitoGeneticCode', 'UpdateDate']
We can get the lineage directly from this record:
.. code:: pycon
>>> records[0]["Lineage"]
'cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina;
Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliopsida;
Liliopsida; Asparagales; Orchidaceae'
The record data contains much more than just the information shown here
- for example look under ``"LineageEx"`` instead of ``"Lineage"`` and
you’ll get the NCBI taxon identifiers of the lineage entries too.
.. _`sec:entrez-webenv`:
Using the history and WebEnv
----------------------------
Often you will want to make a series of linked queries. Most typically,
running a search, perhaps refining the search, and then retrieving
detailed search results. You *can* do this by making a series of
separate calls to Entrez. However, the NCBI prefer you to take advantage
of their history support - for example combining ESearch and EFetch.
Another typical use of the history support would be to combine EPost and
EFetch. You use EPost to upload a list of identifiers, which starts a
new history session. You then download the records with EFetch by
referring to the session (instead of the identifiers).
Searching for and downloading sequences using the history
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we want to search and download all the *Opuntia* rpl16
nucleotide sequences, and store them in a FASTA file. As shown in
Section :ref:`sec:entrez-search-fetch-genbank`, we can naively
combine ``Bio.Entrez.esearch()`` to get a list of Accession numbers, and
then call ``Bio.Entrez.efetch()`` to download them all.
However, the approved approach is to run the search with the history
feature. Then, we can fetch the results by reference to the search
results - which the NCBI can anticipate and cache.
To do this, call ``Bio.Entrez.esearch()`` as normal, but with the
additional argument of ``usehistory="y"``,
.. doctest . internet
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "history.user@example.com" # Always tell NCBI who you are
>>> stream = Entrez.esearch(
... db="nucleotide", term="Opuntia[orgn] and rpl16", usehistory="y", idtype="acc"
... )
>>> search_results = Entrez.read(stream)
>>> stream.close()
As before (see Section :ref:`sec:entrez_example_genbank`), the
XML output includes the first ``retmax`` search results, with ``retmax``
defaulting to 20:
.. cont-doctest
.. code:: pycon
>>> acc_list = search_results["IdList"]
>>> count = int(search_results["Count"])
>>> len(acc_list)
20
.. code:: pycon
>>> count
28
You also get given two additional pieces of information, the ``WebEnv``
session cookie, and the ``QueryKey``:
.. cont-doctest
.. code:: pycon
>>> webenv = search_results["WebEnv"]
>>> query_key = search_results["QueryKey"]
Having stored these values in variables ``session_cookie`` and
``query_key`` we can use them as parameters to ``Bio.Entrez.efetch()``
instead of giving the GI numbers as identifiers.
While for small searches you might be OK downloading everything at once,
it is better to download in batches. You use the ``retstart`` and
``retmax`` parameters to specify which range of search results you want
returned (starting entry using zero-based counting, and maximum number
of results to return). Note that if Biopython encounters a transient
failure like a HTTP 500 response when communicating with NCBI, it will
automatically try again a couple of times. For example,
.. code:: python
# This assumes you have already run a search as shown above,
# and set the variables count, webenv, query_key
batch_size = 3
output = open("orchid_rpl16.fasta", "w")
for start in range(0, count, batch_size):
end = min(count, start + batch_size)
print("Going to download record %i to %i" % (start + 1, end))
stream = Entrez.efetch(
db="nucleotide",
rettype="fasta",
retmode="text",
retstart=start,
retmax=batch_size,
webenv=webenv,
query_key=query_key,
idtype="acc",
)
data = stream.read()
stream.close()
output.write(data)
output.close()
For illustrative purposes, this example downloaded the FASTA records in
batches of three. Unless you are downloading genomes or chromosomes, you
would normally pick a larger batch size.
Searching for and downloading abstracts using the history
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is another history example, searching for papers published in the
last year about the *Opuntia*, and then downloading them into a file in
MedLine format:
.. code:: python
from Bio import Entrez
Entrez.email = "history.user@example.com"
search_results = Entrez.read(
Entrez.esearch(
db="pubmed", term="Opuntia[ORGN]", reldate=365, datetype="pdat", usehistory="y"
)
)
count = int(search_results["Count"])
print("Found %i results" % count)
batch_size = 10
output = open("recent_orchid_papers.txt", "w")
for start in range(0, count, batch_size):
end = min(count, start + batch_size)
print("Going to download record %i to %i" % (start + 1, end))
stream = Entrez.efetch(
db="pubmed",
rettype="medline",
retmode="text",
retstart=start,
retmax=batch_size,
webenv=search_results["WebEnv"],
query_key=search_results["QueryKey"],
)
data = stream.read()
stream.close()
output.write(data)
output.close()
At the time of writing, this gave 28 matches - but because this is a
date dependent search, this will of course vary. As described in
Section :ref:`sec:entrez-and-medline` above, you can then use
``Bio.Medline`` to parse the saved records.
.. _`sec:elink-citations`:
Searching for citations
~~~~~~~~~~~~~~~~~~~~~~~
Back in Section :ref:`sec:elink` we mentioned ELink can be used to
search for citations of a given paper. Unfortunately this only covers
journals indexed for PubMed Central (doing it for all the journals in
PubMed would mean a lot more work for the NIH). Let’s try this for the
Biopython PDB parser paper, PubMed ID 14630660:
.. code:: pycon
>>> from Bio import Entrez
>>> Entrez.email = "A.N.Other@example.com" # Always tell NCBI who you are
>>> pmid = "14630660"
>>> results = Entrez.read(
... Entrez.elink(dbfrom="pubmed", db="pmc", LinkName="pubmed_pmc_refs", id=pmid)
... )
>>> pmc_ids = [link["Id"] for link in results[0]["LinkSetDb"][0]["Link"]]
>>> pmc_ids
['2744707', '2705363', '2682512', ..., '1190160']
Great - eleven articles. But why hasn’t the Biopython application note
been found (PubMed ID 19304878)? Well, as you might have guessed from
the variable names, there are not actually PubMed IDs, but PubMed
Central IDs. Our application note is the third citing paper in that
list, PMCID 2682512.
So, what if (like me) you’d rather get back a list of PubMed IDs? Well
we can call ELink again to translate them. This becomes a two step
process, so by now you should expect to use the history feature to
accomplish it (Section :ref:`sec:entrez-webenv`).
But first, taking the more straightforward approach of making a second
(separate) call to ELink:
.. code:: pycon
>>> results2 = Entrez.read(
... Entrez.elink(dbfrom="pmc", db="pubmed", LinkName="pmc_pubmed", id=",".join(pmc_ids))
... )
>>> pubmed_ids = [link["Id"] for link in results2[0]["LinkSetDb"][0]["Link"]]
>>> pubmed_ids
['19698094', '19450287', '19304878', ..., '15985178']
This time you can immediately spot the Biopython application note as the
third hit (PubMed ID 19304878).
Now, let’s do that all again but with the history … *TODO*.
And finally, don’t forget to include your *own* email address in the
Entrez calls.
|