1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
|
.. _`chapter:pairwise`:
Pairwise sequence alignment
===========================
Pairwise sequence alignment is the process of aligning two sequences to
each other by optimizing the similarity score between them. The
``Bio.Align`` module contains the ``PairwiseAligner`` class for global
and local alignments using the Needleman-Wunsch, Smith-Waterman, Gotoh
(three-state), and Waterman-Smith-Beyer global and local pairwise
alignment algorithms, and the Fast Optimal Global Alignment Algorithm (FOGSAA),
with numerous options to change the alignment parameters. We refer to Durbin
*et al.* [Durbin1998]_ for in-depth information on sequence alignment
algorithms.
.. _`sec:pairwise-basic`:
Basic usage
-----------
To generate pairwise alignments, first create a ``PairwiseAligner``
object:
.. doctest examples
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
The ``PairwiseAligner`` object ``aligner`` (see
Section :ref:`sec:pairwise-aligner`) stores the alignment parameters
to be used for the pairwise alignments. These attributes can be set in
the constructor of the object:
.. cont-doctest
.. code:: pycon
>>> aligner = Align.PairwiseAligner(match_score=1.0)
or after the object is made:
.. cont-doctest
.. code:: pycon
>>> aligner.match_score = 1.0
Use the ``aligner.score`` method to calculate the alignment score
between two sequences:
.. cont-doctest
.. code:: pycon
>>> target = "GAACT"
>>> query = "GAT"
>>> score = aligner.score(target, query)
>>> score
3.0
The ``aligner.align`` method returns ``Alignment`` objects, each
representing one alignment between the two sequences:
.. cont-doctest
.. code:: pycon
>>> alignments = aligner.align(target, query)
>>> alignment = alignments[0]
>>> alignment # doctest: +ELLIPSIS
<Alignment object (2 rows x 5 columns) at ...>
Iterate over the ``Alignment`` objects and print them to see the
alignments:
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print(alignment)
...
target 0 GAACT 5
0 ||--| 5
query 0 GA--T 3
<BLANKLINE>
target 0 GAACT 5
0 |-|-| 5
query 0 G-A-T 3
<BLANKLINE>
Each alignment stores the alignment score:
.. cont-doctest
.. code:: pycon
>>> alignment.score
3.0
as well as pointers to the sequences that were aligned:
.. cont-doctest
.. code:: pycon
>>> alignment.target
'GAACT'
>>> alignment.query
'GAT'
Internally, the alignment is stored in terms of the sequence
coordinates:
.. cont-doctest
.. code:: pycon
>>> alignment = alignments[0]
>>> alignment.coordinates
array([[0, 2, 4, 5],
[0, 2, 2, 3]])
Here, the two rows refer to the target and query sequence. These
coordinates show that the alignment consists of the following three
blocks:
- ``target[0:2]`` aligned to ``query[0:2]``;
- ``target[2:4]`` aligned to a gap, since ``query[2:2]`` is an empty
string;
- ``target[4:5]`` aligned to ``query[2:3]``.
The number of aligned sequences is always 2 for a pairwise alignment:
.. cont-doctest
.. code:: pycon
>>> len(alignment)
2
The alignment length is defined as the number of columns in the
alignment as printed. This is equal to the sum of the number of matches,
number of mismatches, and the total length of gaps in the target and
query:
.. cont-doctest
.. code:: pycon
>>> alignment.length
5
The ``aligned`` property, which returns the start and end indices of
aligned subsequences, returns two tuples of length 2 for the first
alignment:
.. cont-doctest
.. code:: pycon
>>> alignment.aligned
array([[[0, 2],
[4, 5]],
<BLANKLINE>
[[0, 2],
[2, 3]]])
while for the alternative alignment, two tuples of length 3 are
returned:
.. cont-doctest
.. code:: pycon
>>> alignment = alignments[1]
>>> print(alignment)
target 0 GAACT 5
0 |-|-| 5
query 0 G-A-T 3
<BLANKLINE>
>>> alignment.aligned
array([[[0, 1],
[2, 3],
[4, 5]],
<BLANKLINE>
[[0, 1],
[1, 2],
[2, 3]]])
Note that different alignments may have the same subsequences aligned to
each other. In particular, this may occur if alignments differ from each
other in terms of their gap placement only:
.. cont-doctest
.. code:: pycon
>>> aligner.mode = "global"
>>> aligner.mismatch_score = -10
>>> alignments = aligner.align("AAACAAA", "AAAGAAA")
>>> len(alignments)
2
>>> print(alignments[0])
target 0 AAAC-AAA 7
0 |||--||| 8
query 0 AAA-GAAA 7
<BLANKLINE>
>>> alignments[0].aligned
array([[[0, 3],
[4, 7]],
<BLANKLINE>
[[0, 3],
[4, 7]]])
>>> print(alignments[1])
target 0 AAA-CAAA 7
0 |||--||| 8
query 0 AAAG-AAA 7
<BLANKLINE>
>>> alignments[1].aligned
array([[[0, 3],
[4, 7]],
<BLANKLINE>
[[0, 3],
[4, 7]]])
The ``map`` method can be applied on a pairwise alignment ``alignment1``
to find the pairwise alignment of the query of ``alignment2`` to the
target of ``alignment1``, where the target of ``alignment2`` and the
query of ``alignment1`` are identical. A typical example is where
``alignment1`` is the pairwise alignment between a chromosome and a
transcript, ``alignment2`` is the pairwise alignment between the
transcript and a sequence (e.g., an RNA-seq read), and we want to find
the alignment of the sequence to the chromosome:
.. cont-doctest
.. code:: pycon
>>> aligner.mode = "local"
>>> aligner.open_gap_score = -1
>>> aligner.extend_gap_score = 0
>>> chromosome = "AAAAAAAACCCCCCCAAAAAAAAAAAGGGGGGAAAAAAAA"
>>> transcript = "CCCCCCCGGGGGG"
>>> alignments1 = aligner.align(chromosome, transcript)
>>> len(alignments1)
1
>>> alignment1 = alignments1[0]
>>> print(alignment1)
target 8 CCCCCCCAAAAAAAAAAAGGGGGG 32
0 |||||||-----------|||||| 24
query 0 CCCCCCC-----------GGGGGG 13
<BLANKLINE>
>>> sequence = "CCCCGGGG"
>>> alignments2 = aligner.align(transcript, sequence)
>>> len(alignments2)
1
>>> alignment2 = alignments2[0]
>>> print(alignment2)
target 3 CCCCGGGG 11
0 |||||||| 8
query 0 CCCCGGGG 8
<BLANKLINE>
>>> mapped_alignment = alignment1.map(alignment2)
>>> print(mapped_alignment)
target 11 CCCCAAAAAAAAAAAGGGG 30
0 ||||-----------|||| 19
query 0 CCCC-----------GGGG 8
<BLANKLINE>
>>> format(mapped_alignment, "psl")
'8\t0\t0\t0\t0\t0\t1\t11\t+\tquery\t8\t0\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n'
Mapping the alignment does not depend on the sequence contents. If we
delete the sequence contents, the same alignment is found in PSL format
(though we obviously lose the ability to print the sequence alignment):
.. cont-doctest
.. code:: pycon
>>> from Bio.Seq import Seq
>>> alignment1.target = Seq(None, len(alignment1.target))
>>> alignment1.query = Seq(None, len(alignment1.query))
>>> alignment2.target = Seq(None, len(alignment2.target))
>>> alignment2.query = Seq(None, len(alignment2.query))
>>> mapped_alignment = alignment1.map(alignment2)
>>> format(mapped_alignment, "psl")
'8\t0\t0\t0\t0\t0\t1\t11\t+\tquery\t8\t0\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n'
By default, a global pairwise alignment is performed, which finds the
optimal alignment over the whole length of ``target`` and ``query``.
Instead, a local alignment will find the subsequence of ``target`` and
``query`` with the highest alignment score. Local alignments can be
generated by setting ``aligner.mode`` to ``"local"``:
.. cont-doctest
.. code:: pycon
>>> aligner.mode = "local"
>>> target = "AGAACTC"
>>> query = "GAACT"
>>> score = aligner.score(target, query)
>>> score
5.0
>>> alignments = aligner.align(target, query)
>>> for alignment in alignments:
... print(alignment)
...
target 1 GAACT 6
0 ||||| 5
query 0 GAACT 5
<BLANKLINE>
Note that there is some ambiguity in the definition of the best local
alignments if segments with a score 0 can be added to the alignment. We
follow the suggestion by Waterman & Eggert
[Waterman1987]_ and disallow such extensions.
If `aligner.mode` is set to `"fogsaa"`, then the Fast Optimal Global Alignment
Algorithm [Chakraborty2013]_ with some modifications is used. This mode
calculates a global alignment, but it is not like the regular `"global"` mode.
It is best suited for long alignments between similar sequences. Rather than
calculating all possible alignments like other algorithms do, FOGSAA uses a
heuristic to detect steps in an alignment that cannot lead to an optimal
alignment. This can speed up alignment, however, the heuristic makes
assumptions about your match, mismatch, and gap scores. If the match score is
less than the mismatch score or any gap score, or if any gap score is greater
than the mismatch score, then a warning is raised and the algorithm may return
incorrect results. Unlike other modes that may return more than one alignment,
FOGSAA always returns only one alignment.
.. cont-doctest
.. code:: pycon
>>> aligner.mode = "fogsaa"
>>> aligner.mismatch_score = -10
>>> alignments = aligner.align("AAACAAA", "AAAGAAA")
>>> len(alignments)
1
>>> print(alignments[0])
target 0 AAAC-AAA 7
0 |||--||| 8
query 0 AAA-GAAA 7
<BLANKLINE>
.. _`sec:pairwise-aligner`:
The pairwise aligner object
---------------------------
The ``PairwiseAligner`` object stores all alignment parameters to be
used for the pairwise alignments. To see an overview of the values for
all parameters, use
.. doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner(match_score=1.0, mode="local")
>>> print(aligner)
Pairwise sequence aligner with parameters
wildcard: None
match_score: 1.000000
mismatch_score: 0.000000
target_internal_open_gap_score: 0.000000
target_internal_extend_gap_score: 0.000000
target_left_open_gap_score: 0.000000
target_left_extend_gap_score: 0.000000
target_right_open_gap_score: 0.000000
target_right_extend_gap_score: 0.000000
query_internal_open_gap_score: 0.000000
query_internal_extend_gap_score: 0.000000
query_left_open_gap_score: 0.000000
query_left_extend_gap_score: 0.000000
query_right_open_gap_score: 0.000000
query_right_extend_gap_score: 0.000000
mode: local
<BLANKLINE>
See Sections :ref:`sec:pairwise-substitution-scores`,
:ref:`sec:pairwise-affine-gapscores`, and
:ref:`sec:pairwise-general-gapscores` below for the definition of
these parameters. The attribute ``mode`` (described above in
Section :ref:`sec:pairwise-basic`) can be set equal to ``"global"``
or ``"local"`` to specify global or local pairwise alignment,
respectively.
Depending on the gap scoring parameters (see
Sections :ref:`sec:pairwise-affine-gapscores` and
:ref:`sec:pairwise-general-gapscores`) and mode, a
``PairwiseAligner`` object automatically chooses the appropriate
algorithm to use for pairwise sequence alignment. To verify the selected
algorithm, use
.. cont-doctest
.. code:: pycon
>>> aligner.algorithm
'Smith-Waterman'
This attribute is read-only.
A ``PairwiseAligner`` object also stores the precision :math:`\epsilon`
to be used during alignment. The value of :math:`\epsilon` is stored in
the attribute ``aligner.epsilon``, and by default is equal to
:math:`10^{-6}`:
.. cont-doctest
.. code:: pycon
>>> aligner.epsilon
1e-06
Two scores will be considered equal to each other for the purpose of the
alignment if the absolute difference between them is less than
:math:`\epsilon`.
.. _`sec:pairwise-substitution-scores`:
Substitution scores
-------------------
Substitution scores define the value to be added to the total score when
two letters (nucleotides or amino acids) are aligned to each other. The
substitution scores to be used by the ``PairwiseAligner`` can be
specified in two ways:
- By specifying a match score for identical letters, and a mismatch
scores for mismatched letters. Nucleotide sequence alignments are
typically based on match and mismatch scores. For example, by default
BLAST [Altschul1990]_ uses a match score of
:math:`+1` and a mismatch score of :math:`-2` for nucleotide
alignments by ``megablast``, with a gap penalty of 2.5 (see section
:ref:`sec:pairwise-affine-gapscores` for more information on gap
scores). Match and mismatch scores can be specified by setting the
``match`` and ``mismatch`` attributes of the ``PairwiseAligner``
object:
.. doctest examples lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.match_score
1.0
>>> aligner.mismatch_score
0.0
>>> score = aligner.score("ACGT", "ACAT")
>>> print(score)
3.0
>>> aligner.match_score = 1.0
>>> aligner.mismatch_score = -2.0
>>> aligner.gap_score = -2.5
>>> score = aligner.score("ACGT", "ACAT")
>>> print(score)
1.0
When using match and mismatch scores, you can specify a wildcard
character (``None`` by default) for unknown letters. These will get a
zero score in alignments, irrespective of the value of the match or
mismatch score:
.. cont-doctest
.. code:: pycon
>>> aligner.wildcard = "?"
>>> score = aligner.score("ACGT", "AC?T")
>>> print(score)
3.0
- Alternatively, you can use the ``substitution_matrix`` attribute of
the ``PairwiseAligner`` object to specify a substitution matrix. This
allows you to apply different scores for different pairs of matched
and mismatched letters. This is typically used for amino acid
sequence alignments. For example, by default BLAST
[Altschul1990]_ uses the BLOSUM62 substitution
matrix for protein alignments by ``blastp``. This substitution matrix
is available from Biopython:
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import substitution_matrices
>>> substitution_matrices.load() # doctest: +ELLIPSIS
['BENNER22', 'BENNER6', 'BENNER74', 'BLASTN', 'BLASTP', 'BLOSUM45', 'BLOSUM50', 'BLOSUM62', ..., 'TRANS']
>>> matrix = substitution_matrices.load("BLOSUM62")
>>> print(matrix) # doctest: +ELLIPSIS
# Matrix made by matblas from blosum62.iij
...
A R N D C Q ...
A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 ...
R -1.0 5.0 0.0 -2.0 -3.0 1.0 ...
N -2.0 0.0 6.0 1.0 -3.0 0.0 ...
D -2.0 -2.0 1.0 6.0 -3.0 0.0 ...
C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 ...
Q -1.0 1.0 0.0 0.0 -3.0 5.0 ...
...
>>> aligner.substitution_matrix = matrix
>>> score = aligner.score("ACDQ", "ACDQ")
>>> score
24.0
>>> score = aligner.score("ACDQ", "ACNQ")
>>> score
19.0
When using a substitution matrix, ``X`` is *not* interpreted as an
unknown character. Instead, the score provided by the substitution
matrix will be used:
.. cont-doctest
.. code:: pycon
>>> matrix["D", "X"]
-1.0
>>> score = aligner.score("ACDQ", "ACXQ")
>>> score
17.0
By default, ``aligner.substitution_matrix`` is ``None``. The attributes
``aligner.match_score`` and ``aligner.mismatch_score`` are ignored if
``aligner.substitution_matrix`` is not ``None``. Setting
``aligner.match_score`` or ``aligner.mismatch_score`` to valid values
will reset ``aligner.substitution_matrix`` to ``None``.
.. _`sec:pairwise-affine-gapscores`:
Affine gap scores
-----------------
Affine gap scores are defined by a score to open a gap, and a score to
extend an existing gap:
:math:`\textrm{gap score} = \textrm{open gap score} + (n-1) \times \textrm{extend gap score}`,
where :math:`n` is the length of the gap. Biopython’s pairwise sequence
aligner allows fine-grained control over the gap scoring scheme by
specifying the following twelve attributes of a ``PairwiseAligner``
object:
================================== ====================================
**Opening scores** **Extending scores**
================================== ====================================
``query_left_open_gap_score`` ``query_left_extend_gap_score``
``query_internal_open_gap_score`` ``query_internal_extend_gap_score``
``query_right_open_gap_score`` ``query_right_extend_gap_score``
``target_left_open_gap_score`` ``target_left_extend_gap_score``
``target_internal_open_gap_score`` ``target_internal_extend_gap_score``
``target_right_open_gap_score`` ``target_right_extend_gap_score``
================================== ====================================
These attributes allow for different gap scores for internal gaps and on
either end of the sequence, as shown in this example:
========== ========= ================================
**target** **query** **score**
========== ========= ================================
A - query left open gap score
C - query left extend gap score
C - query left extend gap score
G G match score
G T mismatch score
G - query internal open gap score
A - query internal extend gap score
A - query internal extend gap score
T T match score
A A match score
G - query internal open gap score
C C match score
- C target internal open gap score
- C target internal extend gap score
C C match score
T G mismatch score
C C match score
- C target internal open gap score
A A match score
- T target right open gap score
- A target right extend gap score
- A target right extend gap score
========== ========= ================================
For convenience, ``PairwiseAligner`` objects have additional attributes
that refer to a number of these values collectively, as shown
(hierarchically) in Table :ref:`table:align-meta-attributes`.
.. table:: Meta-attributes of the pairwise aligner objects.
:name: table:align-meta-attributes
+---------------------------------+---------------------------------------+
| Meta-attribute | Attributes it maps to |
+=================================+=======================================+
| ``gap_score`` | ``target_gap_score``, |
| | ``query_gap_score`` |
+---------------------------------+---------------------------------------+
| ``open_gap_score`` | ``target_open_gap_score``, |
| | ``query_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``extend_gap_score`` | ``target_extend_gap_score``, |
| | ``query_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``internal_gap_score`` | ``target_internal_gap_score``, |
| | ``query_internal_gap_score`` |
+---------------------------------+---------------------------------------+
| ``internal_open_gap_score`` | ``target_internal_open_gap_score``, |
| | ``query_internal_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``internal_extend_gap_score`` | ``target_internal_extend_gap_score``, |
| | ``query_internal_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``end_gap_score`` | ``target_end_gap_score``, |
| | ``query_end_gap_score`` |
+---------------------------------+---------------------------------------+
| ``end_open_gap_score`` | ``target_end_open_gap_score``, |
| | ``query_end_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``end_extend_gap_score`` | ``target_end_extend_gap_score``, |
| | ``query_end_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``left_gap_score`` | ``target_left_gap_score``, |
| | ``query_left_gap_score`` |
+---------------------------------+---------------------------------------+
| ``right_gap_score`` | ``target_right_gap_score``, |
| | ``query_right_gap_score`` |
+---------------------------------+---------------------------------------+
| ``left_open_gap_score`` | ``target_left_open_gap_score``, |
| | ``query_left_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``left_extend_gap_score`` | ``target_left_extend_gap_score``, |
| | ``query_left_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``right_open_gap_score`` | ``target_right_open_gap_score``, |
| | ``query_right_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``right_extend_gap_score`` | ``target_right_extend_gap_score``, |
| | ``query_right_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_open_gap_score`` | ``target_internal_open_gap_score``, |
| | ``target_left_open_gap_score``, |
| | ``target_right_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_extend_gap_score`` | ``target_internal_extend_gap_score``, |
| | ``target_left_extend_gap_score``, |
| | ``target_right_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_gap_score`` | ``target_open_gap_score``, |
| | ``target_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_open_gap_score`` | ``query_internal_open_gap_score``, |
| | ``query_left_open_gap_score``, |
| | ``query_right_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_extend_gap_score`` | ``query_internal_extend_gap_score``, |
| | ``query_left_extend_gap_score``, |
| | ``query_right_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_gap_score`` | ``query_open_gap_score``, |
| | ``query_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_internal_gap_score`` | ``target_internal_open_gap_score``, |
| | ``target_internal_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_end_gap_score`` | ``target_end_open_gap_score``, |
| | ``target_end_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_end_open_gap_score`` | ``target_left_open_gap_score``, |
| | ``target_right_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_end_extend_gap_score`` | ``target_left_extend_gap_score``, |
| | ``target_right_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_left_gap_score`` | ``target_left_open_gap_score``, |
| | ``target_left_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``target_right_gap_score`` | ``target_right_open_gap_score``, |
| | ``target_right_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_end_gap_score`` | ``query_end_open_gap_score``, |
| | ``query_end_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_end_open_gap_score`` | ``query_left_open_gap_score``, |
| | ``query_right_open_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_end_extend_gap_score`` | ``query_left_extend_gap_score``, |
| | ``query_right_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_internal_gap_score`` | ``query_internal_open_gap_score``, |
| | ``query_internal_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_left_gap_score`` | ``query_left_open_gap_score``, |
| | ``query_left_extend_gap_score`` |
+---------------------------------+---------------------------------------+
| ``query_right_gap_score`` | ``query_right_open_gap_score``, |
| | ``query_right_extend_gap_score`` |
+---------------------------------+---------------------------------------+
.. _`sec:pairwise-general-gapscores`:
General gap scores
------------------
For even more fine-grained control over the gap scores, you can specify
a gap scoring function. For example, the gap scoring function below
disallows a gap after two nucleotides in the query sequence:
.. doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> def my_gap_score_function(start, length):
... if start == 2:
... return -1000
... else:
... return -1 * length
...
>>> aligner.query_gap_score = my_gap_score_function
>>> alignments = aligner.align("AACTT", "AATT")
>>> for alignment in alignments:
... print(alignment)
...
target 0 AACTT 5
0 -|.|| 5
query 0 -AATT 4
<BLANKLINE>
target 0 AACTT 5
0 |-.|| 5
query 0 A-ATT 4
<BLANKLINE>
target 0 AACTT 5
0 ||.-| 5
query 0 AAT-T 4
<BLANKLINE>
target 0 AACTT 5
0 ||.|- 5
query 0 AATT- 4
<BLANKLINE>
.. _`sec:pairwise-predefined-scoring`:
Using a pre-defined substitution matrix and gap scores
------------------------------------------------------
By default, a ``PairwiseAligner`` object is initialized with a match
score of +1.0, a mismatch score of 0.0, and all gap scores equal to 0.0,
While this has the benefit of being a simple scoring scheme, in general
it does not give the best performance. Instead, you can use the argument
``scoring`` to select a predefined scoring scheme when initializing a
``PairwiseAligner`` object. Currently, the provided scoring schemes are
``blastn`` and ``megablast``, which are suitable for nucleotide
alignments, and ``blastp``, which is suitable for protein alignments.
Selecting these scoring schemes will initialize the ``PairwiseAligner``
object to the default scoring parameters used by BLASTN, MegaBLAST, and
BLASTP, respectively.
.. doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner(scoring="blastn")
>>> print(aligner) # doctest:+ELLIPSIS
Pairwise sequence aligner with parameters
substitution_matrix: <Array object at ...>
target_internal_open_gap_score: -7.000000
target_internal_extend_gap_score: -2.000000
target_left_open_gap_score: -7.000000
target_left_extend_gap_score: -2.000000
target_right_open_gap_score: -7.000000
target_right_extend_gap_score: -2.000000
query_internal_open_gap_score: -7.000000
query_internal_extend_gap_score: -2.000000
query_left_open_gap_score: -7.000000
query_left_extend_gap_score: -2.000000
query_right_open_gap_score: -7.000000
query_right_extend_gap_score: -2.000000
mode: global
<BLANKLINE>
>>> print(aligner.substitution_matrix[:, :])
A T G C S W R Y K M B V H D N
A 2.0 -3.0 -3.0 -3.0 -3.0 -1.0 -1.0 -3.0 -3.0 -1.0 -3.0 -1.0 -1.0 -1.0 -2.0
T -3.0 2.0 -3.0 -3.0 -3.0 -1.0 -3.0 -1.0 -1.0 -3.0 -1.0 -3.0 -1.0 -1.0 -2.0
G -3.0 -3.0 2.0 -3.0 -1.0 -3.0 -1.0 -3.0 -1.0 -3.0 -1.0 -1.0 -3.0 -1.0 -2.0
C -3.0 -3.0 -3.0 2.0 -1.0 -3.0 -3.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -3.0 -2.0
S -3.0 -3.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
W -1.0 -1.0 -3.0 -3.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
R -1.0 -3.0 -1.0 -3.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
Y -3.0 -1.0 -3.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
K -3.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -2.0
M -1.0 -3.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
B -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
V -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
H -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
D -1.0 -1.0 -1.0 -3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0
N -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
<BLANKLINE>
Iterating over alignments
-------------------------
The ``alignments`` returned by ``aligner.align`` are a kind of immutable
iterable objects (similar to ``range``). While they appear similar to a
``tuple`` or ``list`` of ``Alignment`` objects, they are different in
the sense that each ``Alignment`` object is created dynamically when it
is needed. This approach was chosen because the number of alignments can
be extremely large, in particular for poor alignments (see
Section :ref:`sec:pairwise-examples` for an example).
You can perform the following operations on ``alignments``:
- ``len(alignments)`` returns the number of alignments stored. This
function returns quickly, even if the number of alignments is huge.
If the number of alignments is extremely large (typically, larger
than 9,223,372,036,854,775,807, which is the largest integer that can
be stored as a ``long int`` on 64 bit machines), ``len(alignments)``
will raise an ``OverflowError``. A large number of alignments
suggests that the alignment quality is low.
.. doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("AAA", "AA")
>>> len(alignments)
3
- You can extract a specific alignment by index:
.. doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> alignments = aligner.align("AAA", "AA")
>>> print(alignments[2])
target 0 AAA 3
0 -|| 3
query 0 -AA 2
<BLANKLINE>
>>> print(alignments[0])
target 0 AAA 3
0 ||- 3
query 0 AA- 2
<BLANKLINE>
- You can iterate over alignments, for example as in
.. code:: pycon
>>> for alignment in alignments:
... print(alignment)
...
The ``alignments`` iterator can be converted into a ``list`` or ``tuple``:
.. code:: pycon
>>> alignments = list(alignments)
It is wise to check the number of alignments by calling
``len(alignments)`` before attempting to call ``list(alignments)`` to
save all alignments as a list.
- The alignment score (which has the same value for each alignment in
``alignments``) is stored as an attribute. This allows you to check
the alignment score before proceeding to extract individual
alignments:
.. cont-doctest
.. code:: pycon
>>> print(alignments.score)
2.0
Aligning to the reverse strand
------------------------------
By default, the pairwise aligner aligns the forward strand of the query
to the forward strand of the target. To calculate the alignment score
for ``query`` to the reverse strand of ``target``, use ``strand="-"``:
.. doctest
.. code:: pycon
>>> from Bio import Align
>>> from Bio.Seq import reverse_complement
>>> target = "AAAACCC"
>>> query = "AACC"
>>> aligner = Align.PairwiseAligner()
>>> aligner.mismatch_score = -1
>>> aligner.internal_gap_score = -1
>>> aligner.score(target, query) # strand is "+" by default
4.0
>>> aligner.score(target, reverse_complement(query), strand="-")
4.0
>>> aligner.score(target, query, strand="-")
0.0
>>> aligner.score(target, reverse_complement(query))
0.0
The alignments against the reverse strand can be obtained by specifying
``strand="-"`` when calling ``aligner.align``:
.. cont-doctest
.. code:: pycon
>>> alignments = aligner.align(target, query)
>>> len(alignments)
1
>>> print(alignments[0])
target 0 AAAACCC 7
0 --||||- 7
query 0 --AACC- 4
<BLANKLINE>
>>> print(alignments[0].format("bed")) # doctest: +NORMALIZE_WHITESPACE
target 2 6 query 4 + 2 6 0 1 4, 0,
<BLANKLINE>
>>> alignments = aligner.align(target, reverse_complement(query), strand="-")
>>> len(alignments)
1
>>> print(alignments[0])
target 0 AAAACCC 7
0 --||||- 7
query 4 --AACC- 0
<BLANKLINE>
>>> print(alignments[0].format("bed")) # doctest: +NORMALIZE_WHITESPACE
target 2 6 query 4 - 2 6 0 1 4, 0,
<BLANKLINE>
>>> alignments = aligner.align(target, query, strand="-")
>>> len(alignments)
2
>>> print(alignments[0])
target 0 AAAACCC---- 7
0 ----------- 11
query 4 -------GGTT 0
<BLANKLINE>
>>> print(alignments[1])
target 0 ----AAAACCC 7
0 ----------- 11
query 4 GGTT------- 0
<BLANKLINE>
Note that the score for aligning ``query`` to the reverse strand of
``target`` may be different from the score for aligning the reverse
complement of ``query`` to the forward strand of ``target`` if the left
and right gap scores are different:
.. cont-doctest
.. code:: pycon
>>> aligner.left_gap_score = -0.5
>>> aligner.right_gap_score = -0.2
>>> aligner.score(target, query)
2.8
>>> alignments = aligner.align(target, query)
>>> len(alignments)
1
>>> print(alignments[0])
target 0 AAAACCC 7
0 --||||- 7
query 0 --AACC- 4
<BLANKLINE>
>>> aligner.score(target, reverse_complement(query), strand="-")
3.1
>>> alignments = aligner.align(target, reverse_complement(query), strand="-")
>>> len(alignments)
1
>>> print(alignments[0])
target 0 AAAACCC 7
0 --||||- 7
query 4 --AACC- 0
<BLANKLINE>
.. _`sec:substitution_matrices`:
Substitution matrices
---------------------
Substitution matrices [Durbin1998]_ provide the scoring
terms for classifying how likely two different residues are to
substitute for each other. This is essential in doing sequence
comparisons. Biopython provides a ton of common substitution matrices,
including the famous PAM and BLOSUM series of matrices, and also
provides functionality for creating your own substitution matrices.
Array objects
~~~~~~~~~~~~~
You can think of substitutions matrices as 2D arrays in which the
indices are letters (nucleotides or amino acids) rather than integers.
The ``Array`` class in ``Bio.Align.substitution_matrices`` is a subclass
of numpy arrays that supports indexing both by integers and by specific
strings. An ``Array`` instance can either be a one-dimensional array or
a square two-dimensional arrays. A one-dimensional ``Array`` object can
for example be used to store the nucleotide frequency of a DNA sequence,
while a two-dimensional ``Array`` object can be used to represent a
scoring matrix for sequence alignments.
To create a one-dimensional ``Array``, only the alphabet of allowed
letters needs to be specified:
.. doctest . lib:numpy
.. code:: pycon
>>> from Bio.Align.substitution_matrices import Array
>>> counts = Array("ACGT")
>>> print(counts)
A 0.0
C 0.0
G 0.0
T 0.0
<BLANKLINE>
The allowed letters are stored in the ``alphabet`` property:
.. cont-doctest
.. code:: pycon
>>> counts.alphabet
'ACGT'
This property is read-only; modifying the underlying ``_alphabet``
attribute may lead to unexpected results. Elements can be accessed both
by letter and by integer index:
.. cont-doctest
.. code:: pycon
>>> counts["C"] = -3
>>> counts[2] = 7
>>> print(counts)
A 0.0
C -3.0
G 7.0
T 0.0
<BLANKLINE>
>>> counts[1]
-3.0
Using a letter that is not in the alphabet, or an index that is out of
bounds, will cause a ``IndexError``:
.. cont-doctest
.. code:: pycon
>>> counts["U"]
Traceback (most recent call last):
...
IndexError: 'U'
>>> counts["X"] = 6
Traceback (most recent call last):
...
IndexError: 'X'
>>> counts[7]
Traceback (most recent call last):
...
IndexError: index 7 is out of bounds for axis 0 with size 4
A two-dimensional ``Array`` can be created by specifying ``dims=2``:
.. doctest . lib:numpy
.. code:: pycon
>>> from Bio.Align.substitution_matrices import Array
>>> counts = Array("ACGT", dims=2)
>>> print(counts)
A C G T
A 0.0 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0
G 0.0 0.0 0.0 0.0
T 0.0 0.0 0.0 0.0
<BLANKLINE>
Again, both letters and integers can be used for indexing, and
specifying a letter that is not in the alphabet will cause an
``IndexError``:
.. cont-doctest
.. code:: pycon
>>> counts["A", "C"] = 12.0
>>> counts[2, 1] = 5.0
>>> counts[3, "T"] = -2
>>> print(counts)
A C G T
A 0.0 12.0 0.0 0.0
C 0.0 0.0 0.0 0.0
G 0.0 5.0 0.0 0.0
T 0.0 0.0 0.0 -2.0
<BLANKLINE>
>>> counts["X", 1]
Traceback (most recent call last):
...
IndexError: 'X'
>>> counts["A", 5]
Traceback (most recent call last):
...
IndexError: index 5 is out of bounds for axis 1 with size 4
Selecting a row or column from the two-dimensional array will return a
one-dimensional ``Array``:
.. cont-doctest
.. code:: pycon
>>> counts = Array("ACGT", dims=2)
>>> counts["A", "C"] = 12.0
>>> counts[2, 1] = 5.0
>>> counts[3, "T"] = -2
.. code:: pycon
>>> counts["G"]
Array([0., 5., 0., 0.],
alphabet='ACGT')
>>> counts[:, "C"]
Array([12., 0., 5., 0.],
alphabet='ACGT')
``Array`` objects can thus be used as an array and as a dictionary. They
can be converted to plain numpy arrays or plain dictionary objects:
.. cont-doctest
.. code:: pycon
>>> import numpy as np
>>> x = Array("ACGT")
>>> x["C"] = 5
.. code:: pycon
>>> x
Array([0., 5., 0., 0.],
alphabet='ACGT')
>>> a = np.array(x) # create a plain numpy array
>>> a
array([0., 5., 0., 0.])
>>> d = dict(x) # create a plain dictionary
>>> d
{'A': 0.0, 'C': 5.0, 'G': 0.0, 'T': 0.0}
While the alphabet of an ``Array`` is usually a string, you may also use
a tuple of (immutable) objects. This is used for example for a codon
substitution matrix (as in the
``substitution_matrices.load("SCHNEIDER")`` example shown later), where
the keys are not individual nucleotides or amino acids but instead
three-nucleotide codons.
While the ``alphabet`` property of an ``Array`` is immutable, you can
create a new ``Array`` object by selecting the letters you are
interested in from the alphabet. For example,
.. cont-doctest
.. code:: pycon
>>> a = Array("ABCD", dims=2, data=np.arange(16).reshape(4, 4))
>>> print(a)
A B C D
A 0.0 1.0 2.0 3.0
B 4.0 5.0 6.0 7.0
C 8.0 9.0 10.0 11.0
D 12.0 13.0 14.0 15.0
<BLANKLINE>
>>> b = a.select("CAD")
>>> print(b)
C A D
C 10.0 8.0 11.0
A 2.0 0.0 3.0
D 14.0 12.0 15.0
<BLANKLINE>
Note that this also allows you to reorder the alphabet.
Data for letters that are not found in the alphabet are set to zero:
.. cont-doctest
.. code:: pycon
>>> c = a.select("DEC")
>>> print(c)
D E C
D 15.0 0.0 14.0
E 0.0 0.0 0.0
C 11.0 0.0 10.0
<BLANKLINE>
As the ``Array`` class is a subclass of numpy array, it can be used as
such. A ``ValueError`` is triggered if the ``Array`` objects appearing
in a mathematical operation have different alphabets, for example
.. doctest . lib:numpy
.. code:: pycon
>>> from Bio.Align.substitution_matrices import Array
>>> d = Array("ACGT")
>>> r = Array("ACGU")
>>> d + r
Traceback (most recent call last):
...
ValueError: alphabets are inconsistent
Calculating a substitution matrix from a pairwise sequence alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As ``Array`` is a subclass of a numpy array, you can apply mathematical
operations on an ``Array`` object in much the same way. Here, we
illustrate this by calculating a scoring matrix from the alignment of
the 16S ribosomal RNA gene sequences of *Escherichia coli* and *Bacillus
subtilis*. First, we create a ``PairwiseAligner`` object (see
Chapter :ref:`chapter:pairwise`) and initialize it with the default
scores used by ``blastn``:
.. doctest ../Tests/Align lib:numpy
.. code:: pycon
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner(scoring="blastn")
>>> aligner.mode = "local"
Next, we read in the 16S ribosomal RNA gene sequence of *Escherichia
coli* and *Bacillus subtilis* (provided in ``Tests/Align/ecoli.fa`` and
``Tests/Align/bsubtilis.fa``), and align them to each other:
.. cont-doctest
.. code:: pycon
>>> from Bio import SeqIO
>>> sequence1 = SeqIO.read("ecoli.fa", "fasta")
>>> sequence2 = SeqIO.read("bsubtilis.fa", "fasta")
>>> alignments = aligner.align(sequence1, sequence2)
The number of alignments generated is very large:
.. cont-doctest
.. code:: pycon
>>> len(alignments)
1990656
However, as they only differ trivially from each other, we arbitrarily
choose the first alignment, and count the number of each substitution:
.. cont-doctest
.. code:: pycon
>>> alignment = alignments[0]
>>> substitutions = alignment.substitutions
>>> print(substitutions)
A C G T
A 307.0 19.0 34.0 19.0
C 15.0 280.0 25.0 29.0
G 34.0 24.0 401.0 20.0
T 24.0 36.0 20.0 228.0
<BLANKLINE>
We normalize against the total number to find the probability of each
substitution, and create a symmetric matrix of observed frequencies:
.. cont-doctest
.. code:: pycon
>>> observed_frequencies = substitutions / substitutions.sum()
>>> observed_frequencies = (observed_frequencies + observed_frequencies.transpose()) / 2.0
>>> print(format(observed_frequencies, "%.4f"))
A C G T
A 0.2026 0.0112 0.0224 0.0142
C 0.0112 0.1848 0.0162 0.0215
G 0.0224 0.0162 0.2647 0.0132
T 0.0142 0.0215 0.0132 0.1505
<BLANKLINE>
The background probability is the probability of finding an A, C, G, or
T nucleotide in each sequence separately. This can be calculated as the
sum of each row or column:
.. cont-doctest
.. code:: pycon
>>> background = observed_frequencies.sum(0)
>>> print(format(background, "%.4f"))
A 0.2505
C 0.2337
G 0.3165
T 0.1993
<BLANKLINE>
The number of substitutions expected at random is simply the product of
the background distribution with itself:
.. cont-doctest
.. code:: pycon
>>> expected_frequencies = background[:, None].dot(background[None, :])
>>> print(format(expected_frequencies, "%.4f"))
A C G T
A 0.0627 0.0585 0.0793 0.0499
C 0.0585 0.0546 0.0740 0.0466
G 0.0793 0.0740 0.1002 0.0631
T 0.0499 0.0466 0.0631 0.0397
<BLANKLINE>
The scoring matrix can then be calculated as the logarithm of the
odds-ratio of the observed and the expected probabilities:
.. cont-doctest
.. code:: pycon
>>> oddsratios = observed_frequencies / expected_frequencies
>>> import numpy as np
>>> scoring_matrix = np.log2(oddsratios)
>>> print(scoring_matrix)
A C G T
A 1.7 -2.4 -1.8 -1.8
C -2.4 1.8 -2.2 -1.1
G -1.8 -2.2 1.4 -2.3
T -1.8 -1.1 -2.3 1.9
<BLANKLINE>
The matrix can be used to set the substitution matrix for the pairwise
aligner (see Chapter :ref:`chapter:pairwise`):
.. cont-doctest
.. code:: pycon
>>> aligner.substitution_matrix = scoring_matrix
.. _`subsec:subs_mat_ex`:
Calculating a substitution matrix from a multiple sequence alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this example, we’ll first read a protein sequence alignment from the
Clustalw file `protein.aln <examples/protein.aln>`__ (also available
online
`here <https://raw.githubusercontent.com/biopython/biopython/master/Tests/Clustalw/protein.aln>`__)
.. doctest ../Tests/Clustalw lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> filename = "protein.aln"
>>> alignment = Align.read(filename, "clustal")
Section :ref:`subsec:align_clustal` contains more
information on doing this.
The ``substitutions`` property of the alignment stores the number of
times different residues substitute for each other:
.. cont-doctest
.. code:: pycon
>>> substitutions = alignment.substitutions
To make the example more readable, we’ll select only amino acids with
polar charged side chains:
.. cont-doctest
.. code:: pycon
>>> substitutions = substitutions.select("DEHKR")
>>> print(substitutions)
D E H K R
D 2360.0 270.0 15.0 1.0 48.0
E 241.0 3305.0 15.0 45.0 2.0
H 0.0 18.0 1235.0 8.0 0.0
K 0.0 9.0 24.0 3218.0 130.0
R 2.0 2.0 17.0 103.0 2079.0
<BLANKLINE>
Rows and columns for other amino acids were removed from the matrix.
Next, we normalize the matrix and make it symmetric.
.. cont-doctest
.. code:: pycon
>>> observed_frequencies = substitutions / substitutions.sum()
>>> observed_frequencies = (observed_frequencies + observed_frequencies.transpose()) / 2.0
>>> print(format(observed_frequencies, "%.4f"))
D E H K R
D 0.1795 0.0194 0.0006 0.0000 0.0019
E 0.0194 0.2514 0.0013 0.0021 0.0002
H 0.0006 0.0013 0.0939 0.0012 0.0006
K 0.0000 0.0021 0.0012 0.2448 0.0089
R 0.0019 0.0002 0.0006 0.0089 0.1581
<BLANKLINE>
Summing over rows or columns gives the relative frequency of occurrence
of each residue:
.. cont-doctest
.. code:: pycon
>>> background = observed_frequencies.sum(0)
>>> print(format(background, "%.4f"))
D 0.2015
E 0.2743
H 0.0976
K 0.2569
R 0.1697
<BLANKLINE>
>>> sum(background) == 1.0
True
The expected frequency of residue pairs is then
.. cont-doctest
.. code:: pycon
>>> expected_frequencies = background[:, None].dot(background[None, :])
>>> print(format(expected_frequencies, "%.4f"))
D E H K R
D 0.0406 0.0553 0.0197 0.0518 0.0342
E 0.0553 0.0752 0.0268 0.0705 0.0465
H 0.0197 0.0268 0.0095 0.0251 0.0166
K 0.0518 0.0705 0.0251 0.0660 0.0436
R 0.0342 0.0465 0.0166 0.0436 0.0288
<BLANKLINE>
Here, ``background[:, None]`` creates a 2D array consisting of a single
column with the values of ``expected_frequencies``, and
``rxpected_frequencies[None, :]`` a 2D array with these values as a
single row. Taking their dot product (inner product) creates a matrix of
expected frequencies where each entry consists of two
``expected_frequencies`` values multiplied with each other. For example,
``expected_frequencies['D', 'E']`` is equal to
``residue_frequencies['D'] * residue_frequencies['E']``.
We can now calculate the log-odds matrix by dividing the observed
frequencies by the expected frequencies and taking the logarithm:
.. cont-doctest
.. code:: pycon
>>> import numpy as np
>>> scoring_matrix = np.log2(observed_frequencies / expected_frequencies)
>>> print(scoring_matrix)
D E H K R
D 2.1 -1.5 -5.1 -10.4 -4.2
E -1.5 1.7 -4.4 -5.1 -8.3
H -5.1 -4.4 3.3 -4.4 -4.7
K -10.4 -5.1 -4.4 1.9 -2.3
R -4.2 -8.3 -4.7 -2.3 2.5
<BLANKLINE>
This matrix can be used as the substitution matrix when performing
alignments. For example,
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.substitution_matrix = scoring_matrix
>>> aligner.gap_score = -3.0
>>> alignments = aligner.align("DEHEK", "DHHKK")
>>> print(alignments[0])
target 0 DEHEK 5
0 |.|.| 5
query 0 DHHKK 5
<BLANKLINE>
>>> print("%.2f" % alignments.score)
-2.18
>>> score = (
... scoring_matrix["D", "D"]
... + scoring_matrix["E", "H"]
... + scoring_matrix["H", "H"]
... + scoring_matrix["E", "K"]
... + scoring_matrix["K", "K"]
... )
>>> print("%.2f" % score)
-2.18
(see Chapter :ref:`chapter:pairwise` for details).
Reading ``Array`` objects from file
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``Bio.Align.substitution_matrices`` includes a parser to read one- and
two-dimensional ``Array`` objects from file. One-dimensional arrays are
represented by a simple two-column format, with the first column
containing the key and the second column the corresponding value. For
example, the file ``hg38.chrom.sizes`` (obtained from UCSC), available
in the ``Tests/Align`` subdirectory of the Biopython distribution,
contains the size in nucleotides of each chromosome in human genome
assembly hg38:
.. code:: text
chr1 248956422
chr2 242193529
chr3 198295559
chr4 190214555
...
chrUn_KI270385v1 990
chrUn_KI270423v1 981
chrUn_KI270392v1 971
chrUn_KI270394v1 970
To parse this file, use
.. doctest ../Tests/Align lib:numpy
.. code:: pycon
>>> from Bio.Align import substitution_matrices
>>> with open("hg38.chrom.sizes") as handle:
... table = substitution_matrices.read(handle)
...
>>> print(table) # doctest: +ELLIPSIS
chr1 248956422.0
chr2 242193529.0
chr3 198295559.0
chr4 190214555.0
...
chrUn_KI270423v1 981.0
chrUn_KI270392v1 971.0
chrUn_KI270394v1 970.0
<BLANKLINE>
Use ``dtype=int`` to read the values as integers:
.. cont-doctest
.. code:: pycon
>>> with open("hg38.chrom.sizes") as handle:
... table = substitution_matrices.read(handle, int)
...
>>> print(table) # doctest: +ELLIPSIS
chr1 248956422
chr2 242193529
chr3 198295559
chr4 190214555
...
chrUn_KI270423v1 981
chrUn_KI270392v1 971
chrUn_KI270394v1 970
<BLANKLINE>
For two-dimensional arrays, we follow the file format of substitution
matrices provided by NCBI. For example, the BLOSUM62 matrix, which is
the default substitution matrix for NCBI’s protein-protein BLAST
[Altschul1990]_ program ``blastp``, is stored as
follows:
.. code:: text
# Matrix made by matblas from blosum62.iij
# * column uses minimum score
# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 62
# Entropy = 0.6979, Expected = -0.5209
A R N D C Q E G H I L K M F P S T W Y V B Z X *
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
...
This file is included in the Biopython distribution under
``Bio/Align/substitution_matrices/data``. To parse this file, use
.. doctest ../Bio/Align/substitution_matrices/data lib:numpy
.. code:: pycon
>>> from Bio.Align import substitution_matrices
>>> with open("BLOSUM62") as handle:
... matrix = substitution_matrices.read(handle)
...
>>> print(matrix.alphabet)
ARNDCQEGHILKMFPSTWYVBZX*
>>> print(matrix["A", "D"])
-2.0
The header lines starting with ``#`` are stored in the attribute
``header``:
.. cont-doctest
.. code:: pycon
>>> matrix.header[0]
'Matrix made by matblas from blosum62.iij'
We can now use this matrix as the substitution matrix on an aligner
object:
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.substitution_matrix = matrix
To save an Array object, create a string first:
.. cont-doctest
.. code:: pycon
>>> text = str(matrix)
>>> print(text) # doctest: +ELLIPSIS
# Matrix made by matblas from blosum62.iij
# * column uses minimum score
# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 62
# Entropy = 0.6979, Expected = -0.5209
A R N D C Q E G H I L K M F P S ...
A 4.0 -1.0 -2.0 -2.0 0.0 -1.0 -1.0 0.0 -2.0 -1.0 -1.0 -1.0 -1.0 -2.0 -1.0 1.0 ...
R -1.0 5.0 0.0 -2.0 -3.0 1.0 0.0 -2.0 0.0 -3.0 -2.0 2.0 -1.0 -3.0 -2.0 -1.0 ...
N -2.0 0.0 6.0 1.0 -3.0 0.0 0.0 0.0 1.0 -3.0 -3.0 0.0 -2.0 -3.0 -2.0 1.0 ...
D -2.0 -2.0 1.0 6.0 -3.0 0.0 2.0 -1.0 -1.0 -3.0 -4.0 -1.0 -3.0 -3.0 -1.0 0.0 ...
C 0.0 -3.0 -3.0 -3.0 9.0 -3.0 -4.0 -3.0 -3.0 -1.0 -1.0 -3.0 -1.0 -2.0 -3.0 -1.0 ...
...
and write the ``text`` to a file.
Loading predefined substitution matrices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Biopython contains a large set of substitution matrices defined in the
literature, including BLOSUM (Blocks Substitution Matrix)
[Henikoff1992]_ and PAM (Point Accepted Mutation)
matrices [Dayhoff1978]_. These matrices are available
as flat files in the ``Bio/Align/substitution_matrices/data`` directory,
and can be loaded into Python using the ``load`` function in the
``substitution_matrices`` submodule. For example, the BLOSUM62 matrix
can be loaded by running
.. doctest . lib:numpy
.. code:: pycon
>>> from Bio.Align import substitution_matrices
>>> m = substitution_matrices.load("BLOSUM62")
This substitution matrix has an alphabet consisting of the 20 amino
acids used in the genetic code, the three ambiguous amino acids B
(asparagine or aspartic acid), Z (glutamine or glutamic acid), and X
(representing any amino acid), and the stop codon represented by an
asterisk:
.. cont-doctest
.. code:: pycon
>>> m.alphabet
'ARNDCQEGHILKMFPSTWYVBZX*'
To get a full list of available substitution matrices, use ``load``
without an argument:
.. cont-doctest
.. code:: pycon
>>> substitution_matrices.load() # doctest: +ELLIPSIS
['BENNER22', 'BENNER6', 'BENNER74', 'BLASTN', 'BLASTP', 'BLOSUM45', 'BLOSUM50', ..., 'TRANS']
Note that the substitution matrix provided by Schneider *et al.*
[Schneider2005]_ uses an alphabet consisting of
three-nucleotide codons:
.. cont-doctest
.. code:: pycon
>>> m = substitution_matrices.load("SCHNEIDER")
>>> m.alphabet # doctest: +ELLIPSIS
('AAA', 'AAC', 'AAG', 'AAT', 'ACA', 'ACC', 'ACG', 'ACT', ..., 'TTG', 'TTT')
.. _`sec:pairwise-examples`:
Examples
--------
Suppose you want to do a global pairwise alignment between the same two
hemoglobin sequences from above (``HBA_HUMAN``, ``HBB_HUMAN``) stored in
``alpha.faa`` and ``beta.faa``:
.. doctest examples
.. code:: pycon
>>> from Bio import Align
>>> from Bio import SeqIO
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> aligner = Align.PairwiseAligner()
>>> score = aligner.score(seq1.seq, seq2.seq)
>>> print(score)
72.0
showing an alignment score of 72.0. To see the individual alignments, do
.. cont-doctest
.. code:: pycon
>>> alignments = aligner.align(seq1.seq, seq2.seq)
In this example, the total number of optimal alignments is huge (more
than :math:`4 \times 10^{37}`), and calling ``len(alignments)`` will
raise an ``OverflowError``:
.. code:: pycon
>>> len(alignments)
Traceback (most recent call last):
...
OverflowError: number of optimal alignments is larger than 9223372036854775807
Let’s have a look at the first alignment:
.. cont-doctest
.. code:: pycon
>>> alignment = alignments[0]
The alignment object stores the alignment score, as well as the
alignment itself:
.. cont-doctest
.. code:: pycon
>>> print(alignment.score)
72.0
>>> print(alignment)
target 0 MV-LS-PAD--KTN--VK-AA-WGKV-----GAHAGEYGAEALE-RMFLSF----P-TTK
0 ||-|--|----|----|--|--||||-----|---||--|--|--|--|------|-|--
query 0 MVHL-TP--EEK--SAV-TA-LWGKVNVDEVG---GE--A--L-GR--L--LVVYPWT--
<BLANKLINE>
target 41 TY--FPHF----DLSHGS---AQVK-G------HGKKV--A--DA-LTNAVAHV-DDMPN
60 ----|--|----|||------|-|--|------|||||--|--|--|--|--|--|---|
query 39 --QRF--FESFGDLS---TPDA-V-MGNPKVKAHGKKVLGAFSD-GL--A--H-LD---N
<BLANKLINE>
target 79 ALS----A-LSD-LHAH--KLR-VDPV-NFK-LLSHC---LLVT--LAAHLPA----EFT
120 -|-----|-||--||----||--|||--||--||------|-|---||-|-------|||
query 81 -L-KGTFATLS-ELH--CDKL-HVDP-ENF-RLL---GNVL-V-CVLA-H---HFGKEFT
<BLANKLINE>
target 119 PA-VH-ASLDKFLAS---VSTV------LTS--KYR- 142
180 |--|--|------|----|--|------|----||-- 217
query 124 P-PV-QA------A-YQKV--VAGVANAL--AHKY-H 147
<BLANKLINE>
Better alignments are usually obtained by penalizing gaps: higher costs
for opening a gap and lower costs for extending an existing gap. For
amino acid sequences match scores are usually encoded in matrices like
``PAM`` or ``BLOSUM``. Thus, a more meaningful alignment for our example
can be obtained by using the BLOSUM62 matrix, together with a gap open
penalty of 10 and a gap extension penalty of 0.5:
.. doctest examples lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> from Bio import SeqIO
>>> from Bio.Align import substitution_matrices
>>> seq1 = SeqIO.read("alpha.faa", "fasta")
>>> seq2 = SeqIO.read("beta.faa", "fasta")
>>> aligner = Align.PairwiseAligner()
>>> aligner.open_gap_score = -10
>>> aligner.extend_gap_score = -0.5
>>> aligner.substitution_matrix = substitution_matrices.load("BLOSUM62")
>>> score = aligner.score(seq1.seq, seq2.seq)
>>> print(score)
292.5
>>> alignments = aligner.align(seq1.seq, seq2.seq)
>>> len(alignments)
2
>>> print(alignments[0].score)
292.5
>>> print(alignments[0])
target 0 MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGS
0 ||-|.|..|..|.|.||||--...|.|.|||.|.....|.|...|..|-|||-----.|.
query 0 MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGN
<BLANKLINE>
target 53 AQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAH
60 ..||.|||||..|.....||.|........||.||..||.|||.||.||...|...||.|
query 58 PKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHH
<BLANKLINE>
target 113 LPAEFTPAVHASLDKFLASVSTVLTSKYR 142
120 ...||||.|.|...|..|.|...|..||. 149
query 118 FGKEFTPPVQAAYQKVVAGVANALAHKYH 147
<BLANKLINE>
This alignment has the same score that we obtained earlier with EMBOSS
needle using the same sequences and the same parameters.
To perform a local alignment, set ``aligner.mode`` to ``'local'``:
.. cont-doctest
.. code:: pycon
>>> aligner.mode = "local"
>>> aligner.open_gap_score = -10
>>> aligner.extend_gap_score = -1
>>> alignments = aligner.align("LSPADKTNVKAA", "PEEKSAV")
>>> print(len(alignments))
1
>>> alignment = alignments[0]
>>> print(alignment)
target 2 PADKTNV 9
0 |..|..| 7
query 0 PEEKSAV 7
<BLANKLINE>
>>> print(alignment.score)
16.0
.. _`sec:generalized-pairwise`:
Generalized pairwise alignments
-------------------------------
In most cases, ``PairwiseAligner`` is used to perform alignments of
sequences (strings or ``Seq`` objects) consisting of single-letter
nucleotides or amino acids. More generally, ``PairwiseAligner`` can also
be applied to lists or tuples of arbitrary objects. This section will
describe some examples of such generalized pairwise alignments.
Generalized pairwise alignments using a substitution matrix and alphabet
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Schneider *et al.* [Schneider2005]_ created a
substitution matrix for aligning three-nucleotide codons (see
`below <#codonmatrix>`__ in section :ref:`sec:substitution_matrices`
for more information). This substitution matrix is associated with an
alphabet consisting of all three-letter codons:
.. doctest . lib:numpy
.. code:: pycon
>>> from Bio.Align import substitution_matrices
>>> m = substitution_matrices.load("SCHNEIDER")
>>> m.alphabet # doctest: +ELLIPSIS
('AAA', 'AAC', 'AAG', 'AAT', 'ACA', 'ACC', 'ACG', 'ACT', ..., 'TTG', 'TTT')
We can use this matrix to align codon sequences to each other:
.. cont-doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.substitution_matrix = m
>>> aligner.gap_score = -1.0
>>> s1 = ("AAT", "CTG", "TTT", "TTT")
>>> s2 = ("AAT", "TTA", "TTT")
>>> alignments = aligner.align(s1, s2)
>>> len(alignments)
2
>>> print(alignments[0])
AAT CTG TTT TTT
||| ... ||| ---
AAT TTA TTT ---
<BLANKLINE>
>>> print(alignments[1])
AAT CTG TTT TTT
||| ... --- |||
AAT TTA --- TTT
<BLANKLINE>
Note that aligning ``TTT`` to ``TTA``, as in this example:
.. code:: pycon
AAT CTG TTT TTT
||| --- ... |||
AAT --- TTA TTT
would get a much lower score:
.. cont-doctest
.. code:: pycon
>>> print(m["CTG", "TTA"])
7.6
>>> print(m["TTT", "TTA"])
-0.3
presumably because ``CTG`` and ``TTA`` both code for leucine, while
``TTT`` codes for phenylalanine. The three-letter codon substitution
matrix also reveals a preference among codons representing the same
amino acid. For example, ``TTA`` has a preference for ``CTG`` preferred
compared to ``CTC``, though all three code for leucine:
.. cont-doctest
.. code:: pycon
>>> s1 = ("AAT", "CTG", "CTC", "TTT")
>>> s2 = ("AAT", "TTA", "TTT")
>>> alignments = aligner.align(s1, s2)
>>> len(alignments)
1
>>> print(alignments[0])
AAT CTG CTC TTT
||| ... --- |||
AAT TTA --- TTT
<BLANKLINE>
>>> print(m["CTC", "TTA"])
6.5
Generalized pairwise alignments using match/mismatch scores and an alphabet
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Using the three-letter amino acid symbols, the sequences above translate
to
.. doctest
.. code:: pycon
>>> s1 = ("Asn", "Leu", "Leu", "Phe")
>>> s2 = ("Asn", "Leu", "Phe")
We can align these sequences directly to each other by using a
three-letter amino acid alphabet:
.. cont-doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> aligner.alphabet = ['Ala', 'Arg', 'Asn', 'Asp', 'Cys',
... 'Gln', 'Glu', 'Gly', 'His', 'Ile',
... 'Leu', 'Lys', 'Met', 'Phe', 'Pro',
... 'Ser', 'Thr', 'Trp', 'Tyr', 'Val'] # fmt: skip
...
We use +6/-1 match and mismatch scores as an approximation of the
BLOSUM62 matrix, and align these sequences to each other:
.. cont-doctest
.. code:: pycon
>>> aligner.match = +6
>>> aligner.mismatch = -1
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
Asn Leu Leu Phe
||| ||| --- |||
Asn Leu --- Phe
<BLANKLINE>
>>> print(alignments[1])
Asn Leu Leu Phe
||| --- ||| |||
Asn --- Leu Phe
<BLANKLINE>
>>> print(alignments.score)
18.0
Generalized pairwise alignments using match/mismatch scores and integer sequences
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Internally, the first step when performing an alignment is to replace
the two sequences by integer arrays consisting of the indices of each
letter in each sequence in the alphabet associated with the aligner.
This step can be bypassed by passing integer arrays directly:
.. doctest . lib:numpy
.. code:: pycon
>>> import numpy as np
>>> from Bio import Align
>>> aligner = Align.PairwiseAligner()
>>> s1 = np.array([2, 10, 10, 13], np.int32)
>>> s2 = np.array([2, 10, 13], np.int32)
>>> aligner.match = +6
>>> aligner.mismatch = -1
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
2 10 10 13
| || -- ||
2 10 -- 13
<BLANKLINE>
>>> print(alignments[1])
2 10 10 13
| -- || ||
2 -- 10 13
<BLANKLINE>
>>> print(alignments.score)
18.0
Note that the indices should consist of 32-bit integers, as specified in
this example by ``numpy.int32``.
Unknown letters can again be included by defining a wildcard character,
and using the corresponding Unicode code point number as the index:
.. cont-doctest
.. code:: pycon
>>> aligner.wildcard = "?"
>>> ord(aligner.wildcard)
63
>>> s2 = np.array([2, 63, 13], np.int32)
>>> aligner.gap_score = -3
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
2 10 10 13
| .. -- ||
2 63 -- 13
<BLANKLINE>
>>> print(alignments[1])
2 10 10 13
| -- .. ||
2 -- 63 13
<BLANKLINE>
>>> print(alignments.score)
9.0
Generalized pairwise alignments using a substitution matrix and integer sequences
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Integer sequences can also be aligned using a substitution matrix, in
this case a numpy square array without an alphabet associated with it.
In this case, all index values must be non-negative, and smaller than
the size of the substitution matrix:
.. doctest . lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> import numpy as np
>>> aligner = Align.PairwiseAligner()
>>> m = np.eye(5)
>>> m[0, 1:] = m[1:, 0] = -2
>>> m[2, 2] = 3
>>> print(m)
[[ 1. -2. -2. -2. -2.]
[-2. 1. 0. 0. 0.]
[-2. 0. 3. 0. 0.]
[-2. 0. 0. 1. 0.]
[-2. 0. 0. 0. 1.]]
>>> aligner.substitution_matrix = m
>>> aligner.gap_score = -1
>>> s1 = np.array([0, 2, 3, 4], np.int32)
>>> s2 = np.array([0, 3, 2, 1], np.int32)
>>> alignments = aligner.align(s1, s2)
>>> print(len(alignments))
2
>>> print(alignments[0])
0 - 2 3 4
| - | . -
0 3 2 1 -
<BLANKLINE>
>>> print(alignments[1])
0 - 2 3 4
| - | - .
0 3 2 - 1
<BLANKLINE>
>>> print(alignments.score)
2.0
.. _`sec:codon_alignments`:
Codon alignments
----------------
The ``CodonAligner`` class in the ``Bio.Align`` module implements a
specialized aligner for aligning a nucleotide sequence to the amino acid
sequence it encodes. Such alignments are non-trivial if frameshifts
occur during translation.
Aligning a nucleotide sequence to an amino acid sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To align a nucleotide sequence to an amino acid sequence, first create a
``CodonAligner`` object:
.. doctest
.. code:: pycon
>>> from Bio import Align
>>> aligner = Align.CodonAligner()
The ``CodonAligner`` object ``aligner`` stores the alignment parameters
to be used for the alignments:
.. cont-doctest
.. code:: pycon
>>> print(aligner)
Codon aligner with parameters
wildcard: 'X'
match_score: 1.0
mismatch_score: 0.0
frameshift_minus_two_score: -3.0
frameshift_minus_one_score: -3.0
frameshift_plus_one_score: -3.0
frameshift_plus_two_score: -3.0
<BLANKLINE>
The ``wildcard``, ``match_score``, and ``mismatch_score`` parameters are
defined in the same was as for the ``PairwiseAligner`` class described
above (see Section :ref:`sec:pairwise-aligner`). The values
specified by the ``frameshift_minus_two_score``,
``frameshift_minus_one_score``, ``frameshift_plus_one_score``, and
``frameshift_plus_two_score`` parameters are added to the alignment
score whenever a -2, -1, +1, or +2 frame shift, respectively, occurs in
the alignment. By default, the frame shift scores are set to -3.0.
Similar to the ``PairwiseAligner`` class
(Table :ref:`table:align-meta-attributes`), the ``CodonAligner``
class defines additional attributes that refer to a number of these
values collectively, as shown in
Table :ref:`table:codonalign-meta-attributes`.
.. table:: Meta-attributes of CodonAligner objects.
:name: table:codonalign-meta-attributes
+----------------------------+---------------------------------+
| Meta-attribute | Attributes it maps to |
+============================+=================================+
| ``frameshift_minus_score`` | ``frameshift_minus_two_score``, |
| | ``frameshift_minus_one_score`` |
+----------------------------+---------------------------------+
| ``frameshift_plus_score`` | ``frameshift_plus_two_score``, |
| | ``frameshift_plus_one_score`` |
+----------------------------+---------------------------------+
| ``frameshift_two_score`` | ``frameshift_minus_two_score``, |
| | ``frameshift_plus_two_score`` |
+----------------------------+---------------------------------+
| ``frameshift_one_score`` | ``frameshift_minus_one_score``, |
| | ``frameshift_plus_one_score`` |
+----------------------------+---------------------------------+
| ``frameshift_score`` | ``frameshift_minus_two_score``, |
| | ``frameshift_minus_one_score``, |
| | ``frameshift_plus_one_score``, |
| | ``frameshift_plus_two_score`` |
+----------------------------+---------------------------------+
Now let’s consider two nucleotide sequences and the amino acid sequences
they encode:
.. cont-doctest
.. code:: pycon
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> nuc1 = Seq("TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG")
>>> rna1 = SeqRecord(nuc1, id="rna1")
>>> nuc2 = Seq("TCAGGGACTTCGAGAACCAAGCGCTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG")
>>> rna2 = SeqRecord(nuc2, id="rna2")
>>> aa1 = Seq("SGTARTKLLLLLAALCAAGGALE")
>>> aa2 = Seq("SGTSRTKRLLLLAALGAAGGALE")
>>> pro1 = SeqRecord(aa1, id="pro1")
>>> pro2 = SeqRecord(aa2, id="pro2")
While the two protein sequences both consist of 23 amino acids, the
first nucleotide sequence consists of :math:`3 \times 23 = 69`
nucleotides while the second nucleotide sequence tonsists of only 68
nucleotides:
.. cont-doctest
.. code:: pycon
>>> len(pro1)
23
>>> len(pro2)
23
>>> len(rna1)
69
>>> len(rna2)
68
This is due to a -1 frame shift event during translation of the second
nucleotide sequence. Use ``CodonAligner.align`` to align ``rna1`` to
``pro1``, and ``rna2`` to ``pro2``, returning an iterator of
``Alignment`` objects:
.. cont-doctest
.. code:: pycon
>>> alignments1 = aligner.align(pro1, rna1)
>>> len(alignments1)
1
>>> alignment1 = next(alignments1)
>>> print(alignment1)
pro1 0 S G T A R T K L L L L L A A L C A A G G
rna1 0 TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGG
<BLANKLINE>
pro1 20 A L E 23
rna1 60 GCGCTGGAG 69
<BLANKLINE>
>>> alignment1.coordinates
array([[ 0, 23],
[ 0, 69]])
>>> alignment1[0]
'SGTARTKLLLLLAALCAAGGALE'
>>> alignment1[1]
'TCAGGGACTGCGAGAACCAAGCTACTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG'
>>> alignments2 = aligner.align(pro2, rna2)
>>> len(alignments2)
1
>>> alignment2 = next(alignments2)
>>> print(alignment2)
pro2 0 S G T S R T K R 8
rna2 0 TCAGGGACTTCGAGAACCAAGCGC 24
<BLANKLINE>
pro2 8 L L L L A A L G A A G G A L E 23
rna2 23 CTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG 68
<BLANKLINE>
>>> alignment2[0]
'SGTSRTKRLLLLAALGAAGGALE'
>>> alignment2[1]
'TCAGGGACTTCGAGAACCAAGCGCCTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG'
>>> alignment2.coordinates
array([[ 0, 8, 8, 23],
[ 0, 24, 23, 68]])
While ``alignment1`` is a continuous alignment of the 69 nucleotides to
the 23 amino acids, in ``alignment2`` we find a -1 frame shift after 24
nucleotides. As ``alignment2[1]`` contains the nucleotide sequence after
applying the -1 frame shift, it is one nucleotide longer than ``nuc2``
and can be translated directly, resulting in the amino acid sequence
``aa2``:
.. cont-doctest
.. code:: pycon
>>> from Bio.Seq import translate
>>> len(nuc2)
68
>>> len(alignment2[1])
69
>>> translate(alignment2[1])
'SGTSRTKRLLLLAALGAAGGALE'
>>> _ == aa2
True
The alignment score is stored as an attribute on the ``alignments1`` and
``alignments2`` iterators, and on the individual alignments
``alignment1`` and ``alignment2``:
.. cont-doctest
.. code:: pycon
>>> alignments1.score
23.0
>>> alignment1.score
23.0
>>> alignments2.score
20.0
>>> alignment2.score
20.0
where the score of the ``rna1``-``pro1`` alignment is equal to the
number of aligned amino acids, and the score of the ``rna2``-``pro2``
alignment is 3 less due to the penalty for the frame shift. To calculate
the alignment score without calculating the alignment itself, the
``score`` method can be used:
.. cont-doctest
.. code:: pycon
>>> score = aligner.score(pro1, rna1)
>>> print(score)
23.0
>>> score = aligner.score(pro2, rna2)
>>> print(score)
20.0
.. _`sec:msa_codons`:
Generating a multiple sequence alignment of codon sequences
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have a third related amino acid sequence and its associated
nucleotide sequence:
.. cont-doctest
.. code:: pycon
>>> aa3 = Seq("MGTALLLLLAALCAAGGALE")
>>> pro3 = SeqRecord(aa3, id="pro3")
>>> nuc3 = Seq("ATGGGAACCGCGCTGCTTTTGCTACTGGCCGCGCTCTGCGCCGCAGGTGGGGCCCTGGAG")
>>> rna3 = SeqRecord(nuc3, id="rna3")
>>> nuc3.translate() == aa3
True
As above, we use the ``CodonAligner`` to align the nucleotide sequence
to the amino acid sequence:
.. cont-doctest
.. code:: pycon
>>> alignments3 = aligner.align(pro3, rna3)
>>> len(alignments3)
1
>>> alignment3 = next(alignments3)
>>> print(alignment3)
pro3 0 M G T A L L L L L A A L C A A G G A L E
rna3 0 ATGGGAACCGCGCTGCTTTTGCTACTGGCCGCGCTCTGCGCCGCAGGTGGGGCCCTGGAG
<BLANKLINE>
pro3 20
rna3 60
<BLANKLINE>
The three amino acid sequences can be aligned to each other, for example
using ClustalW. Here, we create the alignment by hand:
.. cont-doctest
.. code:: pycon
>>> import numpy as np
>>> from Bio.Align import Alignment
>>> sequences = [pro1, pro2, pro3]
>>> protein_alignment = Alignment(
... sequences, coordinates=np.array([[0, 4, 7, 23], [0, 4, 7, 23], [0, 4, 4, 20]])
... )
>>> print(protein_alignment)
pro1 0 SGTARTKLLLLLAALCAAGGALE 23
pro2 0 SGTSRTKRLLLLAALGAAGGALE 23
pro3 0 MGTA---LLLLLAALCAAGGALE 20
<BLANKLINE>
Now we can use the ``mapall`` method on the protein alignment, with the
nucleotide-to-protein pairwise alignments as the argument, to obtain the
corresponding codon alignment:
.. cont-doctest
.. code:: pycon
>>> codon_alignment = protein_alignment.mapall([alignment1, alignment2, alignment3])
>>> print(codon_alignment)
rna1 0 TCAGGGACTGCGAGAACCAAGCTA 24
rna2 0 TCAGGGACTTCGAGAACCAAGCGC 24
rna3 0 ATGGGAACCGCG---------CTG 15
<BLANKLINE>
rna1 24 CTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG 69
rna2 23 CTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG 68
rna3 15 CTTTTGCTACTGGCCGCGCTCTGCGCCGCAGGTGGGGCCCTGGAG 60
<BLANKLINE>
Analyzing a codon alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Calculating the number of nonsynonymous and synonymous substitutions per site
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The most important application of a codon alignment is to estimate the
number of nonsynonymous substitutions per site (dN) and synonymous
substitutions per site (dS). These can be calculated by the
``calculate_dn_ds`` function in ``Bio.Align.analysis``. This function
takes a pairwise codon alignment and input, as well as the optional
arguments ``method`` specifying the calculation method, ``codon_table``
(defaulting to the Standard Code), the ratio ``k`` of the transition and
transversion rates, and ``cfreq`` to specify the equilibrium codon
frequency. Biopython currently supports three counting based methods
(``NG86``, ``LWL85``, ``YN00``) as well as the maximum likelihood method
(``ML``) to estimate dN and dS:
- ``NG86``: Nei and Gojobori (1986) [Nei1986]_
(default). With this method, you can also specify the ratio of the
transition and transversion rates via the argument ``k``, defaulting
to ``1.0``.
- ``LWL85``: Li *et al.* (1985) [Li1985]_.
- ``YN00``: Yang and Nielsen (2000) [Yang2000]_.
- ``ML``: Goldman and Yang (1994) [Goldman1994]_. With
this method, you can also specify the equilibrium codon frequency via
the ``cfreq`` argument, with the following options:
- ``F1x4``: count the nucleotide frequency in the provided codon
sequences, and use it to calculate the background codon frequency;
- ``F3x4``: (default) count the nucleotide frequency separately for
the first, second, and third position in the provided codons, and
use it to calculate the background codon frequency;
- ``F61``: count the frequency of codons from the provided codon
sequences, with a pseudocount of 0.1.
The ``calculate_dN_dS`` method can be applied to a pairwise codon
alignment. In general, the different calculation methods will result in
slightly different estimates for dN and dS:
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import analysis
>>> pairwise_codon_alignment = codon_alignment[:2]
>>> print(pairwise_codon_alignment)
rna1 0 TCAGGGACTGCGAGAACCAAGCTA 24
0 |||||||||.||||||||||||..
rna2 0 TCAGGGACTTCGAGAACCAAGCGC 24
<BLANKLINE>
rna1 24 CTGCTGCTGCTGGCTGCGCTCTGCGCCGCAGGTGGGGCGCTGGAG 69
24 ||.||||||||||||||||||.|||||||||||||.||.|||||| 69
rna2 23 CTCCTGCTGCTGGCTGCGCTCGGCGCCGCAGGTGGAGCACTGGAG 68
<BLANKLINE>
>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="NG86")
>>> print(dN, dS) # doctest: +ELLIPSIS
0.067715... 0.201197...
>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="LWL85")
>>> print(dN, dS) # doctest: +ELLIPSIS
0.068728... 0.207551...
.. code:: pycon
>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="YN00")
>>> print(dN, dS) # doctest: +ELLIPSIS
0.081468... 0.127706...
>>> dN, dS = analysis.calculate_dn_ds(pairwise_codon_alignment, method="ML")
>>> print(dN, dS) # doctest: +ELLIPSIS
0.069475... 0.205754...
For a multiple alignment of codon sequences, you can calculate a matrix
of dN and dS values:
.. cont-doctest
.. code:: pycon
>>> dN, dS = analysis.calculate_dn_ds_matrix(codon_alignment, method="NG86")
>>> print(dN)
rna1 0.000000
rna2 0.067715 0.000000
rna3 0.060204 0.145469 0.000000
rna1 rna2 rna3
>>> print(dS)
rna1 0.000000
rna2 0.201198 0.000000
rna3 0.664268 0.798957 0.000000
rna1 rna2 rna3
The objects ``dN`` and ``dS`` returned by ``calculate_dn_ds_matrix`` are
instances of the ``DistanceMatrix`` class in
``Bio.Phylo.TreeConstruction``. This function only takes ``codon_table``
as an optional argument.
From these two sequences, you can create a dN tree and a dS tree using
``Bio.Phylo.TreeConstruction``:
.. cont-doctest
.. code:: pycon
>>> from Bio.Phylo.TreeConstruction import DistanceTreeConstructor
>>> dn_constructor = DistanceTreeConstructor()
>>> ds_constructor = DistanceTreeConstructor()
>>> dn_tree = dn_constructor.upgma(dN)
>>> ds_tree = ds_constructor.upgma(dS)
>>> print(type(dn_tree))
<class 'Bio.Phylo.BaseTree.Tree'>
>>> print(dn_tree) # doctest: +ELLIPSIS
Tree(rooted=True)
Clade(branch_length=0, name='Inner2')
Clade(branch_length=0.053296..., name='rna2')
Clade(branch_length=0.023194..., name='Inner1')
Clade(branch_length=0.0301021..., name='rna3')
Clade(branch_length=0.0301021..., name='rna1')
>>> print(ds_tree) # doctest: +ELLIPSIS
Tree(rooted=True)
Clade(branch_length=0, name='Inner2')
Clade(branch_length=0.365806..., name='rna3')
Clade(branch_length=0.265207..., name='Inner1')
Clade(branch_length=0.100598..., name='rna2')
Clade(branch_length=0.100598..., name='rna1')
Performing the McDonald-Kreitman test
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The McDonald-Kreitman test assesses the amount of adaptive evolution by
comparing the within species synonymous substitutions and nonsynonymous
substitutions to the between species synonymous substitutions and
nonsynonymous substitutions to see if they are from the same
evolutionary process. The test requires gene sequences sampled from
different individuals of the same species. In the following example, we
will use Adh gene from fruit fly. The data includes 11 individuals from
*Drosophila melanogaster*, 4 individuals from *Drosophila simulans*, and
12 individuals from *Drosophila yakuba*. The protein alignment data and
the nucleotide sequences are available in the ``Tests/codonalign``
directory as the files ``adh.aln`` and ``drosophila.fasta``,
respectively, in the Biopython distribution. The function ``mktest`` in
``Bio.Align.analysis`` implements the Mcdonald-Kreitman test.
.. doctest ../Tests/codonalign lib:numpy
.. code:: pycon
>>> from Bio import SeqIO
>>> from Bio import Align
>>> from Bio.Align import CodonAligner
>>> from Bio.Align.analysis import mktest
>>> aligner = CodonAligner()
>>> nucleotide_records = SeqIO.index("drosophila.fasta", "fasta")
>>> for nucleotide_record in nucleotide_records.values():
... print(nucleotide_record.description) # doctest: +ELLIPSIS
...
gi|9097|emb|X57361.1| Drosophila simulans (individual c) ...
gi|9099|emb|X57362.1| Drosophila simulans (individual d) ...
gi|9101|emb|X57363.1| Drosophila simulans (individual e) ...
gi|9103|emb|X57364.1| Drosophila simulans (individual f) ...
gi|9217|emb|X57365.1| Drosophila yakuba (individual a) ...
gi|9219|emb|X57366.1| Drosophila yakuba (individual b) ...
gi|9221|emb|X57367.1| Drosophila yakuba (individual c) ...
gi|9223|emb|X57368.1| Drosophila yakuba (individual d) ...
gi|9225|emb|X57369.1| Drosophila yakuba (individual e) ...
gi|9227|emb|X57370.1| Drosophila yakuba (individual f) ...
gi|9229|emb|X57371.1| Drosophila yakuba (individual g) ...
gi|9231|emb|X57372.1| Drosophila yakuba (individual h) ...
gi|9233|emb|X57373.1| Drosophila yakuba (individual i) ...
gi|9235|emb|X57374.1| Drosophila yakuba (individual j) ...
gi|9237|emb|X57375.1| Drosophila yakuba (individual k) ...
gi|9239|emb|X57376.1| Drosophila yakuba (individual l) ...
gi|156879|gb|M17837.1|DROADHCK D.melanogaster (strain Ja-F) ...
gi|156863|gb|M19547.1|DROADHCC D.melanogaster (strain Af-S) ...
gi|156877|gb|M17836.1|DROADHCJ D.melanogaster (strain Af-F) ...
gi|156875|gb|M17835.1|DROADHCI D.melanogaster (strain Wa-F) ...
gi|156873|gb|M17834.1|DROADHCH D.melanogaster (strain Fr-F) ...
gi|156871|gb|M17833.1|DROADHCG D.melanogaster (strain Fl-F) ...
gi|156869|gb|M17832.1|DROADHCF D.melanogaster (strain Ja-S) ...
gi|156867|gb|M17831.1|DROADHCE D.melanogaster (strain Fl-2S) ...
gi|156865|gb|M17830.1|DROADHCD D.melanogaster (strain Fr-S) ...
gi|156861|gb|M17828.1|DROADHCB D.melanogaster (strain Fl-1S) ...
gi|156859|gb|M17827.1|DROADHCA D.melanogaster (strain Wa-S) ...
>>> protein_alignment = Align.read("adh.aln", "clustal")
>>> len(protein_alignment)
27
>>> print(protein_alignment) # doctest: +ELLIPSIS
gi|9217|e 0 MAFTLTNKNVVFVAGLGGIGLDTSKELVKRDLKNLVILDRIENPAAIAELKAINPKVTVT
gi|9219|e 0 MAFTLTNKNVVFVAGLGGIGLDTSKELVKRDLKNLVILDRIENPAAIAELKAINPKVTVT
gi|9221|e 0 MAFTLTNKNVVFVAGLGGIGLDTSKELVKRDLKNLVILDRIENPAAIAELKAINPKVTVT
...
gi|156859 0 MSFTLTNKNVIFVAGLGGIGLDTSKELLKRDLKNLVILDRIENPAAIAELKAINPKVTVT
<BLANKLINE>
...
<BLANKLINE>
gi|9217|e 240 GTLEAIQWSKHWDSGI 256
gi|9219|e 240 GTLEAIQWSKHWDSGI 256
gi|9221|e 240 GTLEAIQWSKHWDSGI 256
...
gi|156859 240 GTLEAIQWTKHWDSGI 256
<BLANKLINE>
>>> codon_alignments = []
>>> for protein_record in protein_alignment.sequences:
... nucleotide_record = nucleotide_records[protein_record.id]
... alignments = aligner.align(protein_record, nucleotide_record)
... assert len(alignments) == 1
... codon_alignment = next(alignments)
... codon_alignments.append(codon_alignment)
...
>>> print(codon_alignment) # doctest: +ELLIPSIS
gi|156859 0 M S F T L T N K N V I F V A G L G G I G
gi|156859 0 ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATTGGT
<BLANKLINE>
gi|156859 20 L D T S K E L L K R D L K N L V I L D R
gi|156859 60 CTGGACACCAGCAAGGAGCTGCTCAAGCGCGATCTGAAGAACCTGGTGATCCTCGACCGC
<BLANKLINE>
...
<BLANKLINE>
gi|156859 240 G T L E A I Q W T K H W D S G I 256
gi|156859 720 GGCACCCTGGAGGCCATCCAGTGGACCAAGCACTGGGACTCCGGCATC 768
<BLANKLINE>
>>> nucleotide_records.close() # Close indexed FASTA file
>>> alignment = protein_alignment.mapall(codon_alignments)
>>> print(alignment) # doctest: +ELLIPSIS
gi|9217|e 0 ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATTGGT
gi|9219|e 0 ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATTGGT
gi|9221|e 0 ATGGCGTTTACCTTGACCAACAAGAACGTGGTTTTCGTGGCCGGTCTGGGAGGCATTGGT
...
gi|156859 0 ATGTCGTTTACTTTGACCAACAAGAACGTGATTTTCGTTGCCGGTCTGGGAGGCATTGGT
<BLANKLINE>
...
<BLANKLINE>
gi|9217|e 720 GGCACCCTGGAGGCCATCCAGTGGTCCAAGCACTGGGACTCCGGCATC 768
gi|9219|e 720 GGCACCCTGGAGGCCATCCAGTGGTCCAAGCACTGGGACTCCGGCATC 768
gi|9221|e 720 GGTACCCTGGAGGCCATCCAGTGGTCCAAGCACTGGGACTCCGGCATC 768
...
gi|156859 720 GGCACCCTGGAGGCCATCCAGTGGACCAAGCACTGGGACTCCGGCATC 768
<BLANKLINE>
>>> unique_species = ["Drosophila simulans", "Drosophila yakuba", "D.melanogaster"]
>>> species = []
>>> for record in alignment.sequences:
... description = record.description
... for s in unique_species:
... if s in description:
... break
... else:
... raise Exception(f"Failed to find species for {description}")
... species.append(s)
...
>>> print(species)
['Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila yakuba', 'Drosophila simulans', 'Drosophila simulans', 'Drosophila simulans', 'Drosophila simulans', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster', 'D.melanogaster']
>>> pvalue = mktest(alignment, species)
>>> print(pvalue) # doctest: +ELLIPSIS
0.00206457...
In addition to the multiple codon alignment, the function ``mktest``
takes as input the species to which each sequence in the alignment
belongs to. The codon table can be provided as an optional argument
``codon_table``.
|