File: chapter_msa.rst

package info (click to toggle)
python-biopython 1.85%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 126,372 kB
  • sloc: xml: 1,047,995; python: 332,722; ansic: 16,944; sql: 1,208; makefile: 140; sh: 81
file content (1944 lines) | stat: -rw-r--r-- 67,116 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
.. _`chapter:msa`:

Multiple Sequence Alignment objects
===================================

This chapter describes the older ``MultipleSeqAlignment`` class and the
parsers in ``Bio.AlignIO`` that parse the output of sequence alignment
software, generating ``MultipleSeqAlignment`` objects. By Multiple
Sequence Alignments we mean a collection of multiple sequences which
have been aligned together – usually with the insertion of gap
characters, and addition of leading or trailing gaps – such that all the
sequence strings are the same length. Such an alignment can be regarded
as a matrix of letters, where each row is held as a ``SeqRecord`` object
internally.

We will introduce the ``MultipleSeqAlignment`` object which holds this
kind of data, and the ``Bio.AlignIO`` module for reading and writing
them as various file formats (following the design of the ``Bio.SeqIO``
module from the previous chapter). Note that both ``Bio.SeqIO`` and
``Bio.AlignIO`` can read and write sequence alignment files. The
appropriate choice will depend largely on what you want to do with the
data.

The final part of this chapter is about using common multiple sequence
alignment tools like ClustalW and MUSCLE from Python, and parsing the
results with Biopython.

Parsing or Reading Sequence Alignments
--------------------------------------

We have two functions for reading in sequence alignments,
``Bio.AlignIO.read()`` and ``Bio.AlignIO.parse()`` which following the
convention introduced in ``Bio.SeqIO`` are for files containing one or
multiple alignments respectively.

Using ``Bio.AlignIO.parse()`` will return an *iterator* which gives
``MultipleSeqAlignment`` objects. Iterators are typically used in a for
loop. Examples of situations where you will have multiple different
alignments include resampled alignments from the PHYLIP tool
``seqboot``, or multiple pairwise alignments from the EMBOSS tools
``water`` or ``needle``, or Bill Pearson’s FASTA tools.

However, in many situations you will be dealing with files which contain
only a single alignment. In this case, you should use the
``Bio.AlignIO.read()`` function which returns a single
``MultipleSeqAlignment`` object.

Both functions expect two mandatory arguments:

#. The first argument is a *handle* to read the data from, typically an
   open file (see
   Section :ref:`sec:appendix-handles`), or a
   filename.

#. The second argument is a lower case string specifying the alignment
   format. As in ``Bio.SeqIO`` we don’t try and guess the file format
   for you! See http://biopython.org/wiki/AlignIO for a full listing of
   supported formats.

There is also an optional ``seq_count`` argument which is discussed in
Section :ref:`sec:AlignIO-count-argument` below for dealing with
ambiguous file formats which may contain more than one alignment.

Single Alignments
~~~~~~~~~~~~~~~~~

As an example, consider the following annotation rich protein alignment
in the PFAM or Stockholm file format:

.. code:: text

   # STOCKHOLM 1.0
   #=GS COATB_BPIKE/30-81  AC P03620.1
   #=GS COATB_BPIKE/30-81  DR PDB; 1ifl ; 1-52;
   #=GS Q9T0Q8_BPIKE/1-52  AC Q9T0Q8.1
   #=GS COATB_BPI22/32-83  AC P15416.1
   #=GS COATB_BPM13/24-72  AC P69541.1
   #=GS COATB_BPM13/24-72  DR PDB; 2cpb ; 1-49;
   #=GS COATB_BPM13/24-72  DR PDB; 2cps ; 1-49;
   #=GS COATB_BPZJ2/1-49   AC P03618.1
   #=GS Q9T0Q9_BPFD/1-49   AC Q9T0Q9.1
   #=GS Q9T0Q9_BPFD/1-49   DR PDB; 1nh4 A; 1-49;
   #=GS COATB_BPIF1/22-73  AC P03619.2
   #=GS COATB_BPIF1/22-73  DR PDB; 1ifk ; 1-50;
   COATB_BPIKE/30-81             AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
   #=GR COATB_BPIKE/30-81  SS    -HHHHHHHHHHHHHH--HHHHHHHH--HHHHHHHHHHHHHHHHHHHHH----
   Q9T0Q8_BPIKE/1-52             AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
   COATB_BPI22/32-83             DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
   COATB_BPM13/24-72             AEGDDP...AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
   #=GR COATB_BPM13/24-72  SS    ---S-T...CHCHHHHCCCCTCCCTTCHHHHHHHHHHHHHHHHHHHHCTT--
   COATB_BPZJ2/1-49              AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
   Q9T0Q9_BPFD/1-49              AEGDDP...AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
   #=GR Q9T0Q9_BPFD/1-49   SS    ------...-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH--
   COATB_BPIF1/22-73             FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA
   #=GR COATB_BPIF1/22-73  SS    XX-HHHH--HHHHHH--HHHHHHH--HHHHHHHHHHHHHHHHHHHHHHH---
   #=GC SS_cons                  XHHHHHHHHHHHHHHHCHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHHHC--
   #=GC seq_cons                 AEssss...AptAhDSLpspAT-hIu.sWshVsslVsAsluIKLFKKFsSKA
   //

This is the seed alignment for the Phage_Coat_Gp8 (PF05371) PFAM entry,
downloaded from a now out of date release of PFAM from
https://pfam.xfam.org/. We can load this file as follows (assuming it
has been saved to disk as “PF05371_seed.sth” in the current working
directory):

.. doctest examples

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")

This code will print out a summary of the alignment:

.. cont-doctest

.. code:: pycon

   >>> print(alignment)
   Alignment with 7 rows and 52 columns
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
   FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73

You’ll notice in the above output the sequences have been truncated. We
could instead write our own code to format this as we please by
iterating over the rows as ``SeqRecord`` objects:

.. doctest examples

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
   >>> print("Alignment length %i" % alignment.get_alignment_length())
   Alignment length 52
   >>> for record in alignment:
   ...     print("%s - %s" % (record.seq, record.id))
   ...
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
   FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73

You could also call Python’s built-in ``format`` function on the
alignment object to show it in a particular file format – see
Section :ref:`sec:alignment-format` for details.

Did you notice in the raw file above that several of the sequences
include database cross-references to the PDB and the associated known
secondary structure? Try this:

.. cont-doctest

.. code:: pycon

   >>> for record in alignment:
   ...     if record.dbxrefs:
   ...         print("%s %s" % (record.id, record.dbxrefs))
   ...
   COATB_BPIKE/30-81 ['PDB; 1ifl ; 1-52;']
   COATB_BPM13/24-72 ['PDB; 2cpb ; 1-49;', 'PDB; 2cps ; 1-49;']
   Q9T0Q9_BPFD/1-49 ['PDB; 1nh4 A; 1-49;']
   COATB_BPIF1/22-73 ['PDB; 1ifk ; 1-50;']

To have a look at all the sequence annotation, try this:

.. code:: pycon

   >>> for record in alignment:
   ...     print(record)
   ...

PFAM provide a nice web interface at http://pfam.xfam.org/family/PF05371
which will actually let you download this alignment in several other
formats. This is what the file looks like in the FASTA file format:

.. code:: text

   >COATB_BPIKE/30-81
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
   >Q9T0Q8_BPIKE/1-52
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
   >COATB_BPI22/32-83
   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
   >COATB_BPM13/24-72
   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
   >COATB_BPZJ2/1-49
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA
   >Q9T0Q9_BPFD/1-49
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
   >COATB_BPIF1/22-73
   FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA

Note the website should have an option about showing gaps as periods
(dots) or dashes, we’ve shown dashes above. Assuming you download and
save this as file “PF05371_seed.faa” then you can load it with almost
exactly the same code:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.faa", "fasta")
   >>> print(alignment)

All that has changed in this code is the filename and the format string.
You’ll get the same output as before, the sequences and record
identifiers are the same. However, as you should expect, if you check
each ``SeqRecord`` there is no annotation nor database cross-references
because these are not included in the FASTA file format.

Note that rather than using the Sanger website, you could have used
``Bio.AlignIO`` to convert the original Stockholm format file into a
FASTA file yourself (see below).

With any supported file format, you can load an alignment in exactly the
same way just by changing the format string. For example, use “phylip”
for PHYLIP files, “nexus” for NEXUS files or “emboss” for the alignments
output by the EMBOSS tools. There is a full listing on the wiki page
(http://biopython.org/wiki/AlignIO) and in the built-in documentation,
:py:mod:`Bio.AlignIO`:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> help(AlignIO)

Multiple Alignments
~~~~~~~~~~~~~~~~~~~

The previous section focused on reading files containing a single
alignment. In general however, files can contain more than one
alignment, and to read these files we must use the
``Bio.AlignIO.parse()`` function.

Suppose you have a small alignment in PHYLIP format:

.. code:: text

       5    6
   Alpha     AACAAC
   Beta      AACCCC
   Gamma     ACCAAC
   Delta     CCACCA
   Epsilon   CCAAAC

If you wanted to bootstrap a phylogenetic tree using the PHYLIP tools,
one of the steps would be to create a set of many resampled alignments
using the tool ``bootseq``. This would give output something like this,
which has been abbreviated for conciseness:

.. code:: text

       5     6
   Alpha     AAACCA
   Beta      AAACCC
   Gamma     ACCCCA
   Delta     CCCAAC
   Epsilon   CCCAAA
       5     6
   Alpha     AAACAA
   Beta      AAACCC
   Gamma     ACCCAA
   Delta     CCCACC
   Epsilon   CCCAAA
       5     6
   Alpha     AAAAAC
   Beta      AAACCC
   Gamma     AACAAC
   Delta     CCCCCA
   Epsilon   CCCAAC
   ...
       5     6
   Alpha     AAAACC
   Beta      ACCCCC
   Gamma     AAAACC
   Delta     CCCCAA
   Epsilon   CAAACC

If you wanted to read this in using ``Bio.AlignIO`` you could use:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignments = AlignIO.parse("resampled.phy", "phylip")
   >>> for alignment in alignments:
   ...     print(alignment)
   ...     print()
   ...

This would give the following output, again abbreviated for display:

.. code:: text

   Alignment with 5 rows and 6 columns
   AAACCA Alpha
   AAACCC Beta
   ACCCCA Gamma
   CCCAAC Delta
   CCCAAA Epsilon

   Alignment with 5 rows and 6 columns
   AAACAA Alpha
   AAACCC Beta
   ACCCAA Gamma
   CCCACC Delta
   CCCAAA Epsilon

   Alignment with 5 rows and 6 columns
   AAAAAC Alpha
   AAACCC Beta
   AACAAC Gamma
   CCCCCA Delta
   CCCAAC Epsilon

   ...

   Alignment with 5 rows and 6 columns
   AAAACC Alpha
   ACCCCC Beta
   AAAACC Gamma
   CCCCAA Delta
   CAAACC Epsilon

As with the function ``Bio.SeqIO.parse()``, using
``Bio.AlignIO.parse()`` returns an iterator. If you want to keep all the
alignments in memory at once, which will allow you to access them in any
order, then turn the iterator into a list:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignments = list(AlignIO.parse("resampled.phy", "phylip"))
   >>> last_align = alignments[-1]
   >>> first_align = alignments[0]

.. _`sec:AlignIO-count-argument`:

Ambiguous Alignments
~~~~~~~~~~~~~~~~~~~~

Many alignment file formats can explicitly store more than one
alignment, and the division between each alignment is clear. However,
when a general sequence file format has been used there is no such block
structure. The most common such situation is when alignments have been
saved in the FASTA file format. For example consider the following:

.. code:: text

   >Alpha
   ACTACGACTAGCTCAG--G
   >Beta
   ACTACCGCTAGCTCAGAAG
   >Gamma
   ACTACGGCTAGCACAGAAG
   >Alpha
   ACTACGACTAGCTCAGG--
   >Beta
   ACTACCGCTAGCTCAGAAG
   >Gamma
   ACTACGGCTAGCACAGAAG

This could be a single alignment containing six sequences (with repeated
identifiers). Or, judging from the identifiers, this is probably two
different alignments each with three sequences, which happen to all have
the same length.

What about this next example?

.. code:: text

   >Alpha
   ACTACGACTAGCTCAG--G
   >Beta
   ACTACCGCTAGCTCAGAAG
   >Alpha
   ACTACGACTAGCTCAGG--
   >Gamma
   ACTACGGCTAGCACAGAAG
   >Alpha
   ACTACGACTAGCTCAGG--
   >Delta
   ACTACGGCTAGCACAGAAG

Again, this could be a single alignment with six sequences. However this
time based on the identifiers we might guess this is three pairwise
alignments which by chance have all got the same lengths.

This final example is similar:

.. code:: text

   >Alpha
   ACTACGACTAGCTCAG--G
   >XXX
   ACTACCGCTAGCTCAGAAG
   >Alpha
   ACTACGACTAGCTCAGG
   >YYY
   ACTACGGCAAGCACAGG
   >Alpha
   --ACTACGAC--TAGCTCAGG
   >ZZZ
   GGACTACGACAATAGCTCAGG

In this third example, because of the differing lengths, this cannot be
treated as a single alignment containing all six records. However, it
could be three pairwise alignments.

Clearly trying to store more than one alignment in a FASTA file is not
ideal. However, if you are forced to deal with these as input files
``Bio.AlignIO`` can cope with the most common situation where all the
alignments have the same number of records. One example of this is a
collection of pairwise alignments, which can be produced by the EMBOSS
tools ``needle`` and ``water`` – although in this situation,
``Bio.AlignIO`` should be able to understand their native output using
“emboss” as the format string.

To interpret these FASTA examples as several separate alignments, we can
use ``Bio.AlignIO.parse()`` with the optional ``seq_count`` argument
which specifies how many sequences are expected in each alignment (in
these examples, 3, 2 and 2 respectively). For example, using the third
example as the input data:

.. code:: pycon

   >>> for alignment in AlignIO.parse(handle, "fasta", seq_count=2):
   ...     print("Alignment length %i" % alignment.get_alignment_length())
   ...     for record in alignment:
   ...         print("%s - %s" % (record.seq, record.id))
   ...     print()
   ...

giving:

.. code:: text

   Alignment length 19
   ACTACGACTAGCTCAG--G - Alpha
   ACTACCGCTAGCTCAGAAG - XXX

   Alignment length 17
   ACTACGACTAGCTCAGG - Alpha
   ACTACGGCAAGCACAGG - YYY

   Alignment length 21
   --ACTACGAC--TAGCTCAGG - Alpha
   GGACTACGACAATAGCTCAGG - ZZZ

Using ``Bio.AlignIO.read()`` or ``Bio.AlignIO.parse()`` without the
``seq_count`` argument would give a single alignment containing all six
records for the first two examples. For the third example, an exception
would be raised because the lengths differ preventing them being turned
into a single alignment.

If the file format itself has a block structure allowing ``Bio.AlignIO``
to determine the number of sequences in each alignment directly, then
the ``seq_count`` argument is not needed. If it is supplied, and doesn’t
agree with the file contents, an error is raised.

Note that this optional ``seq_count`` argument assumes each alignment in
the file has the same number of sequences. Hypothetically you may come
across stranger situations, for example a FASTA file containing several
alignments each with a different number of sequences – although I would
love to hear of a real world example of this. Assuming you cannot get
the data in a nicer file format, there is no straight forward way to
deal with this using ``Bio.AlignIO``. In this case, you could consider
reading in the sequences themselves using ``Bio.SeqIO`` and batching
them together to create the alignments as appropriate.

Writing Alignments
------------------

We’ve talked about using ``Bio.AlignIO.read()`` and
``Bio.AlignIO.parse()`` for alignment input (reading files), and now
we’ll look at ``Bio.AlignIO.write()`` which is for alignment output
(writing files). This is a function taking three arguments: some
``MultipleSeqAlignment`` objects (or for backwards compatibility the
obsolete ``Alignment`` objects), a handle or filename to write to, and a
sequence format.

Here is an example, where we start by creating a few
``MultipleSeqAlignment`` objects the hard way (by hand, rather than by
loading them from a file). Note we create some ``SeqRecord`` objects to
construct the alignment from.

.. doctest

.. code:: pycon

   >>> from Bio.Seq import Seq
   >>> from Bio.SeqRecord import SeqRecord
   >>> from Bio.Align import MultipleSeqAlignment
   >>> align1 = MultipleSeqAlignment(
   ...     [
   ...         SeqRecord(Seq("ACTGCTAGCTAG"), id="Alpha"),
   ...         SeqRecord(Seq("ACT-CTAGCTAG"), id="Beta"),
   ...         SeqRecord(Seq("ACTGCTAGDTAG"), id="Gamma"),
   ...     ]
   ... )
   >>> align2 = MultipleSeqAlignment(
   ...     [
   ...         SeqRecord(Seq("GTCAGC-AG"), id="Delta"),
   ...         SeqRecord(Seq("GACAGCTAG"), id="Epsilon"),
   ...         SeqRecord(Seq("GTCAGCTAG"), id="Zeta"),
   ...     ]
   ... )
   >>> align3 = MultipleSeqAlignment(
   ...     [
   ...         SeqRecord(Seq("ACTAGTACAGCTG"), id="Eta"),
   ...         SeqRecord(Seq("ACTAGTACAGCT-"), id="Theta"),
   ...         SeqRecord(Seq("-CTACTACAGGTG"), id="Iota"),
   ...     ]
   ... )
   >>> my_alignments = [align1, align2, align3]

Now we have a list of ``Alignment`` objects, we’ll write them to a
PHYLIP format file:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> AlignIO.write(my_alignments, "my_example.phy", "phylip")

And if you open this file in your favorite text editor it should look
like this:

.. code:: text

    3 12
   Alpha      ACTGCTAGCT AG
   Beta       ACT-CTAGCT AG
   Gamma      ACTGCTAGDT AG
    3 9
   Delta      GTCAGC-AG
   Epislon    GACAGCTAG
   Zeta       GTCAGCTAG
    3 13
   Eta        ACTAGTACAG CTG
   Theta      ACTAGTACAG CT-
   Iota       -CTACTACAG GTG

Its more common to want to load an existing alignment, and save that,
perhaps after some simple manipulation like removing certain rows or
columns.

Suppose you wanted to know how many alignments the
``Bio.AlignIO.write()`` function wrote to the handle? If your alignments
were in a list like the example above, you could just use
``len(my_alignments)``, however you can’t do that when your records come
from a generator/iterator. Therefore the ``Bio.AlignIO.write()``
function returns the number of alignments written to the file.

*Note* - If you tell the ``Bio.AlignIO.write()`` function to write to a
file that already exists, the old file will be overwritten without any
warning.

.. _`sec:converting-alignments`:

Converting between sequence alignment file formats
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Converting between sequence alignment file formats with ``Bio.AlignIO``
works in the same way as converting between sequence file formats with
``Bio.SeqIO``
(Section :ref:`sec:SeqIO-conversion`). We load
generally the alignment(s) using ``Bio.AlignIO.parse()`` and then save
them using the ``Bio.AlignIO.write()`` – or just use the
``Bio.AlignIO.convert()`` helper function.

For this example, we’ll load the PFAM/Stockholm format file used earlier
and save it as a Clustal W format file:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> count = AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.aln", "clustal")
   >>> print("Converted %i alignments" % count)
   Converted 1 alignments

Or, using ``Bio.AlignIO.parse()`` and ``Bio.AlignIO.write()``:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
   >>> count = AlignIO.write(alignments, "PF05371_seed.aln", "clustal")
   >>> print("Converted %i alignments" % count)
   Converted 1 alignments

The ``Bio.AlignIO.write()`` function expects to be given multiple
alignment objects. In the example above we gave it the alignment
iterator returned by ``Bio.AlignIO.parse()``.

In this case, we know there is only one alignment in the file so we
could have used ``Bio.AlignIO.read()`` instead, but notice we have to
pass this alignment to ``Bio.AlignIO.write()`` as a single element list:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
   >>> AlignIO.write([alignment], "PF05371_seed.aln", "clustal")

Either way, you should end up with the same new Clustal W format file
“PF05371_seed.aln” with the following content:

.. code:: text

   CLUSTAL X (1.81) multiple sequence alignment


   COATB_BPIKE/30-81                   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
   Q9T0Q8_BPIKE/1-52                   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
   COATB_BPI22/32-83                   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
   COATB_BPM13/24-72                   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
   COATB_BPZJ2/1-49                    AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFAS
   Q9T0Q9_BPFD/1-49                    AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
   COATB_BPIF1/22-73                   FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVS

   COATB_BPIKE/30-81                   KA
   Q9T0Q8_BPIKE/1-52                   RA
   COATB_BPI22/32-83                   KA
   COATB_BPM13/24-72                   KA
   COATB_BPZJ2/1-49                    KA
   Q9T0Q9_BPFD/1-49                    KA
   COATB_BPIF1/22-73                   RA

Alternatively, you could make a PHYLIP format file which we’ll name
“PF05371_seed.phy”:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip")

This time the output looks like this:

.. code:: text

    7 52
   COATB_BPIK AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
   Q9T0Q8_BPI AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
   COATB_BPI2 DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
   COATB_BPM1 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
   COATB_BPZJ AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
   Q9T0Q9_BPF AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
   COATB_BPIF FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

              KA
              RA
              KA
              KA
              KA
              KA
              RA

One of the big handicaps of the original PHYLIP alignment file format is
that the sequence identifiers are strictly truncated at ten characters.
In this example, as you can see the resulting names are still unique -
but they are not very readable. As a result, a more relaxed variant of
the original PHYLIP format is now quite widely used:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> AlignIO.convert("PF05371_seed.sth", "stockholm", "PF05371_seed.phy", "phylip-relaxed")

This time the output looks like this, using a longer indentation to
allow all the identifiers to be given in full:

.. code:: text

    7 52
   COATB_BPIKE/30-81  AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
   Q9T0Q8_BPIKE/1-52  AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
   COATB_BPI22/32-83  DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
   COATB_BPM13/24-72  AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
   COATB_BPZJ2/1-49   AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
   Q9T0Q9_BPFD/1-49   AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
   COATB_BPIF1/22-73  FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

                      KA
                      RA
                      KA
                      KA
                      KA
                      KA
                      RA

If you have to work with the original strict PHYLIP format, then you may
need to compress the identifiers somehow – or assign your own names or
numbering system. This following bit of code manipulates the record
identifiers before saving the output:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
   >>> name_mapping = {}
   >>> for i, record in enumerate(alignment):
   ...     name_mapping[i] = record.id
   ...     record.id = "seq%i" % i
   ...
   >>> print(name_mapping)
   {0: 'COATB_BPIKE/30-81', 1: 'Q9T0Q8_BPIKE/1-52', 2: 'COATB_BPI22/32-83', 3: 'COATB_BPM13/24-72', 4: 'COATB_BPZJ2/1-49', 5: 'Q9T0Q9_BPFD/1-49', 6: 'COATB_BPIF1/22-73'}
   >>> AlignIO.write([alignment], "PF05371_seed.phy", "phylip")

This code used a Python dictionary to record a simple mapping from the
new sequence system to the original identifier:

.. code:: python

   {
       0: "COATB_BPIKE/30-81",
       1: "Q9T0Q8_BPIKE/1-52",
       2: "COATB_BPI22/32-83",
       # ...
   }

Here is the new (strict) PHYLIP format output:

.. code:: text

    7 52
   seq0       AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIRLFKKFSS
   seq1       AEPNAATNYA TEAMDSLKTQ AIDLISQTWP VVTTVVVAGL VIKLFKKFVS
   seq2       DGTSTATSYA TEAMNSLKTQ ATDLIDQTWP VVTSVAVAGL AIRLFKKFSS
   seq3       AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
   seq4       AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
   seq5       AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
   seq6       FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

              KA
              RA
              KA
              KA
              KA
              KA
              RA

In general, because of the identifier limitation, working with *strict*
PHYLIP file formats shouldn’t be your first choice. Using the
PFAM/Stockholm format on the other hand allows you to record a lot of
additional annotation too.

.. _`sec:alignment-format`:

Getting your alignment objects as formatted strings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``Bio.AlignIO`` interface is based on handles, which means if you
want to get your alignment(s) into a string in a particular file format
you need to do a little bit more work (see below). However, you will
probably prefer to call Python’s built-in ``format`` function on the
alignment object. This takes an output format specification as a single
argument, a lower case string which is supported by ``Bio.AlignIO`` as
an output format. For example:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
   >>> print(format(alignment, "clustal"))
   CLUSTAL X (1.81) multiple sequence alignment


   COATB_BPIKE/30-81                   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
   Q9T0Q8_BPIKE/1-52                   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
   COATB_BPI22/32-83                   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
   ...

Without an output format specification, ``format`` returns the same
output as ``str``.

As described in
Section :ref:`sec:SeqRecord-format`, the
``SeqRecord`` object has a similar method using output formats supported
by ``Bio.SeqIO``.

Internally ``format`` is calling ``Bio.AlignIO.write()`` with a
``StringIO`` handle. You can do this in your own code if for example you
are using an older version of Biopython:

.. code:: pycon

   >>> from io import StringIO
   >>> from Bio import AlignIO
   >>> alignments = AlignIO.parse("PF05371_seed.sth", "stockholm")
   >>> out_handle = StringIO()
   >>> AlignIO.write(alignments, out_handle, "clustal")
   1
   >>> clustal_data = out_handle.getvalue()
   >>> print(clustal_data)
   CLUSTAL X (1.81) multiple sequence alignment


   COATB_BPIKE/30-81                   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSS
   Q9T0Q8_BPIKE/1-52                   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVS
   COATB_BPI22/32-83                   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSS
   COATB_BPM13/24-72                   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTS
   ...

.. _`sec:manipulating-alignments`:

Manipulating Alignments
-----------------------

Now that we’ve covered loading and saving alignments, we’ll look at what
else you can do with them.

Slicing alignments
~~~~~~~~~~~~~~~~~~

First of all, in some senses the alignment objects act like a Python
``list`` of ``SeqRecord`` objects (the rows). With this model in mind
hopefully the actions of ``len()`` (the number of rows) and iteration
(each row as a ``SeqRecord``) make sense:

.. doctest examples

.. code:: pycon

   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
   >>> print("Number of rows: %i" % len(alignment))
   Number of rows: 7
   >>> for record in alignment:
   ...     print("%s - %s" % (record.seq, record.id))
   ...
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA - COATB_BPIKE/30-81
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA - Q9T0Q8_BPIKE/1-52
   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA - COATB_BPI22/32-83
   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - COATB_BPM13/24-72
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA - COATB_BPZJ2/1-49
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA - Q9T0Q9_BPFD/1-49
   FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA - COATB_BPIF1/22-73

You can also use the list-like ``append`` and ``extend`` methods to add
more rows to the alignment (as ``SeqRecord`` objects). Keeping the list
metaphor in mind, simple slicing of the alignment should also make sense
- it selects some of the rows giving back another alignment object:

.. cont-doctest

.. code:: pycon

   >>> print(alignment)
   Alignment with 7 rows and 52 columns
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRL...SKA COATB_BPIKE/30-81
   AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKL...SRA Q9T0Q8_BPIKE/1-52
   DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRL...SKA COATB_BPI22/32-83
   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
   FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73
   >>> print(alignment[3:7])
   Alignment with 4 rows and 52 columns
   AEGDDP---AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPM13/24-72
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA COATB_BPZJ2/1-49
   AEGDDP---AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKL...SKA Q9T0Q9_BPFD/1-49
   FAADDATSQAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKL...SRA COATB_BPIF1/22-73

What if you wanted to select by column? Those of you who have used the
NumPy matrix or array objects won’t be surprised at this - you use a
double index.

.. cont-doctest

.. code:: pycon

   >>> print(alignment[2, 6])
   T

Using two integer indices pulls out a single letter, short hand for
this:

.. cont-doctest

.. code:: pycon

   >>> print(alignment[2].seq[6])
   T

You can pull out a single column as a string like this:

.. cont-doctest

.. code:: pycon

   >>> print(alignment[:, 6])
   TTT---T

You can also select a range of columns. For example, to pick out those
same three rows we extracted earlier, but take just their first six
columns:

.. cont-doctest

.. code:: pycon

   >>> print(alignment[3:6, :6])
   Alignment with 3 rows and 6 columns
   AEGDDP COATB_BPM13/24-72
   AEGDDP COATB_BPZJ2/1-49
   AEGDDP Q9T0Q9_BPFD/1-49

Leaving the first index as ``:`` means take all the rows:

.. cont-doctest

.. code:: pycon

   >>> print(alignment[:, :6])
   Alignment with 7 rows and 6 columns
   AEPNAA COATB_BPIKE/30-81
   AEPNAA Q9T0Q8_BPIKE/1-52
   DGTSTA COATB_BPI22/32-83
   AEGDDP COATB_BPM13/24-72
   AEGDDP COATB_BPZJ2/1-49
   AEGDDP Q9T0Q9_BPFD/1-49
   FAADDA COATB_BPIF1/22-73

This brings us to a neat way to remove a section. Notice columns 7, 8
and 9 which are gaps in three of the seven sequences:

.. cont-doctest

.. code:: pycon

   >>> print(alignment[:, 6:9])
   Alignment with 7 rows and 3 columns
   TNY COATB_BPIKE/30-81
   TNY Q9T0Q8_BPIKE/1-52
   TSY COATB_BPI22/32-83
   --- COATB_BPM13/24-72
   --- COATB_BPZJ2/1-49
   --- Q9T0Q9_BPFD/1-49
   TSQ COATB_BPIF1/22-73

Again, you can slice to get everything after the ninth column:

.. cont-doctest

.. code:: pycon

   >>> print(alignment[:, 9:])
   Alignment with 7 rows and 43 columns
   ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
   ATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
   ATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
   AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
   AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
   AKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
   AKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73

Now, the interesting thing is that addition of alignment objects works
by column. This lets you do this as a way to remove a block of columns:

.. cont-doctest

.. code:: pycon

   >>> edited = alignment[:, :6] + alignment[:, 9:]
   >>> print(edited)
   Alignment with 7 rows and 49 columns
   AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
   AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
   DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
   AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
   AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
   AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49
   FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73

Another common use of alignment addition would be to combine alignments
for several different genes into a meta-alignment. Watch out though -
the identifiers need to match up (see
Section :ref:`sec:SeqRecord-addition` for how
adding ``SeqRecord`` objects works). You may find it helpful to first
sort the alignment rows alphabetically by id:

.. cont-doctest

.. code:: pycon

   >>> edited.sort()
   >>> print(edited)
   Alignment with 7 rows and 49 columns
   DGTSTAATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA COATB_BPI22/32-83
   FAADDAAKAAFDSLTAQATEMSGYAWALVVLVVGATVGIKLFKKFVSRA COATB_BPIF1/22-73
   AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA COATB_BPIKE/30-81
   AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA COATB_BPM13/24-72
   AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFASKA COATB_BPZJ2/1-49
   AEPNAAATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA Q9T0Q8_BPIKE/1-52
   AEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA Q9T0Q9_BPFD/1-49

Note that you can only add two alignments together if they have the same
number of rows.

Alignments as arrays
~~~~~~~~~~~~~~~~~~~~

Depending on what you are doing, it can be more useful to turn the
alignment object into an array of letters – and you can do this with
NumPy:

.. doctest examples lib:numpy

.. code:: pycon

   >>> import numpy as np
   >>> from Bio import AlignIO
   >>> alignment = AlignIO.read("PF05371_seed.sth", "stockholm")
   >>> align_array = np.array(alignment)
   >>> print("Array shape %i by %i" % align_array.shape)
   Array shape 7 by 52
   >>> align_array[:, :10]  # doctest:+ELLIPSIS
   array([['A', 'E', 'P', 'N', 'A', 'A', 'T', 'N', 'Y', 'A'],
          ['A', 'E', 'P', 'N', 'A', 'A', 'T', 'N', 'Y', 'A'],
          ['D', 'G', 'T', 'S', 'T', 'A', 'T', 'S', 'Y', 'A'],
          ['A', 'E', 'G', 'D', 'D', 'P', '-', '-', '-', 'A'],
          ['A', 'E', 'G', 'D', 'D', 'P', '-', '-', '-', 'A'],
          ['A', 'E', 'G', 'D', 'D', 'P', '-', '-', '-', 'A'],
          ['F', 'A', 'A', 'D', 'D', 'A', 'T', 'S', 'Q', 'A']],...

Note that this leaves the original Biopython alignment object and the
NumPy array in memory as separate objects - editing one will not update
the other!

Counting substitutions
~~~~~~~~~~~~~~~~~~~~~~

The ``substitutions`` property of an alignment reports how often letters
in the alignment are substituted for each other. This is calculated by
taking all pairs of rows in the alignment, counting the number of times
two letters are aligned to each other, and summing this over all pairs.
For example,

.. doctest

.. code:: pycon

   >>> from Bio.Seq import Seq
   >>> from Bio.SeqRecord import SeqRecord
   >>> from Bio.Align import MultipleSeqAlignment
   >>> msa = MultipleSeqAlignment(
   ...     [
   ...         SeqRecord(Seq("ACTCCTA"), id="seq1"),
   ...         SeqRecord(Seq("AAT-CTA"), id="seq2"),
   ...         SeqRecord(Seq("CCTACT-"), id="seq3"),
   ...         SeqRecord(Seq("TCTCCTC"), id="seq4"),
   ...     ]
   ... )
   >>> print(msa)
   Alignment with 4 rows and 7 columns
   ACTCCTA seq1
   AAT-CTA seq2
   CCTACT- seq3
   TCTCCTC seq4
   >>> substitutions = msa.substitutions
   >>> print(substitutions)
       A    C    T
   A 2.0  4.5  1.0
   C 4.5 10.0  0.5
   T 1.0  0.5 12.0
   <BLANKLINE>

As the ordering of pairs is arbitrary, counts are divided equally above
and below the diagonal. For example, the 9 alignments of ``A`` to ``C``
are stored as 4.5 at position ``['A', 'C']`` and 4.5 at position
``['C', 'A']``. This arrangement helps to make the math easier when
calculating a substitution matrix from these counts, as described in
Section :ref:`sec:substitution_matrices`.

Note that ``msa.substitutions`` contains entries for the letters
appearing in the alignment only. You can use the ``select`` method to
add entries for missing letters, for example

.. cont-doctest

.. code:: pycon

   >>> m = substitutions.select("ATCG")
   >>> print(m)
       A    T    C   G
   A 2.0  1.0  4.5 0.0
   T 1.0 12.0  0.5 0.0
   C 4.5  0.5 10.0 0.0
   G 0.0  0.0  0.0 0.0
   <BLANKLINE>

This also allows you to change the order of letters in the alphabet.

.. _`sec:summary_info`:

Calculating summary information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Once you have an alignment, you are very likely going to want to find
out information about it. Instead of trying to have all of the functions
that can generate information about an alignment in the alignment object
itself, we’ve tried to separate out the functionality into separate
classes, which act on the alignment.

Getting ready to calculate summary information about an object is quick
to do. Let’s say we’ve got an alignment object called ``alignment``, for
example read in using ``Bio.AlignIO.read(...)`` as described in
Chapter :ref:`chapter:msa`. All we need to do to get an object that
will calculate summary information is:

.. cont-doctest

.. code:: pycon

   >>> from Bio.Align import AlignInfo
   >>> summary_align = AlignInfo.SummaryInfo(msa)

The ``summary_align`` object is very useful, and will do the following
neat things for you:

#. Calculate a quick consensus sequence – see
   section :ref:`sec:consensus`

#. Get a position specific score matrix for the alignment – see
   section :ref:`sec:pssm`

#. Calculate the information content for the alignment – see
   section :ref:`sec:getting_info_content`

#. Generate information on substitutions in the alignment –
   section :ref:`sec:substitution_matrices`
   details using this to generate a substitution matrix.

.. _`sec:consensus`:

Calculating a quick consensus sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``SummaryInfo`` object, described in
section :ref:`sec:summary_info`, provides functionality to
calculate a quick consensus of an alignment. Assuming we’ve got a
``SummaryInfo`` object called ``summary_align`` we can calculate a
consensus by doing:

.. cont-doctest

.. code:: pycon

   >>> consensus = summary_align.dumb_consensus()
   >>> consensus
   Seq('XCTXCTX')

As the name suggests, this is a really simple consensus calculator, and
will just add up all of the residues at each point in the consensus, and
if the most common value is higher than some threshold value will add
the common residue to the consensus. If it doesn’t reach the threshold,
it adds an ambiguity character to the consensus. The returned consensus
object is a ``Seq`` object.

You can adjust how ``dumb_consensus`` works by passing optional
parameters:

the threshold
   This is the threshold specifying how common a particular residue has
   to be at a position before it is added. The default is :math:`0.7`
   (meaning :math:`70\%`).

the ambiguous character
   This is the ambiguity character to use. The default is ’N’.

Alternatively, you can convert the multiple sequence alignment object
``msa`` to a new-style ``Alignment`` object (see section
:ref:`sec:alignmentobject`) by using the
``alignment`` attribute (see section :ref:`sec:alignment_newstyle`):

.. cont-doctest

.. code:: pycon

   >>> alignment = msa.alignment

You can then create a ``Motif`` object (see section
:ref:`sec:motif_object`):

.. cont-doctest

.. code:: pycon

   >>> from Bio.motifs import Motif
   >>> motif = Motif("ACGT", alignment)

and obtain a quick consensus sequence:

.. cont-doctest

.. code:: pycon

   >>> motif.consensus
   Seq('ACTCCTA')

The ``motif.counts.calculate_consensus`` method (see section
:ref:`sec:motif_consensus`) lets you specify in
detail how the consensus sequence should be calculated. For example,

.. cont-doctest

.. code:: pycon

   >>> motif.counts.calculate_consensus(identity=0.7)
   'NCTNCTN'

.. _`sec:pssm`:

Position Specific Score Matrices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Position specific score matrices (PSSMs) summarize the alignment
information in a different way than a consensus, and may be useful for
different tasks. Basically, a PSSM is a count matrix. For each column in
the alignment, the number of each alphabet letters is counted and
totaled. The totals are displayed relative to some representative
sequence along the left axis. This sequence may be the consensus
sequence, but can also be any sequence in the alignment.

For instance for the alignment above:

.. cont-doctest

.. code:: pycon

   >>> print(msa)
   Alignment with 4 rows and 7 columns
   ACTCCTA seq1
   AAT-CTA seq2
   CCTACT- seq3
   TCTCCTC seq4

we get a PSSM with the consensus sequence along the side using

.. cont-doctest

.. code:: pycon

   >>> my_pssm = summary_align.pos_specific_score_matrix(consensus, chars_to_ignore=["N"])
   >>> print(my_pssm)
       A   C   T
   X  2.0 1.0 1.0
   C  1.0 3.0 0.0
   T  0.0 0.0 4.0
   X  1.0 2.0 0.0
   C  0.0 4.0 0.0
   T  0.0 0.0 4.0
   X  2.0 1.0 0.0
   <BLANKLINE>

where we ignore any ``N`` ambiguity residues when calculating the PSSM.

Two notes should be made about this:

#. To maintain strictness with the alphabets, you can only include
   characters along the top of the PSSM that are in the alphabet of the
   alignment object. Gaps are not included along the top axis of the
   PSSM.

#. The sequence passed to be displayed along the left side of the axis
   does not need to be the consensus. For instance, if you wanted to
   display the second sequence in the alignment along this axis, you
   would need to do:

   .. cont-doctest

   .. code:: pycon

      >>> second_seq = msa[1]
      >>> my_pssm = summary_align.pos_specific_score_matrix(second_seq, chars_to_ignore=["N"])
      >>> print(my_pssm)
          A   C   T
      A  2.0 1.0 1.0
      A  1.0 3.0 0.0
      T  0.0 0.0 4.0
      -  1.0 2.0 0.0
      C  0.0 4.0 0.0
      T  0.0 0.0 4.0
      A  2.0 1.0 0.0
      <BLANKLINE>

The command above returns a ``PSSM`` object. You can access any element
of the PSSM by subscripting like
``your_pssm[sequence_number][residue_count_name]``. For instance, to get
the counts for the ’A’ residue in the second element of the above PSSM
you would do:

.. cont-doctest

.. code:: pycon

   >>> print(my_pssm[5]["T"])
   4.0

The structure of the PSSM class hopefully makes it easy both to access
elements and to pretty print the matrix.

Alternatively, you can convert the multiple sequence alignment object
``msa`` to a new-style ``Alignment`` object (see section
:ref:`sec:alignmentobject`) by using the
``alignment`` attribute (see section :ref:`sec:alignment_newstyle`):

.. cont-doctest

.. code:: pycon

   >>> alignment = msa.alignment

You can then create a ``Motif`` object (see section
:ref:`sec:motif_object`):

.. cont-doctest

.. code:: pycon

   >>> from Bio.motifs import Motif
   >>> motif = Motif("ACGT", alignment)

and obtain the counts of each nucleotide in each position:

.. cont-doctest

.. code:: pycon

   >>> counts = motif.counts
   >>> print(counts)
           0      1      2      3      4      5      6
   A:   2.00   1.00   0.00   1.00   0.00   0.00   2.00
   C:   1.00   3.00   0.00   2.00   4.00   0.00   1.00
   G:   0.00   0.00   0.00   0.00   0.00   0.00   0.00
   T:   1.00   0.00   4.00   0.00   0.00   4.00   0.00
   <BLANKLINE>
   >>> print(counts["T"][5])
   4.0

.. _`sec:getting_info_content`:

Information Content
~~~~~~~~~~~~~~~~~~~

A potentially useful measure of evolutionary conservation is the
information content of a sequence.

A useful introduction to information theory targeted towards molecular
biologists can be found at
http://www.lecb.ncifcrf.gov/~toms/paper/primer/. For our purposes, we
will be looking at the information content of a consensus sequence, or a
portion of a consensus sequence. We calculate information content at a
particular column in a multiple sequence alignment using the following
formula:

.. math:: IC_{j} = \sum_{i=1}^{N_{a}} P_{ij} \mathrm{log}\left(\frac{P_{ij}}{Q_{i}}\right)

where:

-  :math:`IC_{j}` – The information content for the :math:`j`-th column
   in an alignment.

-  :math:`N_{a}` – The number of letters in the alphabet.

-  :math:`P_{ij}` – The frequency of a particular letter :math:`i` in
   the :math:`j`-th column (i. e. if G occurred 3 out of 6 times in an
   alignment column, this would be 0.5)

-  :math:`Q_{i}` – The expected frequency of a letter :math:`i`. This is
   an optional argument, usage of which is left at the user’s
   discretion. By default, it is automatically assigned to
   :math:`0.05 = 1/20` for a protein alphabet, and :math:`0.25 = 1/4`
   for a nucleic acid alphabet. This is for getting the information
   content without any assumption of prior distributions. When assuming
   priors, or when using a non-standard alphabet, you should supply the
   values for :math:`Q_{i}`.

Well, now that we have an idea what information content is being
calculated in Biopython, let’s look at how to get it for a particular
region of the alignment.

First, we need to use our alignment to get an alignment summary object,
which we’ll assume is called ``summary_align`` (see
section :ref:`sec:summary_info`) for instructions on how to get
this. Once we’ve got this object, calculating the information content
for a region is as easy as:

.. cont-doctest

.. code:: pycon

   >>> e_freq_table = {"A": 0.3, "G": 0.2, "T": 0.3, "C": 0.2}
   >>> info_content = summary_align.information_content(
   ...     2, 6, e_freq_table=e_freq_table, chars_to_ignore=["N"]
   ... )
   >>> info_content  # doctest:+ELLIPSIS
   6.3910647...

Now, ``info_content`` will contain the relative information content over
the region [2:6] in relation to the expected frequencies.

The value return is calculated using base 2 as the logarithm base in the
formula above. You can modify this by passing the parameter ``log_base``
as the base you want:

.. cont-doctest

.. code:: pycon

   >>> info_content = summary_align.information_content(
   ...     2, 6, e_freq_table=e_freq_table, log_base=10, chars_to_ignore=["N"]
   ... )
   >>> info_content  # doctest:+ELLIPSIS
   1.923902...

By default nucleotide or amino acid residues with a frequency of 0 in a
column are not take into account when the relative information column
for that column is computed. If this is not the desired result, you can
use ``pseudo_count`` instead.

.. cont-doctest

.. code:: pycon

   >>> info_content = summary_align.information_content(
   ...     2, 6, e_freq_table=e_freq_table, chars_to_ignore=["N", "-"], pseudo_count=1
   ... )
   >>> info_content  # doctest:+ELLIPSIS
   4.299651...

In this case, the observed frequency :math:`P_{ij}` of a particular
letter :math:`i` in the :math:`j`-th column is computed as follows:

.. math:: P_{ij} = \frac{n_{ij} + k\times Q_{i}}{N_{j} + k}

where:

-  :math:`k` – the pseudo count you pass as argument.

-  :math:`k` – the pseudo count you pass as argument.

-  :math:`Q_{i}` – The expected frequency of the letter :math:`i` as
   described above.

Well, now you are ready to calculate information content. If you want to
try applying this to some real life problems, it would probably be best
to dig into the literature on information content to get an idea of how
it is used. Hopefully your digging won’t reveal any mistakes made in
coding this function!

.. _`sec:alignment_newstyle`:

Getting a new-style Alignment object
------------------------------------

Use the ``alignment`` property to create a new-style ``Alignment``
object (see section :ref:`sec:alignmentobject`)
from an old-style ``MultipleSeqAlignment`` object:

.. cont-doctest

.. code:: pycon

   >>> type(msa)
   <class 'Bio.Align.MultipleSeqAlignment'>
   >>> print(msa)
   Alignment with 4 rows and 7 columns
   ACTCCTA seq1
   AAT-CTA seq2
   CCTACT- seq3
   TCTCCTC seq4
   >>> alignment = msa.alignment
   >>> type(alignment)
   <class 'Bio.Align.Alignment'>
   >>> print(alignment)
   seq1              0 ACTCCTA 7
   seq2              0 AAT-CTA 6
   seq3              0 CCTACT- 6
   seq4              0 TCTCCTC 7
   <BLANKLINE>

Note that the ``alignment`` property creates and returns a new
``Alignment`` object that is consistent with the information stored in
the ``MultipleSeqAlignment`` object at the time the ``Alignment`` object
is created. Any changes to the ``MultipleSeqAlignment`` after calling
the ``alignment`` property will not propagate to the ``Alignment``
object. However, you can of course call the ``alignment`` property again
to create a new ``Alignment`` object consistent with the updated
``MultipleSeqAlignment`` object.

.. _`sec:subs_mat_ex`:

Calculating a substitution matrix from a multiple sequence alignment
--------------------------------------------------------------------

You can create your own substitution matrix from an alignment. In this
example, we’ll first read a protein sequence alignment from the Clustalw
file `protein.aln <examples/protein.aln>`__ (also available online
`here <https://raw.githubusercontent.com/biopython/biopython/master/Tests/Clustalw/protein.aln>`__)

.. doctest ../Tests/Clustalw

.. code:: pycon

   >>> from Bio import AlignIO
   >>> filename = "protein.aln"
   >>> msa = AlignIO.read(filename, "clustal")

Section :ref:`sec:alignio_clustal` contains more information on
doing this.

The ``substitutions`` property of the alignment stores the number of
times different residues substitute for each other:

.. cont-doctest

.. code:: pycon

   >>> observed_frequencies = msa.substitutions

To make the example more readable, we’ll select only amino acids with
polar charged side chains:

.. cont-doctest

.. code:: pycon

   >>> observed_frequencies = observed_frequencies.select("DEHKR")
   >>> print(observed_frequencies)
          D      E      H      K      R
   D 2360.0  255.5    7.5    0.5   25.0
   E  255.5 3305.0   16.5   27.0    2.0
   H    7.5   16.5 1235.0   16.0    8.5
   K    0.5   27.0   16.0 3218.0  116.5
   R   25.0    2.0    8.5  116.5 2079.0
   <BLANKLINE>

Rows and columns for other amino acids were removed from the matrix.

Next, we normalize the matrix:

.. cont-doctest

.. code:: pycon

   >>> import numpy as np
   >>> observed_frequencies /= np.sum(observed_frequencies)

Summing over rows or columns gives the relative frequency of occurrence
of each residue:

.. cont-doctest

.. code:: pycon

   >>> residue_frequencies = np.sum(observed_frequencies, 0)
   >>> print(residue_frequencies.format("%.4f"))
   D 0.2015
   E 0.2743
   H 0.0976
   K 0.2569
   R 0.1697
   <BLANKLINE>
   >>> sum(residue_frequencies) == 1.0
   True

The expected frequency of residue pairs is then

.. cont-doctest

.. code:: pycon

   >>> expected_frequencies = np.dot(
   ...     residue_frequencies[:, None], residue_frequencies[None, :]
   ... )
   >>> print(expected_frequencies.format("%.4f"))
          D      E      H      K      R
   D 0.0406 0.0553 0.0197 0.0518 0.0342
   E 0.0553 0.0752 0.0268 0.0705 0.0465
   H 0.0197 0.0268 0.0095 0.0251 0.0166
   K 0.0518 0.0705 0.0251 0.0660 0.0436
   R 0.0342 0.0465 0.0166 0.0436 0.0288
   <BLANKLINE>

Here, ``residue_frequencies[:, None]`` creates a 2D array consisting of
a single column with the values of ``residue_frequencies``, and
``residue_frequencies[None, :]`` a 2D array with these values as a
single row. Taking their dot product (inner product) creates a matrix of
expected frequencies where each entry consists of two
``residue_frequencies`` values multiplied with each other. For example,
``expected_frequencies['D', 'E']`` is equal to
``residue_frequencies['D'] * residue_frequencies['E']``.

We can now calculate the log-odds matrix by dividing the observed
frequencies by the expected frequencies and taking the logarithm:

.. cont-doctest

.. code:: pycon

   >>> m = np.log2(observed_frequencies / expected_frequencies)
   >>> print(m)
         D    E    H     K    R
   D   2.1 -1.5 -5.1 -10.4 -4.2
   E  -1.5  1.7 -4.4  -5.1 -8.3
   H  -5.1 -4.4  3.3  -4.4 -4.7
   K -10.4 -5.1 -4.4   1.9 -2.3
   R  -4.2 -8.3 -4.7  -2.3  2.5
   <BLANKLINE>

This matrix can be used as the substitution matrix when performing
alignments. For example,

.. cont-doctest

.. code:: pycon

   >>> from Bio.Align import PairwiseAligner
   >>> aligner = PairwiseAligner()
   >>> aligner.substitution_matrix = m
   >>> aligner.gap_score = -3.0
   >>> alignments = aligner.align("DEHEK", "DHHKK")
   >>> print(alignments[0])
   target            0 DEHEK 5
                     0 |.|.| 5
   query             0 DHHKK 5
   <BLANKLINE>
   >>> print("%.2f" % alignments.score)
   -2.18
   >>> score = m["D", "D"] + m["E", "H"] + m["H", "H"] + m["E", "K"] + m["K", "K"]
   >>> print("%.2f" % score)
   -2.18

.. _`sec:alignment-tools`:

Alignment Tools
---------------

There are *lots* of algorithms out there for aligning sequences, both
pairwise alignments and multiple sequence alignments. These calculations
are relatively slow, and you generally wouldn’t want to write such an
algorithm in Python. For pairwise alignments, you can use Biopython’s
``PairwiseAligner`` (see
Chapter :ref:`chapter:pairwise`), which is
implemented in C and therefore fast. Alternatively, you can run an
external alignment program by invoking it from Python. Normally you
would:

#. Prepare an input file of your unaligned sequences, typically this
   will be a FASTA file which you might create using ``Bio.SeqIO`` (see
   Chapter :ref:`chapter:seqio`).

#. Run the alignment program by running its command using Python’s
   ``subprocess`` module.

#. Read the output from the tool, i.e. your aligned sequences, typically
   using ``Bio.AlignIO`` (see earlier in this chapter).

Here, we will show a few examples of this workflow.

.. _`sec:alignio_clustal`:

ClustalW
~~~~~~~~

ClustalW is a popular command line tool for multiple sequence alignment
(there is also a graphical interface called ClustalX). Before trying to
use ClustalW from within Python, you should first try running the
ClustalW tool yourself by hand at the command line, to familiarize
yourself the other options.

For the most basic usage, all you need is to have a FASTA input file,
such as
`opuntia.fasta <https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta>`__
(available online or in the Doc/examples subdirectory of the Biopython
source code). This is a small FASTA file containing seven prickly-pear
DNA sequences (from the cactus family *Opuntia*). By default ClustalW
will generate an alignment and guide tree file with names based on the
input FASTA file, in this case ``opuntia.aln`` and ``opuntia.dnd``, but
you can override this or make it explicit:

.. code:: pycon

   >>> import subprocess
   >>> cmd = "clustalw2 -infile=opuntia.fasta"
   >>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)

Notice here we have given the executable name as ``clustalw2``,
indicating we have version two installed, which has a different filename
to version one (``clustalw``, the default). Fortunately both versions
support the same set of arguments at the command line (and indeed,
should be functionally identical).

You may find that even though you have ClustalW installed, the above
command doesn’t work – you may get a message about “command not found”
(especially on Windows). This indicated that the ClustalW executable is
not on your PATH (an environment variable, a list of directories to be
searched). You can either update your PATH setting to include the
location of your copy of ClustalW tools (how you do this will depend on
your OS), or simply type in the full path of the tool. Remember, in
Python strings ``\n`` and ``\t`` are by default interpreted as a new
line and a tab – which is why we’re put a letter “r” at the start for a
raw string that isn’t translated in this way. This is generally good
practice when specifying a Windows style file name.

.. code:: pycon

   >>> import os
   >>> clustalw_exe = r"C:\Program Files\new clustal\clustalw2.exe"
   >>> assert os.path.isfile(clustalw_exe), "Clustal W executable missing"
   >>> cmd = clustalw_exe + " -infile=opuntia.fasta"
   >>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)

Now, at this point it helps to know about how command line tools “work”.
When you run a tool at the command line, it will often print text output
directly to screen. This text can be captured or redirected, via two
“pipes”, called standard output (the normal results) and standard error
(for error messages and debug messages). There is also standard input,
which is any text fed into the tool. These names get shortened to stdin,
stdout and stderr. When the tool finishes, it has a return code (an
integer), which by convention is zero for success, while a non-zero
return code indicates that an error has occurred.

In the example of ClustalW above, when run at the command line all the
important output is written directly to the output files. Everything
normally printed to screen while you wait is captured in
``results.stdout`` and ``results.stderr``, while the return code is
stored in ``results.returncode``.

What we care about are the two output files, the alignment and the guide
tree. We didn’t tell ClustalW what filenames to use, but it defaults to
picking names based on the input file. In this case the output should be
in the file ``opuntia.aln``. You should be able to work out how to read
in the alignment using ``Bio.AlignIO`` by now:

.. doctest examples

.. code:: pycon

   >>> from Bio import AlignIO
   >>> align = AlignIO.read("opuntia.aln", "clustal")
   >>> print(align)
   Alignment with 7 rows and 906 columns
   TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191
   TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191
   TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191
   TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191
   TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191
   TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191
   TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191

In case you are interested (and this is an aside from the main thrust of
this chapter), the ``opuntia.dnd`` file ClustalW creates is just a
standard Newick tree file, and ``Bio.Phylo`` can parse these:

.. doctest examples

.. code:: pycon

   >>> from Bio import Phylo
   >>> tree = Phylo.read("opuntia.dnd", "newick")
   >>> Phylo.draw_ascii(tree)
                                _______________ gi|6273291|gb|AF191665.1|AF191665
     __________________________|
    |                          |   ______ gi|6273290|gb|AF191664.1|AF191664
    |                          |__|
    |                             |_____ gi|6273289|gb|AF191663.1|AF191663
    |
   _|_________________ gi|6273287|gb|AF191661.1|AF191661
    |
    |__________ gi|6273286|gb|AF191660.1|AF191660
    |
    |    __ gi|6273285|gb|AF191659.1|AF191659
    |___|
        | gi|6273284|gb|AF191658.1|AF191658
   <BLANKLINE>

Chapter :ref:`chapter:phylo` covers Biopython’s support
for phylogenetic trees in more depth.

MUSCLE
~~~~~~

MUSCLE is a more recent multiple sequence alignment tool than ClustalW.
As before, we recommend you try using MUSCLE from the command line
before trying to run it from Python.

For the most basic usage, all you need is to have a FASTA input file,
such as
`opuntia.fasta <https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/opuntia.fasta>`__
(available online or in the Doc/examples subdirectory of the Biopython
source code). You can then tell MUSCLE to read in this FASTA file, and
write the alignment to an output file named ``opuntia.txt``:

.. code:: pycon

   >>> import subprocess
   >>> cmd = "muscle -align opuntia.fasta -output opuntia.txt"
   >>> results = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, text=True)

MUSCLE will output the alignment as a FASTA file (using gapped
sequences). The ``Bio.AlignIO`` module is able to read this alignment
using ``format="fasta"``:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> align = AlignIO.read("opuntia.txt", "fasta")
   >>> print(align)
   Alignment with 7 rows and 906 columns
   TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273289|gb|AF191663.1|AF191663
   TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273291|gb|AF191665.1|AF191665
   TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273290|gb|AF191664.1|AF191664
   TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273287|gb|AF191661.1|AF191661
   TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273286|gb|AF191660.1|AF191660
   TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273285|gb|AF191659.1|AF191659
   TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAG...AGA gi|6273284|gb|AF191658.1|AF191658

You can also set the other optional parameters; see MUSCLE’s built-in
help for details.

.. _`sec:emboss-needle-water`:

EMBOSS needle and water
~~~~~~~~~~~~~~~~~~~~~~~

The `EMBOSS <http://emboss.sourceforge.net/>`__ suite includes the
``water`` and ``needle`` tools for Smith-Waterman algorithm local
alignment, and Needleman-Wunsch global alignment. The tools share the
same style interface, so switching between the two is trivial – we’ll
just use ``needle`` here.

Suppose you want to do a global pairwise alignment between two
sequences, prepared in FASTA format as follows:

.. code:: text

   >HBA_HUMAN
   MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
   KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
   AVHASLDKFLASVSTVLTSKYR

in a file ``alpha.faa``, and secondly in a file ``beta.faa``:

.. code:: text

   >HBB_HUMAN
   MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
   VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
   KEFTPPVQAAYQKVVAGVANALAHKYH

You can find copies of these example files with the Biopython source
code under the ``Doc/examples/`` directory.

The command to align these two sequences against each other using
``needle`` is as follows:

.. code:: text

   needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5

Why not try running this by hand at the command prompt? You should see
it does a pairwise comparison and records the output in the file
``needle.txt`` (in the default EMBOSS alignment file format).

Even if you have EMBOSS installed, running this command may not work –
you might get a message about “command not found” (especially on
Windows). This probably means that the EMBOSS tools are not on your PATH
environment variable. You can either update your PATH setting, or simply
use the full path to the tool, for example:

.. code:: text

   C:\EMBOSS\needle.exe -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5

Next we want to use Python to run this command for us. As explained
above, for full control, we recommend you use Python’s built-in
``subprocess`` module:

.. code:: pycon

   >>> import sys
   >>> import subprocess
   >>> cmd = "needle -outfile=needle.txt -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5"
   >>> results = subprocess.run(
   ...     cmd,
   ...     stdout=subprocess.PIPE,
   ...     stderr=subprocess.PIPE,
   ...     text=True,
   ...     shell=(sys, platform != "win32"),
   ... )
   >>> print(results.stdout)

   >>> print(results.stderr)
   Needleman-Wunsch global alignment of two sequences

Next we can load the output file with ``Bio.AlignIO`` as discussed
earlier in this chapter, as the ``emboss`` format:

.. code:: pycon

   >>> from Bio import AlignIO
   >>> align = AlignIO.read("needle.txt", "emboss")
   >>> print(align)
   Alignment with 2 rows and 149 columns
   MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR HBA_HUMAN
   MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF...KYH HBB_HUMAN

In this example, we told EMBOSS to write the output to a file, but you
*can* tell it to write the output to stdout instead (useful if you don’t
want a temporary output file to get rid of – use ``outfile=stdout``
argument):

.. code:: pycon

   >>> cmd = "needle -outfile=stdout -asequence=alpha.faa -bsequence=beta.faa -gapopen=10 -gapextend=0.5"
   >>> child = subprocess.Popen(
   ...     cmd,
   ...     stdout=subprocess.PIPE,
   ...     stderr=subprocess.PIPE,
   ...     text=True,
   ...     shell=(sys.platform != "win32"),
   ... )
   >>> align = AlignIO.read(child.stdout, "emboss")
   >>> print(align)
   Alignment with 2 rows and 149 columns
   MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY...KYR HBA_HUMAN
   MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRF...KYH HBB_HUMAN

Similarly, it is possible to read *one* of the inputs from stdin (e.g.
``asequence="stdin"``).

This has only scratched the surface of what you can do with ``needle``
and ``water``. One useful trick is that the second file can contain
multiple sequences (say five), and then EMBOSS will do five pairwise
alignments.