1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
|
.. _`chapter:msa`:
Multiple Sequence Alignment objects
===================================
This chapter describes the older ``MultipleSeqAlignment`` class and the
parsers in ``Bio.AlignIO`` that parse the output of sequence alignment
software, generating ``MultipleSeqAlignment`` objects. By Multiple
Sequence Alignments we mean a collection of multiple sequences which
have been aligned together – usually with the insertion of gap
characters, and addition of leading or trailing gaps – such that all the
sequence strings are the same length. Such an alignment can be regarded
as a matrix of letters, where each row is held as a ``SeqRecord`` object
internally.
We will introduce the ``MultipleSeqAlignment`` object which holds this
kind of data, and the ``Bio.AlignIO`` module for reading and writing
them as various file formats (following the design of the ``Bio.SeqIO``
module from the previous chapter). Note that both ``Bio.SeqIO`` and
``Bio.AlignIO`` can read and write sequence alignment files. The
appropriate choice will depend largely on what you want to do with the
data.
The final part of this chapter is about using common multiple sequence
alignment tools like ClustalW and MUSCLE from Python, and parsing the
results with Biopython.
Parsing or Reading Sequence Alignments
--------------------------------------
We have two functions for reading in sequence alignments,
``Bio.AlignIO.read()`` and ``Bio.AlignIO.parse()`` which following the
convention introduced in ``Bio.SeqIO`` are for files containing one or
multiple alignments respectively.
Using ``Bio.AlignIO.parse()`` will return an *iterator* which gives
``MultipleSeqAlignment`` objects. Iterators are typically used in a for
loop. Examples of situations where you will have multiple different
alignments include resampled alignments from the PHYLIP tool
``seqboot``, or multiple pairwise alignments from the EMBOSS tools
``water`` or ``needle``, or Bill Pearson’s FASTA tools.
However, in many situations you will be dealing with files which contain
only a single alignment. In this case, you should use the
``Bio.AlignIO.read()`` function which returns a single
``MultipleSeqAlignment`` object.
Both functions expect two mandatory arguments:
#. The first argument is a *handle* to read the data from, typically an
open file (see
Section :ref:`sec:appendix-handles`), or a
filename.
#. The second argument is a lower case string specifying the alignment
format. As in ``Bio.SeqIO`` we don’t try and guess the file format
for you! See http://biopython.org/wiki/AlignIO for a full listing of
supported formats.
There is also an optional ``seq_count`` argument which is discussed in
Section :ref:`sec:AlignIO-count-argument` below for dealing with
ambiguous file formats which may contain more than one alignment.
Single Alignments
~~~~~~~~~~~~~~~~~
As an example, consider the following annotation rich protein alignment
in the PFAM or Stockholm file format:
.. code:: text
# STOCKHOLM 1.0
#=GS COATB_BPIKE/30-81 AC P03620.1
#=GS COATB_BPIKE/30-81 DR PDB; 1ifl ; 1-52;
#=GS Q9T0Q8_BPIKE/1-52 AC Q9T0Q8.1
#=GS COATB_BPI22/32-83 AC P15416.1
#=GS COATB_BPM13/24-72 AC P69541.1
#=GS COATB_BPM13/24-72 DR PDB; 2cpb ; 1-49;
#=GS COATB_BPM13/24-72 DR PDB; 2cps ; 1-49;
#=GS COATB_BPZJ2/1-49 AC P03618.1
#=GS Q9T0Q9_BPFD/1-49 AC Q9T0Q9.1
#=GS Q9T0Q9_BPFD/1-49 DR PDB; 1nh4 A; 1-49;
#=GS COATB_BPIF1/22-73 AC P03619.2
#=GS COATB_BPIF1/22-73 DR PDB; 1ifk ; 1-50;
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
#=GR COATB_BPIKE/30-81 SS -HHHHHHHHHHHHHH--HHHHHHHH--HHHHHHHHHHHHHHHHHHHHH----
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
COATB_BPM13/24-72 AEGDDP...AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR COATB_BPM13/24-72 SS ---S-T...CHCHHHHCCCCTCCCTTCHHHHHHHHHHHHHHHHHHHHCTT--
COATB_BPZJ2/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
Q9T0Q9_BPFD/1-49 AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR Q9T0Q9_BPFD/1-49 SS ------...-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH--
COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
#=GR COATB_BPIF1/22-73 SS XX-HHHH--HHHHHH--HHHHHHH--HHHHHHHHHHHHHHHHHHHHHHH---
#=GC SS_cons XHHHHHHHHHHHHHHHCHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHHHC--
#=GC seq_cons AEssss...AptAhDSLpspAT-hIu.sWshVsslVsAsluIKLFKKFsSKA
//
This is the seed alignment for the Phage_Coat_Gp8 (PF05371) PFAM entry,
downloaded from a now out of date release of PFAM from
https://pfam.xfam.org/. We can load this file as follows (assuming it
has been saved to disk as “PF05371_seed.sth” in the current working
directory):
.. doctest examples
.. code:: pycon
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
This code will print out a summary of the alignment:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
Alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
You’ll notice in the above output the sequences have been truncated. We
could instead write our own code to format this as we please by
iterating over the rows as ``SeqRecord`` objects:
.. doctest examples
.. code:: pycon
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Alignment length %i" % alignment.get_alignment_length())
Alignment length 52
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))
...
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73
You could also call Python’s built-in ``format`` function on the
alignment object to show it in a particular file format – see
Section :ref:`sec:alignment-format` for details.
Did you notice in the raw file above that several of the sequences
include database cross-references to the PDB and the associated known
secondary structure? Try this:
.. cont-doctest
.. code:: pycon
>>> for record in alignment:
... if record.dbxrefs:
... print("%s %s" % (record.id, record.dbxrefs))
...
COATB_BPIKE/30-81 ['PDB; 1ifl ; 1-52;']
COATB_BPM13/24-72 ['PDB; 2cpb ; 1-49;', 'PDB; 2cps ; 1-49;']
Q9T0Q9_BPFD/1-49 ['PDB; 1nh4 A; 1-49;']
COATB_BPIF1/22-73 ['PDB; 1ifk ; 1-50;']
To have a look at all the sequence annotation, try this:
.. code:: pycon
>>> for record in alignment:
... print(record)
...
PFAM provide a nice web interface at http://pfam.xfam.org/family/PF05371
which will actually let you download this alignment in several other
formats. This is what the file looks like in the FASTA file format:
.. code:: text
>COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
>Q9T0Q8_BPIKE/1-52
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
>COATB_BPI22/32-83
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
>COATB_BPM13/24-72
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
>Q9T0Q9_BPFD/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
>COATB_BPIF1/22-73
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
Note the website should have an option about showing gaps as periods
(dots) or dashes, we’ve shown dashes above. Assuming you download and
save this as file “PF05371_seed.faa” then you can load it with almost
exactly the same code:
.. code:: pycon
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.faa", "fasta")
>>> print(alignment)
All that has changed in this code is the filename and the format string.
You’ll get the same output as before, the sequences and record
identifiers are the same. However, as you should expect, if you check
each ``SeqRecord`` there is no annotation nor database cross-references
because these are not included in the FASTA file format.
Note that rather than using the Sanger website, you could have used
``Bio.AlignIO`` to convert the original Stockholm format file into a
FASTA file yourself (see below).
With any supported file format, you can load an alignment in exactly the
same way just by changing the format string. For example, use “phylip”
for PHYLIP files, “nexus” for NEXUS files or “emboss” for the alignments
output by the EMBOSS tools. There is a full listing on the wiki page
(http://biopython.org/wiki/AlignIO) and in the built-in documentation,
:py:mod:`Bio.AlignIO`:
.. code:: pycon
>>> from Bio import AlignIO
>>> help(AlignIO)
Multiple Alignments
~~~~~~~~~~~~~~~~~~~
The previous section focused on reading files containing a single
alignment. In general however, files can contain more than one
alignment, and to read these files we must use the
``Bio.AlignIO.parse()`` function.
Suppose you have a small alignment in PHYLIP format:
.. code:: text
5 6
Alpha AACAAC
Beta AACCCC
Gamma ACCAAC
Delta CCACCA
Epsilon CCAAAC
If you wanted to bootstrap a phylogenetic tree using the PHYLIP tools,
one of the steps would be to create a set of many resampled alignments
using the tool ``bootseq``. This would give output something like this,
which has been abbreviated for conciseness:
.. code:: text
5 6
Alpha AAACCA
Beta AAACCC
Gamma ACCCCA
Delta CCCAAC
Epsilon CCCAAA
5 6
Alpha AAACAA
Beta AAACCC
Gamma ACCCAA
Delta CCCACC
Epsilon CCCAAA
5 6
Alpha AAAAAC
Beta AAACCC
Gamma AACAAC
Delta CCCCCA
Epsilon CCCAAC
...
5 6
Alpha AAAACC
Beta ACCCCC
Gamma AAAACC
Delta CCCCAA
Epsilon CAAACC
If you wanted to read this in using ``Bio.AlignIO`` you could use:
.. code:: pycon
>>> from Bio import AlignIO
>>> alignments = AlignIO.parse("resampled.phy", "phylip")
>>> for alignment in alignments:
... print(alignment)
... print()
...
This would give the following output, again abbreviated for display:
.. code:: text
Alignment with 5 rows and 6 columns
AAACCA Alpha
AAACCC Beta
ACCCCA Gamma
CCCAAC Delta
CCCAAA Epsilon
Alignment with 5 rows and 6 columns
AAACAA Alpha
AAACCC Beta
ACCCAA Gamma
CCCACC Delta
CCCAAA Epsilon
Alignment with 5 rows and 6 columns
AAAAAC Alpha
AAACCC Beta
AACAAC Gamma
CCCCCA Delta
CCCAAC Epsilon
...
Alignment with 5 rows and 6 columns
AAAACC Alpha
ACCCCC Beta
AAAACC Gamma
CCCCAA Delta
CAAACC Epsilon
As with the function ``Bio.SeqIO.parse()``, using
``Bio.AlignIO.parse()`` returns an iterator. If you want to keep all the
alignments in memory at once, which will allow you to access them in any
order, then turn the iterator into a list:
.. code:: pycon
>>> from Bio import AlignIO
>>> alignments = list(AlignIO.parse("resampled.phy", "phylip"))
>>> last_align = alignments[-1]
>>> first_align = alignments[0]
.. _`sec:AlignIO-count-argument`:
Ambiguous Alignments
~~~~~~~~~~~~~~~~~~~~
Many alignment file formats can explicitly store more than one
alignment, and the division between each alignment is clear. However,
when a general sequence file format has been used there is no such block
structure. The most common such situation is when alignments have been
saved in the FASTA file format. For example consider the following:
.. code:: text
>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
This could be a single alignment containing six sequences (with repeated
identifiers). Or, judging from the identifiers, this is probably two
different alignments each with three sequences, which happen to all have
the same length.
What about this next example?
.. code:: text
>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Delta
ACTACGGCTAGCACAGAAG
Again, this could be a single alignment with six sequences. However this
time based on the identifiers we might guess this is three pairwise
alignments which by chance have all got the same lengths.
This final example is similar:
.. code:: text
>Alpha
ACTACGACTAGCTCAG--G
>XXX
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG
>YYY
ACTACGGCAAGCACAGG
>Alpha
--ACTACGAC--TAGCTCAGG
>ZZZ
GGACTACGACAATAGCTCAGG
In this third example, because of the differing lengths, this cannot be
treated as a single alignment containing all six records. However, it
could be three pairwise alignments.
Clearly trying to store more than one alignment in a FASTA file is not
ideal. However, if you are forced to deal with these as input files
``Bio.AlignIO`` can cope with the most common situation where all the
alignments have the same number of records. One example of this is a
collection of pairwise alignments, which can be produced by the EMBOSS
tools ``needle`` and ``water`` – although in this situation,
``Bio.AlignIO`` should be able to understand their native output using
“emboss” as the format string.
To interpret these FASTA examples as several separate alignments, we can
use ``Bio.AlignIO.parse()`` with the optional ``seq_count`` argument
which specifies how many sequences are expected in each alignment (in
these examples, 3, 2 and 2 respectively). For example, using the third
example as the input data:
.. code:: pycon
>>> for alignment in AlignIO.parse(handle, "fasta", seq_count=2):
... print("Alignment length %i" % alignment.get_alignment_length())
... for record in alignment:
... print("%s - %s" % (record.seq, record.id))
... print()
...
giving:
.. code:: text
Alignment length 19
ACTACGACTAGCTCAG--G - Alpha
ACTACCGCTAGCTCAGAAG - XXX
Alignment length 17
ACTACGACTAGCTCAGG - Alpha
ACTACGGCAAGCACAGG - YYY
Alignment length 21
--ACTACGAC--TAGCTCAGG - Alpha
GGACTACGACAATAGCTCAGG - ZZZ
Using ``Bio.AlignIO.read()`` or ``Bio.AlignIO.parse()`` without the
``seq_count`` argument would give a single alignment containing all six
records for the first two examples. For the third example, an exception
would be raised because the lengths differ preventing them being turned
into a single alignment.
If the file format itself has a block structure allowing ``Bio.AlignIO``
to determine the number of sequences in each alignment directly, then
the ``seq_count`` argument is not needed. If it is supplied, and doesn’t
agree with the file contents, an error is raised.
Note that this optional ``seq_count`` argument assumes each alignment in
the file has the same number of sequences. Hypothetically you may come
across stranger situations, for example a FASTA file containing several
alignments each with a different number of sequences – although I would
love to hear of a real world example of this. Assuming you cannot get
the data in a nicer file format, there is no straight forward way to
deal with this using ``Bio.AlignIO``. In this case, you could consider
reading in the sequences themselves using ``Bio.SeqIO`` and batching
them together to create the alignments as appropriate.
Writing Alignments
------------------
We’ve talked about using ``Bio.AlignIO.read()`` and
``Bio.AlignIO.parse()`` for alignment input (reading files), and now
we’ll look at ``Bio.AlignIO.write()`` which is for alignment output
(writing files). This is a function taking three arguments: some
``MultipleSeqAlignment`` objects (or for backwards compatibility the
obsolete ``Alignment`` objects), a handle or filename to write to, and a
sequence format.
Here is an example, where we start by creating a few
``MultipleSeqAlignment`` objects the hard way (by hand, rather than by
loading them from a file). Note we create some ``SeqRecord`` objects to
construct the alignment from.
.. doctest
.. code:: pycon
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> align1 = MultipleSeqAlignment(
... [
... SeqRecord(Seq("ACTGCTAGCTAG"), id="Alpha"),
... SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta"),
... SeqRecord(Seq("ACTGCTAGDTAG"), id="Gamma"),
... ]
... )
>>> align2 = MultipleSeqAlignment(
... [
... SeqRecord(Seq("GTCAGC-AG"), id="Delta"),
... SeqRecord(Seq("GACAGCTAG"), id="Epsilon"),
... SeqRecord(Seq("GTCAGCTAG"), id="Zeta"),
... ]
... )
>>> align3 = MultipleSeqAlignment(
... [
... SeqRecord(Seq("ACTAGTACAGCTG"), id="Eta"),
... SeqRecord(Seq("ACTAGTACAGCT-"), id="Theta"),
... SeqRecord(Seq("-CTACTACAGGTG"), id="Iota"),
... ]
... )
>>> my_alignments = [align1, align2, align3]
Now we have a list of ``Alignment`` objects, we’ll write them to a
PHYLIP format file:
.. code:: pycon
>>> from Bio import AlignIO
>>> AlignIO.write(my_alignments, "my_example.phy", "phylip")
And if you open this file in your favorite text editor it should look
like this:
.. code:: text
3 12
Alpha ACTGCTAGCT AG
Beta ACT-CTAGCT AG
Gamma ACTGCTAGDT AG
3 9
Delta GTCAGC-AG
Epislon GACAGCTAG
Zeta GTCAGCTAG
3 13
Eta ACTAGTACAG CTG
Theta ACTAGTACAG CT-
Iota -CTACTACAG GTG
Its more common to want to load an existing alignment, and save that,
perhaps after some simple manipulation like removing certain rows or
columns.
Suppose you wanted to know how many alignments the
``Bio.AlignIO.write()`` function wrote to the handle? If your alignments
were in a list like the example above, you could just use
``len(my_alignments)``, however you can’t do that when your records come
from a generator/iterator. Therefore the ``Bio.AlignIO.write()``
function returns the number of alignments written to the file.
*Note* - If you tell the ``Bio.AlignIO.write()`` function to write to a
file that already exists, the old file will be overwritten without any
warning.
.. _`sec:converting-alignments`:
Converting between sequence alignment file formats
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Converting between sequence alignment file formats with ``Bio.AlignIO``
works in the same way as converting between sequence file formats with
``Bio.SeqIO``
(Section :ref:`sec:SeqIO-conversion`). We load
generally the alignment(s) using ``Bio.AlignIO.parse()`` and then save
them using the ``Bio.AlignIO.write()`` – or just use the
``Bio.AlignIO.convert()`` helper function.
For this example, we’ll load the PFAM/Stockholm format file used earlier
and save it as a Clustal W format file:
.. code:: pycon
>>> from Bio import AlignIO
>>> count = AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.aln", "clustal")
>>> print("Converted %i alignments" % count)
Converted 1 alignments
Or, using ``Bio.AlignIO.parse()`` and ``Bio.AlignIO.write()``:
.. code:: pycon
>>> from Bio import AlignIO
>>> alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
>>> count = AlignIO.write(alignments, "PF05371_seed.aln", "clustal")
>>> print("Converted %i alignments" % count)
Converted 1 alignments
The ``Bio.AlignIO.write()`` function expects to be given multiple
alignment objects. In the example above we gave it the alignment
iterator returned by ``Bio.AlignIO.parse()``.
In this case, we know there is only one alignment in the file so we
could have used ``Bio.AlignIO.read()`` instead, but notice we have to
pass this alignment to ``Bio.AlignIO.write()`` as a single element list:
.. code:: pycon
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> AlignIO.write([alignment], "PF05371_seed.aln", "clustal")
Either way, you should end up with the same new Clustal W format file
“PF05371_seed.aln” with the following content:
.. code:: text
CLUSTAL X (1.81) multiple sequence alignment
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
COATB_BPZJ2/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFAS
Q9T0Q9_BPFD/1-49 AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
COATB_BPIF1/22-73 FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVS
COATB_BPIKE/30-81 KA
Q9T0Q8_BPIKE/1-52 RA
COATB_BPI22/32-83 KA
COATB_BPM13/24-72 KA
COATB_BPZJ2/1-49 KA
Q9T0Q9_BPFD/1-49 KA
COATB_BPIF1/22-73 RA
Alternatively, you could make a PHYLIP format file which we’ll name
“PF05371_seed.phy”:
.. code:: pycon
>>> from Bio import AlignIO
>>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip")
This time the output looks like this:
.. code:: text
7 52
COATB_BPIK AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
Q9T0Q8_BPI AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
COATB_BPI2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
COATB_BPM1 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZJ AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9T0Q9_BPF AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
One of the big handicaps of the original PHYLIP alignment file format is
that the sequence identifiers are strictly truncated at ten characters.
In this example, as you can see the resulting names are still unique -
but they are not very readable. As a result, a more relaxed variant of
the original PHYLIP format is now quite widely used:
.. code:: pycon
>>> from Bio import AlignIO
>>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip-relaxed")
This time the output looks like this, using a longer indentation to
allow all the identifiers to be given in full:
.. code:: text
7 52
COATB_BPIKE/30-81 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZJ2/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9T0Q9_BPFD/1-49 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF1/22-73 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
If you have to work with the original strict PHYLIP format, then you may
need to compress the identifiers somehow – or assign your own names or
numbering system. This following bit of code manipulates the record
identifiers before saving the output:
.. code:: pycon
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> name_mapping = {}
>>> for i, record in enumerate(alignment):
... name_mapping[i] = record.id
... record.id = "seq%i" % i
...
>>> print(name_mapping)
{0: 'COATB_BPIKE/30-81', 1: 'Q9T0Q8_BPIKE/1-52', 2: 'COATB_BPI22/32-83', 3: 'COATB_BPM13/24-72', 4: 'COATB_BPZJ2/1-49', 5: 'Q9T0Q9_BPFD/1-49', 6: 'COATB_BPIF1/22-73'}
>>> AlignIO.write([alignment], "PF05371_seed.phy", "phylip")
This code used a Python dictionary to record a simple mapping from the
new sequence system to the original identifier:
.. code:: python
{
0: "COATB_BPIKE/30-81",
1: "Q9T0Q8_BPIKE/1-52",
2: "COATB_BPI22/32-83",
# ...
}
Here is the new (strict) PHYLIP format output:
.. code:: text
7 52
seq0 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
seq1 AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
seq2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
seq3 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq4 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
seq5 AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
seq6 FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS
KA
RA
KA
KA
KA
KA
RA
In general, because of the identifier limitation, working with *strict*
PHYLIP file formats shouldn’t be your first choice. Using the
PFAM/Stockholm format on the other hand allows you to record a lot of
additional annotation too.
.. _`sec:alignment-format`:
Getting your alignment objects as formatted strings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``Bio.AlignIO`` interface is based on handles, which means if you
want to get your alignment(s) into a string in a particular file format
you need to do a little bit more work (see below). However, you will
probably prefer to call Python’s built-in ``format`` function on the
alignment object. This takes an output format specification as a single
argument, a lower case string which is supported by ``Bio.AlignIO`` as
an output format. For example:
.. code:: pycon
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print(format(alignment, "clustal"))
CLUSTAL X (1.81) multiple sequence alignment
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
...
Without an output format specification, ``format`` returns the same
output as ``str``.
As described in
Section :ref:`sec:SeqRecord-format`, the
``SeqRecord`` object has a similar method using output formats supported
by ``Bio.SeqIO``.
Internally ``format`` is calling ``Bio.AlignIO.write()`` with a
``StringIO`` handle. You can do this in your own code if for example you
are using an older version of Biopython:
.. code:: pycon
>>> from io import StringIO
>>> from Bio import AlignIO
>>> alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
>>> out_handle = StringIO()
>>> AlignIO.write(alignments, out_handle, "clustal")
1
>>> clustal_data = out_handle.getvalue()
>>> print(clustal_data)
CLUSTAL X (1.81) multiple sequence alignment
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
COATB_BPM13/24-72 AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
...
.. _`sec:manipulating-alignments`:
Manipulating Alignments
-----------------------
Now that we’ve covered loading and saving alignments, we’ll look at what
else you can do with them.
Slicing alignments
~~~~~~~~~~~~~~~~~~
First of all, in some senses the alignment objects act like a Python
``list`` of ``SeqRecord`` objects (the rows). With this model in mind
hopefully the actions of ``len()`` (the number of rows) and iteration
(each row as a ``SeqRecord``) make sense:
.. doctest examples
.. code:: pycon
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> print("Number of rows: %i" % len(alignment))
Number of rows: 7
>>> for record in alignment:
... print("%s - %s" % (record.seq, record.id))
...
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73
You can also use the list-like ``append`` and ``extend`` methods to add
more rows to the alignment (as ``SeqRecord`` objects). Keeping the list
metaphor in mind, simple slicing of the alignment should also make sense
- it selects some of the rows giving back another alignment object:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
Alignment with 7 rows and 52 columns
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
>>> print(alignment[3:7])
Alignment with 4 rows and 52 columns
AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
What if you wanted to select by column? Those of you who have used the
NumPy matrix or array objects won’t be surprised at this - you use a
double index.
.. cont-doctest
.. code:: pycon
>>> print(alignment[2, 6])
T
Using two integer indices pulls out a single letter, short hand for
this:
.. cont-doctest
.. code:: pycon
>>> print(alignment[2].seq[6])
T
You can pull out a single column as a string like this:
.. cont-doctest
.. code:: pycon
>>> print(alignment[:, 6])
TTT---T
You can also select a range of columns. For example, to pick out those
same three rows we extracted earlier, but take just their first six
columns:
.. cont-doctest
.. code:: pycon
>>> print(alignment[3:6, :6])
Alignment with 3 rows and 6 columns
AEGDDP COATB_BPM13/24-72
AEGDDP COATB_BPZJ2/1-49
AEGDDP Q9T0Q9_BPFD/1-49
Leaving the first index as ``:`` means take all the rows:
.. cont-doctest
.. code:: pycon
>>> print(alignment[:, :6])
Alignment with 7 rows and 6 columns
AEPNAA COATB_BPIKE/30-81
AEPNAA Q9T0Q8_BPIKE/1-52
DGTSTA COATB_BPI22/32-83
AEGDDP COATB_BPM13/24-72
AEGDDP COATB_BPZJ2/1-49
AEGDDP Q9T0Q9_BPFD/1-49
FAADDA COATB_BPIF1/22-73
This brings us to a neat way to remove a section. Notice columns 7, 8
and 9 which are gaps in three of the seven sequences:
.. cont-doctest
.. code:: pycon
>>> print(alignment[:, 6:9])
Alignment with 7 rows and 3 columns
TNY COATB_BPIKE/30-81
TNY Q9T0Q8_BPIKE/1-52
TSY COATB_BPI22/32-83
--- COATB_BPM13/24-72
--- COATB_BPZJ2/1-49
--- Q9T0Q9_BPFD/1-49
TSQ COATB_BPIF1/22-73
Again, you can slice to get everything after the ninth column:
.. cont-doctest
.. code:: pycon
>>> print(alignment[:, 9:])
Alignment with 7 rows and 43 columns
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
ATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
AKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
Now, the interesting thing is that addition of alignment objects works
by column. This lets you do this as a way to remove a block of columns:
.. cont-doctest
.. code:: pycon
>>> edited = alignment[:, :6] + alignment[:, 9:]
>>> print(edited)
Alignment with 7 rows and 49 columns
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
Another common use of alignment addition would be to combine alignments
for several different genes into a meta-alignment. Watch out though -
the identifiers need to match up (see
Section :ref:`sec:SeqRecord-addition` for how
adding ``SeqRecord`` objects works). You may find it helpful to first
sort the alignment rows alphabetically by id:
.. cont-doctest
.. code:: pycon
>>> edited.sort()
>>> print(edited)
Alignment with 7 rows and 49 columns
DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
Note that you can only add two alignments together if they have the same
number of rows.
Alignments as arrays
~~~~~~~~~~~~~~~~~~~~
Depending on what you are doing, it can be more useful to turn the
alignment object into an array of letters – and you can do this with
NumPy:
.. doctest examples lib:numpy
.. code:: pycon
>>> import numpy as np
>>> from Bio import AlignIO
>>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
>>> align_array = np.array(alignment)
>>> print("Array shape %i by %i" % align_array.shape)
Array shape 7 by 52
>>> align_array[:, :10] # doctest:+ELLIPSIS
array([['A', 'E', 'P', 'N', 'A', 'A', 'T', 'N', 'Y', 'A'],
['A', 'E', 'P', 'N', 'A', 'A', 'T', 'N', 'Y', 'A'],
['D', 'G', 'T', 'S', 'T', 'A', 'T', 'S', 'Y', 'A'],
['A', 'E', 'G', 'D', 'D', 'P', '-', '-', '-', 'A'],
['A', 'E', 'G', 'D', 'D', 'P', '-', '-', '-', 'A'],
['A', 'E', 'G', 'D', 'D', 'P', '-', '-', '-', 'A'],
['F', 'A', 'A', 'D', 'D', 'A', 'T', 'S', 'Q', 'A']],...
Note that this leaves the original Biopython alignment object and the
NumPy array in memory as separate objects - editing one will not update
the other!
Counting substitutions
~~~~~~~~~~~~~~~~~~~~~~
The ``substitutions`` property of an alignment reports how often letters
in the alignment are substituted for each other. This is calculated by
taking all pairs of rows in the alignment, counting the number of times
two letters are aligned to each other, and summing this over all pairs.
For example,
.. doctest
.. code:: pycon
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Align import MultipleSeqAlignment
>>> msa = MultipleSeqAlignment(
... [
... SeqRecord(Seq("ACTCCTA"), id="seq1"),
... SeqRecord(Seq("AAT-CTA"), id="seq2"),
... SeqRecord(Seq("CCTACT-"), id="seq3"),
... SeqRecord(Seq("TCTCCTC"), id="seq4"),
... ]
... )
>>> print(msa)
Alignment with 4 rows and 7 columns
ACTCCTA seq1
AAT-CTA seq2
CCTACT- seq3
TCTCCTC seq4
>>> substitutions = msa.substitutions
>>> print(substitutions)
A C T
A 2.0 4.5 1.0
C 4.5 10.0 0.5
T 1.0 0.5 12.0
<BLANKLINE>
As the ordering of pairs is arbitrary, counts are divided equally above
and below the diagonal. For example, the 9 alignments of ``A`` to ``C``
are stored as 4.5 at position ``['A', 'C']`` and 4.5 at position
``['C', 'A']``. This arrangement helps to make the math easier when
calculating a substitution matrix from these counts, as described in
Section :ref:`sec:substitution_matrices`.
Note that ``msa.substitutions`` contains entries for the letters
appearing in the alignment only. You can use the ``select`` method to
add entries for missing letters, for example
.. cont-doctest
.. code:: pycon
>>> m = substitutions.select("ATCG")
>>> print(m)
A T C G
A 2.0 1.0 4.5 0.0
T 1.0 12.0 0.5 0.0
C 4.5 0.5 10.0 0.0
G 0.0 0.0 0.0 0.0
<BLANKLINE>
This also allows you to change the order of letters in the alphabet.
.. _`sec:summary_info`:
Calculating summary information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once you have an alignment, you are very likely going to want to find
out information about it. Instead of trying to have all of the functions
that can generate information about an alignment in the alignment object
itself, we’ve tried to separate out the functionality into separate
classes, which act on the alignment.
Getting ready to calculate summary information about an object is quick
to do. Let’s say we’ve got an alignment object called ``alignment``, for
example read in using ``Bio.AlignIO.read(...)`` as described in
Chapter :ref:`chapter:msa`. All we need to do to get an object that
will calculate summary information is:
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import AlignInfo
>>> summary_align = AlignInfo.SummaryInfo(msa)
The ``summary_align`` object is very useful, and will do the following
neat things for you:
#. Calculate a quick consensus sequence – see
section :ref:`sec:consensus`
#. Get a position specific score matrix for the alignment – see
section :ref:`sec:pssm`
#. Calculate the information content for the alignment – see
section :ref:`sec:getting_info_content`
#. Generate information on substitutions in the alignment –
section :ref:`sec:substitution_matrices`
details using this to generate a substitution matrix.
.. _`sec:consensus`:
Calculating a quick consensus sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``SummaryInfo`` object, described in
section :ref:`sec:summary_info`, provides functionality to
calculate a quick consensus of an alignment. Assuming we’ve got a
``SummaryInfo`` object called ``summary_align`` we can calculate a
consensus by doing:
.. cont-doctest
.. code:: pycon
>>> consensus = summary_align.dumb_consensus()
>>> consensus
Seq('XCTXCTX')
As the name suggests, this is a really simple consensus calculator, and
will just add up all of the residues at each point in the consensus, and
if the most common value is higher than some threshold value will add
the common residue to the consensus. If it doesn’t reach the threshold,
it adds an ambiguity character to the consensus. The returned consensus
object is a ``Seq`` object.
You can adjust how ``dumb_consensus`` works by passing optional
parameters:
the threshold
This is the threshold specifying how common a particular residue has
to be at a position before it is added. The default is :math:`0.7`
(meaning :math:`70\%`).
the ambiguous character
This is the ambiguity character to use. The default is ’N’.
Alternatively, you can convert the multiple sequence alignment object
``msa`` to a new-style ``Alignment`` object (see section
:ref:`sec:alignmentobject`) by using the
``alignment`` attribute (see section :ref:`sec:alignment_newstyle`):
.. cont-doctest
.. code:: pycon
>>> alignment = msa.alignment
You can then create a ``Motif`` object (see section
:ref:`sec:motif_object`):
.. cont-doctest
.. code:: pycon
>>> from Bio.motifs import Motif
>>> motif = Motif("ACGT", alignment)
and obtain a quick consensus sequence:
.. cont-doctest
.. code:: pycon
>>> motif.consensus
Seq('ACTCCTA')
The ``motif.counts.calculate_consensus`` method (see section
:ref:`sec:motif_consensus`) lets you specify in
detail how the consensus sequence should be calculated. For example,
.. cont-doctest
.. code:: pycon
>>> motif.counts.calculate_consensus(identity=0.7)
'NCTNCTN'
.. _`sec:pssm`:
Position Specific Score Matrices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Position specific score matrices (PSSMs) summarize the alignment
information in a different way than a consensus, and may be useful for
different tasks. Basically, a PSSM is a count matrix. For each column in
the alignment, the number of each alphabet letters is counted and
totaled. The totals are displayed relative to some representative
sequence along the left axis. This sequence may be the consensus
sequence, but can also be any sequence in the alignment.
For instance for the alignment above:
.. cont-doctest
.. code:: pycon
>>> print(msa)
Alignment with 4 rows and 7 columns
ACTCCTA seq1
AAT-CTA seq2
CCTACT- seq3
TCTCCTC seq4
we get a PSSM with the consensus sequence along the side using
.. cont-doctest
.. code:: pycon
>>> my_pssm = summary_align.pos_specific_score_matrix(consensus, chars_to_ignore=["N"])
>>> print(my_pssm)
A C T
X 2.0 1.0 1.0
C 1.0 3.0 0.0
T 0.0 0.0 4.0
X 1.0 2.0 0.0
C 0.0 4.0 0.0
T 0.0 0.0 4.0
X 2.0 1.0 0.0
<BLANKLINE>
where we ignore any ``N`` ambiguity residues when calculating the PSSM.
Two notes should be made about this:
#. To maintain strictness with the alphabets, you can only include
characters along the top of the PSSM that are in the alphabet of the
alignment object. Gaps are not included along the top axis of the
PSSM.
#. The sequence passed to be displayed along the left side of the axis
does not need to be the consensus. For instance, if you wanted to
display the second sequence in the alignment along this axis, you
would need to do:
.. cont-doctest
.. code:: pycon
>>> second_seq = msa[1]
>>> my_pssm = summary_align.pos_specific_score_matrix(second_seq, chars_to_ignore=["N"])
>>> print(my_pssm)
A C T
A 2.0 1.0 1.0
A 1.0 3.0 0.0
T 0.0 0.0 4.0
- 1.0 2.0 0.0
C 0.0 4.0 0.0
T 0.0 0.0 4.0
A 2.0 1.0 0.0
<BLANKLINE>
The command above returns a ``PSSM`` object. You can access any element
of the PSSM by subscripting like
``your_pssm[sequence_number][residue_count_name]``. For instance, to get
the counts for the ’A’ residue in the second element of the above PSSM
you would do:
.. cont-doctest
.. code:: pycon
>>> print(my_pssm[5]["T"])
4.0
The structure of the PSSM class hopefully makes it easy both to access
elements and to pretty print the matrix.
Alternatively, you can convert the multiple sequence alignment object
``msa`` to a new-style ``Alignment`` object (see section
:ref:`sec:alignmentobject`) by using the
``alignment`` attribute (see section :ref:`sec:alignment_newstyle`):
.. cont-doctest
.. code:: pycon
>>> alignment = msa.alignment
You can then create a ``Motif`` object (see section
:ref:`sec:motif_object`):
.. cont-doctest
.. code:: pycon
>>> from Bio.motifs import Motif
>>> motif = Motif("ACGT", alignment)
and obtain the counts of each nucleotide in each position:
.. cont-doctest
.. code:: pycon
>>> counts = motif.counts
>>> print(counts)
0 1 2 3 4 5 6
A: 2.00 1.00 0.00 1.00 0.00 0.00 2.00
C: 1.00 3.00 0.00 2.00 4.00 0.00 1.00
G: 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T: 1.00 0.00 4.00 0.00 0.00 4.00 0.00
<BLANKLINE>
>>> print(counts["T"][5])
4.0
.. _`sec:getting_info_content`:
Information Content
~~~~~~~~~~~~~~~~~~~
A potentially useful measure of evolutionary conservation is the
information content of a sequence.
A useful introduction to information theory targeted towards molecular
biologists can be found at
http://www.lecb.ncifcrf.gov/~toms/paper/primer/. For our purposes, we
will be looking at the information content of a consensus sequence, or a
portion of a consensus sequence. We calculate information content at a
particular column in a multiple sequence alignment using the following
formula:
.. math:: IC_{j} = \sum_{i=1}^{N_{a}} P_{ij} \mathrm{log}\left(\frac{P_{ij}}{Q_{i}}\right)
where:
- :math:`IC_{j}` – The information content for the :math:`j`-th column
in an alignment.
- :math:`N_{a}` – The number of letters in the alphabet.
- :math:`P_{ij}` – The frequency of a particular letter :math:`i` in
the :math:`j`-th column (i. e. if G occurred 3 out of 6 times in an
alignment column, this would be 0.5)
- :math:`Q_{i}` – The expected frequency of a letter :math:`i`. This is
an optional argument, usage of which is left at the user’s
discretion. By default, it is automatically assigned to
:math:`0.05 = 1/20` for a protein alphabet, and :math:`0.25 = 1/4`
for a nucleic acid alphabet. This is for getting the information
content without any assumption of prior distributions. When assuming
priors, or when using a non-standard alphabet, you should supply the
values for :math:`Q_{i}`.
Well, now that we have an idea what information content is being
calculated in Biopython, let’s look at how to get it for a particular
region of the alignment.
First, we need to use our alignment to get an alignment summary object,
which we’ll assume is called ``summary_align`` (see
section :ref:`sec:summary_info`) for instructions on how to get
this. Once we’ve got this object, calculating the information content
for a region is as easy as:
.. cont-doctest
.. code:: pycon
>>> e_freq_table = {"A": 0.3, "G": 0.2, "T": 0.3, "C": 0.2}
>>> info_content = summary_align.information_content(
... 2, 6, e_freq_table=e_freq_table, chars_to_ignore=["N"]
... )
>>> info_content # doctest:+ELLIPSIS
6.3910647...
Now, ``info_content`` will contain the relative information content over
the region [2:6] in relation to the expected frequencies.
The value return is calculated using base 2 as the logarithm base in the
formula above. You can modify this by passing the parameter ``log_base``
as the base you want:
.. cont-doctest
.. code:: pycon
>>> info_content = summary_align.information_content(
... 2, 6, e_freq_table=e_freq_table, log_base=10, chars_to_ignore=["N"]
... )
>>> info_content # doctest:+ELLIPSIS
1.923902...
By default nucleotide or amino acid residues with a frequency of 0 in a
column are not take into account when the relative information column
for that column is computed. If this is not the desired result, you can
use ``pseudo_count`` instead.
.. cont-doctest
.. code:: pycon
>>> info_content = summary_align.information_content(
... 2, 6, e_freq_table=e_freq_table, chars_to_ignore=["N", "-"], pseudo_count=1
... )
>>> info_content # doctest:+ELLIPSIS
4.299651...
In this case, the observed frequency :math:`P_{ij}` of a particular
letter :math:`i` in the :math:`j`-th column is computed as follows:
.. math:: P_{ij} = \frac{n_{ij} + k\times Q_{i}}{N_{j} + k}
where:
- :math:`k` – the pseudo count you pass as argument.
- :math:`k` – the pseudo count you pass as argument.
- :math:`Q_{i}` – The expected frequency of the letter :math:`i` as
described above.
Well, now you are ready to calculate information content. If you want to
try applying this to some real life problems, it would probably be best
to dig into the literature on information content to get an idea of how
it is used. Hopefully your digging won’t reveal any mistakes made in
coding this function!
.. _`sec:alignment_newstyle`:
Getting a new-style Alignment object
------------------------------------
Use the ``alignment`` property to create a new-style ``Alignment``
object (see section :ref:`sec:alignmentobject`)
from an old-style ``MultipleSeqAlignment`` object:
.. cont-doctest
.. code:: pycon
>>> type(msa)
<class 'Bio.Align.MultipleSeqAlignment'>
>>> print(msa)
Alignment with 4 rows and 7 columns
ACTCCTA seq1
AAT-CTA seq2
CCTACT- seq3
TCTCCTC seq4
>>> alignment = msa.alignment
>>> type(alignment)
<class 'Bio.Align.Alignment'>
>>> print(alignment)
seq1 0 ACTCCTA 7
seq2 0 AAT-CTA 6
seq3 0 CCTACT- 6
seq4 0 TCTCCTC 7
<BLANKLINE>
Note that the ``alignment`` property creates and returns a new
``Alignment`` object that is consistent with the information stored in
the ``MultipleSeqAlignment`` object at the time the ``Alignment`` object
is created. Any changes to the ``MultipleSeqAlignment`` after calling
the ``alignment`` property will not propagate to the ``Alignment``
object. However, you can of course call the ``alignment`` property again
to create a new ``Alignment`` object consistent with the updated
``MultipleSeqAlignment`` object.
.. _`sec:subs_mat_ex`:
Calculating a substitution matrix from a multiple sequence alignment
--------------------------------------------------------------------
You can create your own substitution matrix from an alignment. In this
example, we’ll first read a protein sequence alignment from the Clustalw
file `protein.aln <examples/protein.aln>`__ (also available online
`here <https://raw.githubusercontent.com/biopython/biopython/master/Tests/Clustalw/protein.aln>`__)
.. doctest ../Tests/Clustalw
.. code:: pycon
>>> from Bio import AlignIO
>>> filename = "protein.aln"
>>> msa = AlignIO.read(filename, "clustal")
Section :ref:`sec:alignio_clustal` contains more information on
doing this.
The ``substitutions`` property of the alignment stores the number of
times different residues substitute for each other:
.. cont-doctest
.. code:: pycon
>>> observed_frequencies = msa.substitutions
To make the example more readable, we’ll select only amino acids with
polar charged side chains:
.. cont-doctest
.. code:: pycon
>>> observed_frequencies = observed_frequencies.select("DEHKR")
>>> print(observed_frequencies)
D E H K R
D 2360.0 255.5 7.5 0.5 25.0
E 255.5 3305.0 16.5 27.0 2.0
H 7.5 16.5 1235.0 16.0 8.5
K 0.5 27.0 16.0 3218.0 116.5
R 25.0 2.0 8.5 116.5 2079.0
<BLANKLINE>
Rows and columns for other amino acids were removed from the matrix.
Next, we normalize the matrix:
.. cont-doctest
.. code:: pycon
>>> import numpy as np
>>> observed_frequencies /= np.sum(observed_frequencies)
Summing over rows or columns gives the relative frequency of occurrence
of each residue:
.. cont-doctest
.. code:: pycon
>>> residue_frequencies = np.sum(observed_frequencies, 0)
>>> print(residue_frequencies.format("%.4f"))
D 0.2015
E 0.2743
H 0.0976
K 0.2569
R 0.1697
<BLANKLINE>
>>> sum(residue_frequencies) == 1.0
True
The expected frequency of residue pairs is then
.. cont-doctest
.. code:: pycon
>>> expected_frequencies = np.dot(
... residue_frequencies[:, None], residue_frequencies[None, :]
... )
>>> print(expected_frequencies.format("%.4f"))
D E H K R
D 0.0406 0.0553 0.0197 0.0518 0.0342
E 0.0553 0.0752 0.0268 0.0705 0.0465
H 0.0197 0.0268 0.0095 0.0251 0.0166
K 0.0518 0.0705 0.0251 0.0660 0.0436
R 0.0342 0.0465 0.0166 0.0436 0.0288
<BLANKLINE>
Here, ``residue_frequencies[:, None]`` creates a 2D array consisting of
a single column with the values of ``residue_frequencies``, and
``residue_frequencies[None, :]`` a 2D array with these values as a
single row. Taking their dot product (inner product) creates a matrix of
expected frequencies where each entry consists of two
``residue_frequencies`` values multiplied with each other. For example,
``expected_frequencies['D', 'E']`` is equal to
``residue_frequencies['D'] * residue_frequencies['E']``.
We can now calculate the log-odds matrix by dividing the observed
frequencies by the expected frequencies and taking the logarithm:
.. cont-doctest
.. code:: pycon
>>> m = np.log2(observed_frequencies / expected_frequencies)
>>> print(m)
D E H K R
D 2.1 -1.5 -5.1 -10.4 -4.2
E -1.5 1.7 -4.4 -5.1 -8.3
H -5.1 -4.4 3.3 -4.4 -4.7
K -10.4 -5.1 -4.4 1.9 -2.3
R -4.2 -8.3 -4.7 -2.3 2.5
<BLANKLINE>
This matrix can be used as the substitution matrix when performing
alignments. For example,
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.substitution_matrix = m
>>> aligner.gap_score = -3.0
>>> alignments = aligner.align("DEHEK", "DHHKK")
>>> print(alignments[0])
target 0 DEHEK 5
0 |.|.| 5
query 0 DHHKK 5
<BLANKLINE>
>>> print("%.2f" % alignments.score)
-2.18
>>> score = m["D", "D"] + m["E", "H"] + m["H", "H"] + m["E", "K"] + m["K", "K"]
>>> print("%.2f" % score)
-2.18
.. _`sec:alignment-tools`:
Alignment Tools
---------------
There are *lots* of algorithms out there for aligning sequences, both
pairwise alignments and multiple sequence alignments. These calculations
are relatively slow, and you generally wouldn’t want to write such an
algorithm in Python. For pairwise alignments, you can use Biopython’s
``PairwiseAligner`` (see
Chapter :ref:`chapter:pairwise`), which is
implemented in C and therefore fast. Alternatively, you can run an
external alignment program by invoking it from Python. Normally you
would:
#. Prepare an input file of your unaligned sequences, typically this
will be a FASTA file which you might create using ``Bio.SeqIO`` (see
Chapter :ref:`chapter:seqio`).
#. Run the alignment program by running its command using Python’s
``subprocess`` module.
#. Read the output from the tool, i.e. your aligned sequences, typically
using ``Bio.AlignIO`` (see earlier in this chapter).
Here, we will show a few examples of this workflow.
.. _`sec:alignio_clustal`:
ClustalW
~~~~~~~~
ClustalW is a popular command line tool for multiple sequence alignment
(there is also a graphical interface called ClustalX). Before trying to
use ClustalW from within Python, you should first try running the
ClustalW tool yourself by hand at the command line, to familiarize
yourself the other options.
For the most basic usage, all you need is to have a FASTA input file,
such as
`opuntia.fasta <https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta>`__
(available online or in the Doc/examples subdirectory of the Biopython
source code). This is a small FASTA file containing seven prickly-pear
DNA sequences (from the cactus family *Opuntia*). By default ClustalW
will generate an alignment and guide tree file with names based on the
input FASTA file, in this case ``opuntia.aln`` and ``opuntia.dnd``, but
you can override this or make it explicit:
.. code:: pycon
>>> import subprocess
>>> cmd = "clustalw2 -infile=opuntia.fasta"
>>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)
Notice here we have given the executable name as ``clustalw2``,
indicating we have version two installed, which has a different filename
to version one (``clustalw``, the default). Fortunately both versions
support the same set of arguments at the command line (and indeed,
should be functionally identical).
You may find that even though you have ClustalW installed, the above
command doesn’t work – you may get a message about “command not found”
(especially on Windows). This indicated that the ClustalW executable is
not on your PATH (an environment variable, a list of directories to be
searched). You can either update your PATH setting to include the
location of your copy of ClustalW tools (how you do this will depend on
your OS), or simply type in the full path of the tool. Remember, in
Python strings ``\n`` and ``\t`` are by default interpreted as a new
line and a tab – which is why we’re put a letter “r” at the start for a
raw string that isn’t translated in this way. This is generally good
practice when specifying a Windows style file name.
.. code:: pycon
>>> import os
>>> clustalw_exe = r"C:\Program Files\new clustal\clustalw2.exe"
>>> assert os.path.isfile(clustalw_exe), "Clustal W executable missing"
>>> cmd = clustalw_exe + " -infile=opuntia.fasta"
>>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)
Now, at this point it helps to know about how command line tools “work”.
When you run a tool at the command line, it will often print text output
directly to screen. This text can be captured or redirected, via two
“pipes”, called standard output (the normal results) and standard error
(for error messages and debug messages). There is also standard input,
which is any text fed into the tool. These names get shortened to stdin,
stdout and stderr. When the tool finishes, it has a return code (an
integer), which by convention is zero for success, while a non-zero
return code indicates that an error has occurred.
In the example of ClustalW above, when run at the command line all the
important output is written directly to the output files. Everything
normally printed to screen while you wait is captured in
``results.stdout`` and ``results.stderr``, while the return code is
stored in ``results.returncode``.
What we care about are the two output files, the alignment and the guide
tree. We didn’t tell ClustalW what filenames to use, but it defaults to
picking names based on the input file. In this case the output should be
in the file ``opuntia.aln``. You should be able to work out how to read
in the alignment using ``Bio.AlignIO`` by now:
.. doctest examples
.. code:: pycon
>>> from Bio import AlignIO
>>> align = AlignIO.read("opuntia.aln", "clustal")
>>> print(align)
Alignment with 7 rows and 906 columns
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191
In case you are interested (and this is an aside from the main thrust of
this chapter), the ``opuntia.dnd`` file ClustalW creates is just a
standard Newick tree file, and ``Bio.Phylo`` can parse these:
.. doctest examples
.. code:: pycon
>>> from Bio import Phylo
>>> tree = Phylo.read("opuntia.dnd", "newick")
>>> Phylo.draw_ascii(tree)
_______________ gi|6273291|gb|AF191665.1|AF191665
__________________________|
| | ______ gi|6273290|gb|AF191664.1|AF191664
| |__|
| |_____ gi|6273289|gb|AF191663.1|AF191663
|
_|_________________ gi|6273287|gb|AF191661.1|AF191661
|
|__________ gi|6273286|gb|AF191660.1|AF191660
|
| __ gi|6273285|gb|AF191659.1|AF191659
|___|
| gi|6273284|gb|AF191658.1|AF191658
<BLANKLINE>
Chapter :ref:`chapter:phylo` covers Biopython’s support
for phylogenetic trees in more depth.
MUSCLE
~~~~~~
MUSCLE is a more recent multiple sequence alignment tool than ClustalW.
As before, we recommend you try using MUSCLE from the command line
before trying to run it from Python.
For the most basic usage, all you need is to have a FASTA input file,
such as
`opuntia.fasta <https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta>`__
(available online or in the Doc/examples subdirectory of the Biopython
source code). You can then tell MUSCLE to read in this FASTA file, and
write the alignment to an output file named ``opuntia.txt``:
.. code:: pycon
>>> import subprocess
>>> cmd = "muscle -align opuntia.fasta -output opuntia.txt"
>>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)
MUSCLE will output the alignment as a FASTA file (using gapped
sequences). The ``Bio.AlignIO`` module is able to read this alignment
using ``format="fasta"``:
.. code:: pycon
>>> from Bio import AlignIO
>>> align = AlignIO.read("opuntia.txt", "fasta")
>>> print(align)
Alignment with 7 rows and 906 columns
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665
TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661
TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659
TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658
You can also set the other optional parameters; see MUSCLE’s built-in
help for details.
.. _`sec:emboss-needle-water`:
EMBOSS needle and water
~~~~~~~~~~~~~~~~~~~~~~~
The `EMBOSS <http://emboss.sourceforge.net/>`__ suite includes the
``water`` and ``needle`` tools for Smith-Waterman algorithm local
alignment, and Needleman-Wunsch global alignment. The tools share the
same style interface, so switching between the two is trivial – we’ll
just use ``needle`` here.
Suppose you want to do a global pairwise alignment between two
sequences, prepared in FASTA format as follows:
.. code:: text
>HBA_HUMAN
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
AVHASLDKFLASVSTVLTSKYR
in a file ``alpha.faa``, and secondly in a file ``beta.faa``:
.. code:: text
>HBB_HUMAN
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
KEFTPPVQAAYQKVVAGVANALAHKYH
You can find copies of these example files with the Biopython source
code under the ``Doc/examples/`` directory.
The command to align these two sequences against each other using
``needle`` is as follows:
.. code:: text
needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5
Why not try running this by hand at the command prompt? You should see
it does a pairwise comparison and records the output in the file
``needle.txt`` (in the default EMBOSS alignment file format).
Even if you have EMBOSS installed, running this command may not work –
you might get a message about “command not found” (especially on
Windows). This probably means that the EMBOSS tools are not on your PATH
environment variable. You can either update your PATH setting, or simply
use the full path to the tool, for example:
.. code:: text
C:\EMBOSS\needle.exe -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5
Next we want to use Python to run this command for us. As explained
above, for full control, we recommend you use Python’s built-in
``subprocess`` module:
.. code:: pycon
>>> import sys
>>> import subprocess
>>> cmd = "needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5"
>>> results = subprocess.run(
... cmd,
... stdout=subprocess.PIPE,
... stderr=subprocess.PIPE,
... text=True,
... shell=(sys, platform != "win32"),
... )
>>> print(results.stdout)
>>> print(results.stderr)
Needleman-Wunsch global alignment of two sequences
Next we can load the output file with ``Bio.AlignIO`` as discussed
earlier in this chapter, as the ``emboss`` format:
.. code:: pycon
>>> from Bio import AlignIO
>>> align = AlignIO.read("needle.txt", "emboss")
>>> print(align)
Alignment with 2 rows and 149 columns
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR HBA_HUMAN
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF...KYH HBB_HUMAN
In this example, we told EMBOSS to write the output to a file, but you
*can* tell it to write the output to stdout instead (useful if you don’t
want a temporary output file to get rid of – use ``outfile=stdout``
argument):
.. code:: pycon
>>> cmd = "needle -outfile=stdout -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5"
>>> child = subprocess.Popen(
... cmd,
... stdout=subprocess.PIPE,
... stderr=subprocess.PIPE,
... text=True,
... shell=(sys.platform != "win32"),
... )
>>> align = AlignIO.read(child.stdout, "emboss")
>>> print(align)
Alignment with 2 rows and 149 columns
MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR HBA_HUMAN
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF...KYH HBB_HUMAN
Similarly, it is possible to read *one* of the inputs from stdin (e.g.
``asequence="stdin"``).
This has only scratched the surface of what you can do with ``needle``
and ``water``. One useful trick is that the second file can contain
multiple sequences (say five), and then EMBOSS will do five pairwise
alignments.
|