1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
|
.. _`chapter:align`:
Sequence alignments
===================
Sequence alignments are a collection of two or more sequences that have
been aligned to each other – usually with the insertion of gaps, and the
addition of leading or trailing gaps – such that all the sequence
strings are the same length.
Alignments may extend over the full length of each sequence, or may be
limited to a subsection of each sequence. In Biopython, all sequence
alignments are represented by an ``Alignment`` object, described in
section :ref:`sec:alignmentobject`. ``Alignment`` objects can be
obtained by parsing the output of alignment software such as Clustal or
BLAT (described in section :ref:`sec:alignmentparsers`. or by using
Biopython’s pairwise sequence aligner, which can align two sequences to
each other (described in
Chapter :ref:`chapter:pairwise`).
See Chapter :ref:`chapter:msa` for a description of the
older ``MultipleSeqAlignment`` class and the parsers in ``Bio.AlignIO``
that parse the output of sequence alignment software, generating
``MultipleSeqAlignment`` objects.
.. _`sec:alignmentobject`:
Alignment objects
-----------------
The ``Alignment`` class is defined in ``Bio.Align``. Usually you would
get an ``Alignment`` object by parsing the output of alignment programs
(section :ref:`sec:alignmentparsers`) or by running Biopython’s
pairwise aligner (Chapter :ref:`chapter:pairwise`).
For the benefit of this section, however, we will create an
``Alignment`` object from scratch.
.. _`subsec:align_sequences_coordinates`:
Creating an Alignment object from sequences and coordinates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose you have three sequences:
.. doctest ../Tests lib:numpy
.. code:: pycon
>>> seqA = "CCGGTTTTT"
>>> seqB = "AGTTTAA"
>>> seqC = "AGGTTT"
>>> sequences = [seqA, seqB, seqC]
To create an ``Alignment`` object, we also need the coordinates that
define how the sequences are aligned to each other. We use a NumPy array
for that:
.. cont-doctest
.. code:: pycon
>>> import numpy as np
>>> coordinates = np.array([[1, 3, 4, 7, 9], [0, 2, 2, 5, 5], [0, 2, 3, 6, 6]])
These coordinates define the alignment for the following sequence
segments:
- ``SeqA[1:3]``, ``SeqB[0:2]``, and ``SeqC[0:2]`` are aligned to each
other;
- ``SeqA[3:4]`` and ``SeqC[2:3]`` are aligned to each other, with a gap
of one nucleotide in ``seqB``;
- ``SeqA[4:7]``, ``SeqB[2:5]``, and ``SeqC[3:6]`` are aligned to each
other;
- ``SeqA[7:9]`` is not aligned to ``seqB`` or ``seqC``.
Note that the alignment does not include the first nucleotide of
``seqA`` and last two nucleotides of ``seqB``.
Now we can create the ``Alignment`` object:
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import Alignment
>>> alignment = Alignment(sequences, coordinates)
>>> alignment # doctest: +ELLIPSIS
<Alignment object (3 rows x 8 columns) at ...>
The alignment object has an attribute ``sequences`` pointing to the
sequences included in this alignment:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences
['CCGGTTTTT', 'AGTTTAA', 'AGGTTT']
and an attribute ``coordinates`` with the alignment coordinates:
.. cont-doctest
.. code:: pycon
>>> alignment.coordinates
array([[1, 3, 4, 7, 9],
[0, 2, 2, 5, 5],
[0, 2, 3, 6, 6]])
Print the ``Alignment`` object to show the alignment explicitly:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6
<BLANKLINE>
with the starting and end coordinate for each sequence are shown to the
left and right, respectively, of the alignment.
.. _`subsec:align_parse_printed_alignment`:
Creating an Alignment object from aligned sequences
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you start out with the aligned sequences, with dashes representing
gaps, then you can calculate the coordinates using the
``parse_printed_alignment`` class method. This method is primarily employed in
Biopython’s alignment parsers (see
Section :ref:`sec:alignmentparsers`), but it may be useful for other
purposes. For example, you can construct the ``Alignment`` object from
aligned sequences as follows:
.. cont-doctest
.. code:: pycon
>>> lines = ["CGGTTTTT", "AG-TTT--", "AGGTTT--"]
>>> for line in lines:
... print(line)
...
CGGTTTTT
AG-TTT--
AGGTTT--
>>> lines = [line.encode() for line in lines] # convert to bytes
>>> lines
[b'CGGTTTTT', b'AG-TTT--', b'AGGTTT--']
>>> sequences, coordinates = Alignment.parse_printed_alignment(lines)
>>> sequences
[b'CGGTTTTT', b'AGTTT', b'AGGTTT']
>>> sequences = [sequence.decode() for sequence in sequences]
>>> sequences
['CGGTTTTT', 'AGTTT', 'AGGTTT']
>>> print(coordinates)
[[0 2 3 6 8]
[0 2 2 5 5]
[0 2 3 6 6]]
The initial ``G`` nucleotide of ``seqA`` and the final ``CC``
nucleotides of ``seqB`` were not included in the alignment and is
therefore missing here. But this is easy to fix:
.. cont-doctest
.. code:: pycon
>>> from Bio.Seq import Seq
>>> sequences[0] = "C" + sequences[0]
>>> sequences[1] = sequences[1] + "AA"
>>> sequences
['CCGGTTTTT', 'AGTTTAA', 'AGGTTT']
>>> coordinates[0, :] += 1
>>> print(coordinates)
[[1 3 4 7 9]
[0 2 2 5 5]
[0 2 3 6 6]]
Now we can create the ``Alignment`` object:
.. cont-doctest
.. code:: pycon
>>> alignment = Alignment(sequences, coordinates)
>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6
<BLANKLINE>
which identical to the ``Alignment`` object created above in
section :ref:`subsec:align_sequences_coordinates`.
By default, the ``coordinates`` argument to the ``Alignment``
initializer is ``None``, which assumes that there are no gaps in the
alignment. All sequences in an ungapped alignment must have the same
length. If the ``coordinates`` argument is ``None``, then the
initializer will fill in the ``coordinates`` attribute of the
``Alignment`` object for you:
.. cont-doctest
.. code:: pycon
>>> ungapped_alignment = Alignment(["ACGTACGT", "AAGTACGT", "ACGTACCT"])
>>> ungapped_alignment # doctest: +ELLIPSIS
<Alignment object (3 rows x 8 columns) at ...>
>>> print(ungapped_alignment.coordinates)
[[0 8]
[0 8]
[0 8]]
>>> print(ungapped_alignment)
0 ACGTACGT 8
0 AAGTACGT 8
0 ACGTACCT 8
<BLANKLINE>
.. _`subsec:align_common_attributes`:
Common alignment attributes
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following attributes are commonly found on ``Alignment`` objects:
- ``sequences``: This is a list of the sequences aligned to each other.
Depending on how the alignment was created, the sequences can have
the following types:
- plain Python string;
- ``Seq``;
- ``MutableSeq``;
- ``SeqRecord``;
- ``bytes``;
- ``bytearray``;
- NumPy array with data type ``numpy.int32``;
- any other object with a contiguous buffer of format ``"c"``,
``"B"``, ``"i"``, or ``"I"``;
- lists or tuples of objects defined in the ``alphabet`` attribute
of the ``PairwiseAligner`` object that created the alignment (see
section :ref:`sec:generalized-pairwise`).
For pairwise alignments (meaning an alignment of two sequences), the
properties ``target`` and ``query`` are aliases for ``sequences[0]``
and ``sequences[1]``, respectively.
- ``coordinates``: A NumPy array of integers storing the sequence
indices defining how the sequences are aligned to each other;
- ``score``: The alignment score, as found by the parser in the
alignment file, or as calculated by the ``PairwiseAligner`` (see
section :ref:`sec:pairwise-basic`);
- ``annotations``: A dictionary storing most other annotations
associated with the alignment;
- ``column_annotations``: A dictionary storing annotations that extend
along the alignment and have the same length as the alignment, such
as a consensus sequence (see
section :ref:`subsec:align_clustal` for an example).
An ``Alignment`` object created by the parser in ``Bio.Align`` may have
additional attributes, depending on the alignment file format from which
the alignment was read.
Slicing and indexing an alignment
---------------------------------
Slices of the form ``alignment[k, i:j]``, where ``k`` is an integer and
``i`` and ``j`` are integers or are absent, return a string showing the
aligned sequence (including gaps) for the target (if ``k=0``) or the
query (if ``k=1``) that includes only the columns ``i`` through ``j`` in
the printed alignment.
To illustrate this, in the following example the printed alignment has 8
columns:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6
<BLANKLINE>
>>> alignment.length
8
To get the aligned sequence strings individually, use
.. cont-doctest
.. code:: pycon
>>> alignment[0]
'CGGTTTTT'
>>> alignment[1]
'AG-TTT--'
>>> alignment[2]
'AGGTTT--'
>>> alignment[0, :]
'CGGTTTTT'
>>> alignment[1, :]
'AG-TTT--'
>>> alignment[0, 1:-1]
'GGTTTT'
>>> alignment[1, 1:-1]
'G-TTT-'
Columns to be included can also be selected using an iterable over
integers:
.. cont-doctest
.. code:: pycon
>>> alignment[0, (1, 2, 4)]
'GGT'
>>> alignment[1, range(0, 5, 2)]
'A-T'
To get the letter at position ``[i, j]`` of the printed alignment, use
``alignment[i, j]``; this will return ``"-"`` if a gap is found at that
position:
.. cont-doctest
.. code:: pycon
>>> alignment[0, 2]
'G'
>>> alignment[2, 6]
'-'
To get specific columns in the alignment, use
.. cont-doctest
.. code:: pycon
>>> alignment[:, 0]
'CAA'
>>> alignment[:, 1]
'GGG'
>>> alignment[:, 2]
'G-G'
Slices of the form ``alignment[i:j:k]`` return a new ``Alignment``
object including only sequences ``[i:j:k]`` of the alignment:
.. cont-doctest
.. code:: pycon
>>> alignment[1:] # doctest:+ELLIPSIS
<Alignment object (2 rows x 6 columns) at ...>
>>> print(alignment[1:])
target 0 AG-TTT 5
0 ||-||| 6
query 0 AGGTTT 6
<BLANKLINE>
Slices of the form ``alignment[:, i:j]``, where ``i`` and ``j`` are
integers or are absent, return a new ``Alignment`` object that includes
only the columns ``i`` through ``j`` in the printed alignment.
Extracting the first 4 columns for the example alignment above gives:
.. cont-doctest
.. code:: pycon
>>> alignment[:, :4] # doctest:+ELLIPSIS
<Alignment object (3 rows x 4 columns) at ...>
>>> print(alignment[:, :4])
1 CGGT 5
0 AG-T 3
0 AGGT 4
<BLANKLINE>
Similarly, extracting the last 6 columns gives:
.. cont-doctest
.. code:: pycon
>>> alignment[:, -6:] # doctest:+ELLIPSIS
<Alignment object (3 rows x 6 columns) at ...>
>>> print(alignment[:, -6:])
3 GTTTTT 9
2 -TTT-- 5
2 GTTT-- 6
<BLANKLINE>
The column index can also be an iterable of integers:
.. cont-doctest
.. code:: pycon
>>> print(alignment[:, (1, 3, 0)])
0 GTC 3
0 GTA 3
0 GTA 3
<BLANKLINE>
Calling ``alignment[:, :]`` returns a copy of the alignment.
Getting information about the alignment
---------------------------------------
Alignment shape
~~~~~~~~~~~~~~~
The number of aligned sequences is returned by ``len(alignment)``:
.. cont-doctest
.. code:: pycon
>>> len(alignment)
3
The alignment length is defined as the number of columns in the
alignment as printed. This is equal to the sum of the number of matches,
number of mismatches, and the total length of gaps in each sequence:
.. cont-doctest
.. code:: pycon
>>> alignment.length
8
The ``shape`` property returns a tuple consisting of the length of the
alignment and the number of columns in the alignment as printed:
.. cont-doctest
.. code:: pycon
>>> alignment.shape
(3, 8)
Comparing alignments
~~~~~~~~~~~~~~~~~~~~
Two alignments are equal to each other (meaning that
``alignment1 == alignment2`` evaluates to ``True``) if each of the
sequences in ``alignment1.sequences`` and ``alignment2.sequences`` are
equal to each other, and ``alignment1.coordinates`` and
``alignment2.coordinates`` contain the same coordinates. If either of
these conditions is not fulfilled, then ``alignment1 == alignment2``
evaluates to ``False``. Inequality of two alignments (e.g.,
``alignment1 < alignment2``) is established by first comparing
``alignment1.sequences`` and ``alignment2.sequences``, and if they are
equal, by comparing ``alignment1.coordinates`` to
``alignment2.coordinates``.
Finding the indices of aligned sequences
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For pairwise alignments, the ``aligned`` property of an alignment
returns the start and end indices of subsequences in the target and
query sequence that were aligned to each other. If the alignment between
target (t) and query (q) consists of :math:`N` chunks, you get two
tuples of length :math:`N`:
.. code:: text
(((t_start1, t_end1), (t_start2, t_end2), ..., (t_startN, t_endN)),
((q_start1, q_end1), (q_start2, q_end2), ..., (q_startN, q_endN)))
For example,
.. cont-doctest
.. code:: pycon
>>> pairwise_alignment = alignment[:2, :]
>>> print(pairwise_alignment)
target 1 CGGTTTTT 9
0 .|-|||-- 8
query 0 AG-TTT-- 5
<BLANKLINE>
>>> print(pairwise_alignment.aligned)
[[[1 3]
[4 7]]
<BLANKLINE>
[[0 2]
[2 5]]]
Note that different alignments may have the same subsequences aligned to
each other. In particular, this may occur if alignments differ from each
other in terms of their gap placement only:
.. cont-doctest
.. code:: pycon
>>> pairwise_alignment1 = Alignment(["AAACAAA", "AAAGAAA"],
... np.array([[0, 3, 4, 4, 7], [0, 3, 3, 4, 7]])) # fmt: skip
...
>>> pairwise_alignment2 = Alignment(["AAACAAA", "AAAGAAA"],
... np.array([[0, 3, 3, 4, 7], [0, 3, 4, 4, 7]])) # fmt: skip
...
>>> print(pairwise_alignment1)
target 0 AAAC-AAA 7
0 |||--||| 8
query 0 AAA-GAAA 7
<BLANKLINE>
>>> print(pairwise_alignment2)
target 0 AAA-CAAA 7
0 |||--||| 8
query 0 AAAG-AAA 7
<BLANKLINE>
>>> pairwise_alignment1.aligned
array([[[0, 3],
[4, 7]],
<BLANKLINE>
[[0, 3],
[4, 7]]])
>>> pairwise_alignment2.aligned
array([[[0, 3],
[4, 7]],
<BLANKLINE>
[[0, 3],
[4, 7]]])
The property ``indices`` returns a 2D NumPy array with the sequence
index of each letter in the alignment, with gaps indicated by -1:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6
<BLANKLINE>
>>> alignment.indices
array([[ 1, 2, 3, 4, 5, 6, 7, 8],
[ 0, 1, -1, 2, 3, 4, -1, -1],
[ 0, 1, 2, 3, 4, 5, -1, -1]])
The property ``inverse_indices`` returns a list of 1D NumPy arrays, one
for each of the aligned sequences, with the column index in the
alignment for each letter in the sequence. Letters not included in the
alignment are indicated by -1:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences
['CCGGTTTTT', 'AGTTTAA', 'AGGTTT']
>>> alignment.inverse_indices # doctest: +NORMALIZE_WHITESPACE
[array([-1, 0, 1, 2, 3, 4, 5, 6, 7]),
array([ 0, 1, 3, 4, 5, -1, -1]),
array([0, 1, 2, 3, 4, 5])]
Counting identities, mismatches, and gaps
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``counts`` method calculates the number of identities, mismatches,
and gaps of a pairwise alignment. For an alignment of more than two
sequences, the number of identities, mismatches, and gaps are calculated
and summed for all pairs of sequences in the alignment. The three
numbers are returned as an ``AlignmentCounts`` object, which is a
``namedtuple`` with fields ``gaps``, ``identities``, and ``mismatches``.
This method currently takes no arguments, but in the future will likely
be modified to accept optional arguments allowing its behavior to be
customized.
.. cont-doctest
.. code:: pycon
>>> print(pairwise_alignment)
target 1 CGGTTTTT 9
0 .|-|||-- 8
query 0 AG-TTT-- 5
<BLANKLINE>
>>> pairwise_alignment.counts()
AlignmentCounts(gaps=3, identities=4, mismatches=1)
>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6
<BLANKLINE>
>>> alignment.counts()
AlignmentCounts(gaps=8, identities=14, mismatches=2)
Letter frequencies
~~~~~~~~~~~~~~~~~~
The ``frequencies`` method calculates how often each letter appears in
each column of the alignment:
.. cont-doctest
.. code:: pycon
>>> alignment.frequencies # doctest: +NORMALIZE_WHITESPACE
{'C': array([1., 0., 0., 0., 0., 0., 0., 0.]),
'G': array([0., 3., 2., 0., 0., 0., 0., 0.]),
'T': array([0., 0., 0., 3., 3., 3., 1., 1.]),
'A': array([2., 0., 0., 0., 0., 0., 0., 0.]),
'-': array([0., 0., 1., 0., 0., 0., 2., 2.])}
Substitutions
~~~~~~~~~~~~~
Use the ``substitutions`` method to find the number of substitutions
between each pair of nucleotides:
.. cont-doctest
.. code:: pycon
>>> m = alignment.substitutions
>>> print(m)
A C G T
A 1.0 0.0 0.0 0.0
C 2.0 0.0 0.0 0.0
G 0.0 0.0 4.0 0.0
T 0.0 0.0 0.0 9.0
<BLANKLINE>
Note that the matrix is not symmetric: The counts for a row letter R and
a column letter C is the number of times letter R in a sequence is
replaced by letter C in a sequence appearing below it. For example, the
number of ``C``\ ’s that are aligned to an ``A`` in a later sequence is
.. cont-doctest
.. code:: pycon
>>> m["C", "A"]
2.0
while the number of A’s that are aligned to a C in a later sequence is
.. cont-doctest
.. code:: pycon
>>> m["A", "C"]
0.0
To get a symmetric matrix, use
.. cont-doctest
.. code:: pycon
>>> m += m.transpose()
>>> m /= 2.0
>>> print(m)
A C G T
A 1.0 1.0 0.0 0.0
C 1.0 0.0 0.0 0.0
G 0.0 0.0 4.0 0.0
T 0.0 0.0 0.0 9.0
<BLANKLINE>
>>> m["A", "C"]
1.0
>>> m["C", "A"]
1.0
The total number of substitutions between ``A``\ ’s and ``T``\ ’s in the
alignment is 1.0 + 1.0 = 2.
Alignments as arrays
~~~~~~~~~~~~~~~~~~~~
Using NumPy, you can turn the ``alignment`` object into an array of
letters. In particular, this may be useful for fast calculations on the
alignment content.
.. cont-doctest
.. code:: pycon
>>> align_array = np.array(alignment)
>>> align_array.shape
(3, 8)
>>> align_array # doctest: +NORMALIZE_WHITESPACE
array([[b'C', b'G', b'G', b'T', b'T', b'T', b'T', b'T'],
[b'A', b'G', b'-', b'T', b'T', b'T', b'-', b'-'],
[b'A', b'G', b'G', b'T', b'T', b'T', b'-', b'-']], dtype='|S1')
By default, this will give you an array of ``bytes`` characters (with
data type ``dtype='|S1'``). You can create an array of Unicode (Python
string) characters by using ``dtype='U'``:
.. cont-doctest
.. code:: pycon
>>> align_array = np.array(alignment, dtype="U")
.. code:: pycon
>>> align_array # doctest: +NORMALIZE_WHITESPACE
array([['C', 'G', 'G', 'T', 'T', 'T', 'T', 'T'],
['A', 'G', '-', 'T', 'T', 'T', '-', '-'],
['A', 'G', 'G', 'T', 'T', 'T', '-', '-']], dtype='<U1')
(the printed ``dtype`` will be '<U1' or '>U1' depending on whether your system
is little-endian or big-endian, respectively).
Note that the ``alignment`` object and the NumPy array ``align_array``
are separate objects in memory - editing one will not update the other!
Operations on an alignment
--------------------------
Sorting an alignment
~~~~~~~~~~~~~~~~~~~~
The ``sort`` method sorts the alignment sequences. By default, sorting
is done based on the ``id`` attribute of each sequence if available, or
the sequence contents otherwise.
.. cont-doctest
.. code:: pycon
>>> print(alignment)
1 CGGTTTTT 9
0 AG-TTT-- 5
0 AGGTTT-- 6
<BLANKLINE>
>>> alignment.sort()
>>> print(alignment)
0 AGGTTT-- 6
0 AG-TTT-- 5
1 CGGTTTTT 9
<BLANKLINE>
Alternatively, you can supply a ``key`` function to determine the sort
order. For example, you can sort the sequences by increasing GC content:
.. cont-doctest
.. code:: pycon
>>> from Bio.SeqUtils import gc_fraction
>>> alignment.sort(key=gc_fraction)
>>> print(alignment)
0 AG-TTT-- 5
0 AGGTTT-- 6
1 CGGTTTTT 9
<BLANKLINE>
Note that the ``key`` function is applied to the full sequence
(including the initial ``A`` and final ``GG`` nucleotides of ``seqB``),
not just to the aligned part.
The ``reverse`` argument lets you reverse the sort order to obtain the
sequences in decreasing GC content:
.. cont-doctest
.. code:: pycon
>>> alignment.sort(key=gc_fraction, reverse=True)
>>> print(alignment)
1 CGGTTTTT 9
0 AGGTTT-- 6
0 AG-TTT-- 5
<BLANKLINE>
Reverse-complementing the alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reverse-complementing an alignment will take the reverse complement of
each sequence, and recalculate the coordinates:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences
['CCGGTTTTT', 'AGGTTT', 'AGTTTAA']
>>> rc_alignment = alignment.reverse_complement()
>>> print(rc_alignment.sequences)
['AAAAACCGG', 'AAACCT', 'TTAAACT']
>>> print(rc_alignment)
0 AAAAACCG 8
0 --AAACCT 6
2 --AAA-CT 7
<BLANKLINE>
>>> alignment[:, :4].sequences
['CCGGTTTTT', 'AGGTTT', 'AGTTTAA']
>>> print(alignment[:, :4])
1 CGGT 5
0 AGGT 4
0 AG-T 3
<BLANKLINE>
>>> rc_alignment = alignment[:, :4].reverse_complement()
>>> rc_alignment[:, :4].sequences
['AAAAACCGG', 'AAACCT', 'TTAAACT']
>>> print(rc_alignment[:, :4])
4 ACCG 8
2 ACCT 6
4 A-CT 7
<BLANKLINE>
Reverse-complementing an alignment preserves its column annotations (in
reverse order), but discards all other annotations.
Adding alignments
~~~~~~~~~~~~~~~~~
Alignments can be added together to form an extended alignment if they
have the same number of rows. As an example, let’s first create two
alignments:
.. cont-doctest
.. code:: pycon
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> a1 = SeqRecord(Seq("AAAAC"), id="Alpha")
>>> b1 = SeqRecord(Seq("AAAC"), id="Beta")
>>> c1 = SeqRecord(Seq("AAAAG"), id="Gamma")
>>> a2 = SeqRecord(Seq("GTT"), id="Alpha")
>>> b2 = SeqRecord(Seq("TT"), id="Beta")
>>> c2 = SeqRecord(Seq("GT"), id="Gamma")
>>> left = Alignment(
... [a1, b1, c1], coordinates=np.array([[0, 3, 4, 5], [0, 3, 3, 4], [0, 3, 4, 5]])
... )
>>> left.annotations = {"tool": "demo", "name": "start"}
>>> left.column_annotations = {"stats": "CCCXC"}
>>> right = Alignment(
... [a2, b2, c2], coordinates=np.array([[0, 1, 2, 3], [0, 0, 1, 2], [0, 1, 1, 2]])
... )
>>> right.annotations = {"tool": "demo", "name": "end"}
>>> right.column_annotations = {"stats": "CXC"}
Now, let’s look at these two alignments:
.. cont-doctest
.. code:: pycon
>>> print(left)
Alpha 0 AAAAC 5
Beta 0 AAA-C 4
Gamma 0 AAAAG 5
<BLANKLINE>
>>> print(right)
Alpha 0 GTT 3
Beta 0 -TT 2
Gamma 0 G-T 2
<BLANKLINE>
Adding the two alignments will combine the two alignments row-wise:
.. cont-doctest
.. code:: pycon
>>> combined = left + right
>>> print(combined)
Alpha 0 AAAACGTT 8
Beta 0 AAA-C-TT 6
Gamma 0 AAAAGG-T 7
<BLANKLINE>
For this to work, both alignments must have the same number of sequences
(here they both have 3 rows):
.. cont-doctest
.. code:: pycon
>>> len(left)
3
>>> len(right)
3
>>> len(combined)
3
The sequences are ``SeqRecord`` objects, which can be added together.
Refer to Chapter :ref:`chapter:seq_annot` for
details of how the annotation is handled. This example is a special case
in that both original alignments shared the same names, meaning when the
rows are added they also get the same name.
Any common annotations are preserved, but differing annotation is lost.
This is the same behavior used in the ``SeqRecord`` annotations and is
designed to prevent accidental propagation of inappropriate values:
.. cont-doctest
.. code:: pycon
>>> combined.annotations
{'tool': 'demo'}
Similarly any common per-column-annotations are combined:
.. cont-doctest
.. code:: pycon
>>> combined.column_annotations
{'stats': 'CCCXCCXC'}
Mapping a pairwise sequence alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose you have a pairwise alignment of a transcript to a chromosome:
.. cont-doctest
.. code:: pycon
>>> chromosome = "AAAAAAAACCCCCCCAAAAAAAAAAAGGGGGGAAAAAAAA"
>>> transcript = "CCCCCCCGGGGGG"
>>> sequences1 = [chromosome, transcript]
>>> coordinates1 = np.array([[8, 15, 26, 32], [0, 7, 7, 13]])
>>> alignment1 = Alignment(sequences1, coordinates1)
>>> print(alignment1)
target 8 CCCCCCCAAAAAAAAAAAGGGGGG 32
0 |||||||-----------|||||| 24
query 0 CCCCCCC-----------GGGGGG 13
<BLANKLINE>
and a pairwise alignment between the transcript and a sequence (e.g.,
obtained by RNA-seq):
.. cont-doctest
.. code:: pycon
>>> rnaseq = "CCCCGGGG"
>>> sequences2 = [transcript, rnaseq]
>>> coordinates2 = np.array([[3, 11], [0, 8]])
>>> alignment2 = Alignment(sequences2, coordinates2)
>>> print(alignment2)
target 3 CCCCGGGG 11
0 |||||||| 8
query 0 CCCCGGGG 8
<BLANKLINE>
Use the ``map`` method on ``alignment1``, with ``alignment2`` as
argument, to find the alignment of the RNA-sequence to the genome:
.. cont-doctest
.. code:: pycon
>>> alignment3 = alignment1.map(alignment2)
>>> print(alignment3)
target 11 CCCCAAAAAAAAAAAGGGG 30
0 ||||-----------|||| 19
query 0 CCCC-----------GGGG 8
<BLANKLINE>
>>> print(alignment3.coordinates)
[[11 15 26 30]
[ 0 4 4 8]]
>>> format(alignment3, "psl")
'8\t0\t0\t0\t0\t0\t1\t11\t+\tquery\t8\t0\t8\ttarget\t40\t11\t30\t2\t4,4,\t0,4,\t11,26,\n'
To be able to print the sequences, in this example we constructed
``alignment1`` and ``alignment2`` using sequences with a defined
sequence contents. However, mapping the alignment does not depend on the
sequence contents; only the coordinates of ``alignment1`` and
``alignment2`` are used to construct the coordinates for ``alignment3``.
The map method can also be used to lift over an alignment between
different genome assemblies. In this case, self is a DNA alignment
between two genome assemblies, and the argument is an alignment of a
transcript against one of the genome assemblies:
.. cont-doctest
.. code:: pycon
>>> from Bio import Align
>>> chain = Align.read("Blat/panTro5ToPanTro6.over.chain", "chain")
>>> chain.sequences[0].id
'chr1'
>>> len(chain.sequences[0].seq)
228573443
>>> chain.sequences[1].id
'chr1'
>>> len(chain.sequences[1].seq)
224244399
>>> import numpy as np
>>> np.set_printoptions(threshold=5) # print 5 array elements per row
>>> print(chain.coordinates) # doctest:+ELLIPSIS
[[122250000 122250400 122250400 ... 122909818 122909819 122909835]
[111776384 111776784 111776785 ... 112019962 112019962 112019978]]
showing that the range 122250000:122909835 of chr1 on chimpanzee genome
assembly panTro5 aligns to range 111776384:112019978 of chr1 of
chimpanzee genome assembly panTro6. See section
:ref:`subsec:align_chain` for more information about the chain
file format.
.. cont-doctest
.. code:: pycon
>>> transcript = Align.read("Blat/est.panTro5.psl", "psl")
>>> transcript.sequences[0].id
'chr1'
>>> len(transcript.sequences[0].seq)
228573443
>>> transcript.sequences[1].id
'DC525629'
>>> len(transcript.sequences[1].seq)
407
>>> print(transcript.coordinates)
[[122835789 122835847 122840993 122841145 122907212 122907314]
[ 32 90 90 242 242 344]]
This shows that nucleotide range 32:344 of expressed sequence tag
DC525629 aligns to range 122835789:122907314 of chr1 of chimpanzee
genome assembly panTro5. Note that the target sequence
``chain.sequences[0].seq`` and the target sequence
``transcript.sequences[0]`` have the same length:
.. cont-doctest
.. code:: pycon
>>> len(chain.sequences[0].seq) == len(transcript.sequences[0].seq)
True
We swap the target and query of the chain such that the query of
``chain`` corresponds to the target of ``transcript``:
.. cont-doctest
.. code:: pycon
>>> chain = chain[::-1]
>>> chain.sequences[0].id
'chr1'
>>> len(chain.sequences[0].seq)
224244399
>>> chain.sequences[1].id
'chr1'
>>> len(chain.sequences[1].seq)
228573443
>>> print(chain.coordinates) # doctest:+ELLIPSIS
[[111776384 111776784 111776785 ... 112019962 112019962 112019978]
[122250000 122250400 122250400 ... 122909818 122909819 122909835]]
>>> np.set_printoptions(threshold=1000) # reset the print options
Now we can get the coordinates of DC525629 against chimpanzee genome
assembly panTro6 by calling ``chain.map``, with ``transcript`` as the
argument:
.. cont-doctest
.. code:: pycon
>>> lifted_transcript = chain.map(transcript)
>>> lifted_transcript.sequences[0].id
'chr1'
>>> len(lifted_transcript.sequences[0].seq)
224244399
>>> lifted_transcript.sequences[1].id
'DC525629'
>>> len(lifted_transcript.sequences[1].seq)
407
>>> print(lifted_transcript.coordinates)
[[111982717 111982775 111987921 111988073 112009200 112009302]
[ 32 90 90 242 242 344]]
This shows that nucleotide range 32:344 of expressed sequence tag
DC525629 aligns to range 111982717:112009302 of chr1 of chimpanzee
genome assembly panTro6. Note that the genome span of DC525629 on
chimpanzee genome assembly panTro5 is 122907314 - 122835789 = 71525 bp,
while on panTro6 the genome span is 112009302 - 111982717 = 26585 bp.
Mapping a multiple sequence alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a multiple alignment of genomic sequences of chimpanzee, human,
macaque, marmoset, mouse, and rat:
.. cont-doctest
.. code:: pycon
>>> from Bio import Align
>>> path = "Blat/panTro5.maf"
>>> genome_alignment = Align.read(path, "maf")
>>> for record in genome_alignment.sequences:
... print(record.id, len(record.seq))
...
panTro5.chr1 228573443
hg19.chr1 249250621
rheMac8.chr1 225584828
calJac3.chr18 47448759
mm10.chr3 160039680
rn6.chr2 266435125
>>> print(genome_alignment.coordinates)
[[133922962 133922962 133922970 133922970 133922972 133922972 133922995
133922998 133923010]
[155784573 155784573 155784581 155784581 155784583 155784583 155784606
155784609 155784621]
[130383910 130383910 130383918 130383918 130383920 130383920 130383943
130383946 130383958]
[ 9790455 9790455 9790463 9790463 9790465 9790465 9790488
9790491 9790503]
[ 88858039 88858036 88858028 88858026 88858024 88858020 88857997
88857997 88857985]
[188162970 188162967 188162959 188162959 188162957 188162953 188162930
188162930 188162918]]
>>> print(genome_alignment)
panTro5.c 133922962 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
hg19.chr1 155784573 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
rheMac8.c 130383910 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
calJac3.c 9790455 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAGCTTAAAggct
mm10.chr3 88858039 TATAATAATTGTATATGTCACAGAAAAAAATGAATTTTCAAT---GACTTAATAGCC
rn6.chr2 188162970 TACAATAATTG--TATGTCATAGAAAAAAATGAATTTTCAAT---AACTTAATAGCC
<BLANKLINE>
panTro5.c 133923010
hg19.chr1 155784621
rheMac8.c 130383958
calJac3.c 9790503
mm10.chr3 88857985
rn6.chr2 188162918
<BLANKLINE>
Suppose we want to replace the older versions of the genome assemblies
(``panTro5``, ``hg19``, ``rheMac8``, ``calJac3``, ``mm10``, and ``rn6``)
by their current versions (``panTro6``, ``hg38``, ``rheMac10``,
``calJac4``, ``mm39``, and ``rn7``). To do so, we need the pairwise
alignment between the old and the new assembly version for each species.
These are provided by UCSC as chain files, typically used for UCSC’s
``liftOver`` tool. The ``.chain`` files in the ``Tests/Align``
subdirectory in the Biopython source distribution were extracted from
UCSC’s ``.chain`` files to only include the relevant genomic region. For
example, to lift over ``panTro5`` to ``panTro6``, we use the file
``panTro5ToPanTro6.chain`` with the following contents:
.. code:: text
chain 1198066 chr1 228573443 + 133919957 133932620 chr1 224244399 + 130607995 130620657 1
4990 0 2
1362 3 0
6308
To lift over the genome assembly for each species, we read in the
corresponding ``.chain`` file:
.. cont-doctest
.. code:: pycon
>>> paths = [
... "Blat/panTro5ToPanTro6.chain",
... "Blat/hg19ToHg38.chain",
... "Blat/rheMac8ToRheMac10.chain",
... "Blat/calJac3ToCalJac4.chain",
... "Blat/mm10ToMm39.chain",
... "Blat/rn6ToRn7.chain",
... ]
>>> liftover_alignments = [Align.read(path, "chain") for path in paths]
>>> for liftover_alignment in liftover_alignments:
... print(liftover_alignment.target.id, liftover_alignment.coordinates[0, :])
...
chr1 [133919957 133924947 133924947 133926309 133926312 133932620]
chr1 [155184381 156354347 156354348 157128497 157128497 157137496]
chr1 [130382477 130383872 130383872 130384222 130384222 130388520]
chr18 [9786631 9787941 9788508 9788508 9795062 9795065 9795737]
chr3 [66807541 74196805 74196831 94707528 94707528 94708176 94708178 94708718]
chr2 [188111581 188158351 188158351 188171225 188171225 188228261 188228261
188236997]
Note that the order of species is the same in ``liftover_alignments``
and ``genome_alignment.sequences``. Now we can lift over the multiple
sequence alignment to the new genome assembly versions:
.. cont-doctest
.. code:: pycon
>>> genome_alignment = genome_alignment.mapall(liftover_alignments)
>>> for record in genome_alignment.sequences:
... print(record.id, len(record.seq))
...
chr1 224244399
chr1 248956422
chr1 223616942
chr18 47031477
chr3 159745316
chr2 249053267
>>> print(genome_alignment.coordinates)
[[130611000 130611000 130611008 130611008 130611010 130611010 130611033
130611036 130611048]
[155814782 155814782 155814790 155814790 155814792 155814792 155814815
155814818 155814830]
[ 95186253 95186253 95186245 95186245 95186243 95186243 95186220
95186217 95186205]
[ 9758318 9758318 9758326 9758326 9758328 9758328 9758351
9758354 9758366]
[ 88765346 88765343 88765335 88765333 88765331 88765327 88765304
88765304 88765292]
[174256702 174256699 174256691 174256691 174256689 174256685 174256662
174256662 174256650]]
As the ``.chain`` files do not include the sequence contents, we cannot
print the sequence alignment directly. Instead, we read in the genomic
sequence separately (as a ``.2bit`` file, as it allows lazy loading; see
section :ref:`sec:SeqIO_directionaries`) for
each species:
.. code:: pycon
>>> from Bio import SeqIO
>>> names = ("panTro6", "hg38", "rheMac10", "calJac4", "mm39", "rn7")
>>> for i, name in enumerate(names):
... filename = f"{name}.2bit"
... genome = SeqIO.parse(filename, "twobit")
... chromosome = genome_alignment.sequences[i].id
... assert len(genome_alignment.sequences[i]) == len(genome[chromosome])
... genome_alignment.sequences[i] = genome[chromosome]
... genome_alignment.sequences[i].id = f"{name}.{chromosome}"
...
>>> print(genome_alignment)
panTro6.c 130611000 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
hg38.chr1 155814782 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
rheMac10. 95186253 ---ACTAGTTA--CA----GTAACAGAAAATAAAATTTAAATAGAAACTTAAAggcc
calJac4.c 9758318 ---ACTAGTTA--CA----GTAACAGAaaataaaatttaaatagaagcttaaaggct
mm39.chr3 88765346 TATAATAATTGTATATGTCACAGAAAAAAATGAATTTTCAAT---GACTTAATAGCC
rn7.chr2 174256702 TACAATAATTG--TATGTCATAGAAAAAAATGAATTTTCAAT---AACTTAATAGCC
<BLANKLINE>
panTro6.c 130611048
hg38.chr1 155814830
rheMac10. 95186205
calJac4.c 9758366
mm39.chr3 88765292
rn7.chr2 174256650
<BLANKLINE>
The ``mapall`` method can also be used to create a multiple alignment of
codon sequences from a multiple sequence alignment of the corresponding
amino acid sequences (see Section :ref:`sec:msa_codons`
for details).
.. _`sec:alignments`:
The Alignments class
--------------------
The ``Alignments`` (plural) class inherits from
``AlignmentsAbstractBaseClass`` and from ``list``, and can be used as a
list to store ``Alignment`` objects. The behavior of ``Alignments``
objects is different from that of ``list`` objects in two important
ways:
- An ``Alignments`` object is its own iterator, consistent with iterators
returned by ``Bio.Align.parse`` (see section :ref:`subsec:align_reading`) or
iterators returned by the pairwise aligner (see Section
:ref:`chapter:pairwise`). Calling ``iter`` on the iterator will
always return the ``Alignments`` object itself. In contrast, calling
``iter`` on a list object creates a new iterator each time, allowing you to
have multiple independent iterators for a given list.
In this example, ``alignment_iterator1`` and ``alignment_iterator2`` are
obtained from a list and act independently of each other:
.. cont-doctest
.. code:: pycon
>>> alignment_list = [alignment1, alignment2, alignment3]
>>> alignment_iterator1 = iter(alignment_list)
>>> alignment_iterator2 = iter(alignment_list)
>>> next(alignment_iterator1) # doctest: +ELLIPSIS
<Alignment object (2 rows x 24 columns) at ...>
>>> next(alignment_iterator2) # doctest: +ELLIPSIS
<Alignment object (2 rows x 24 columns) at ...>
>>> next(alignment_iterator1) # doctest: +ELLIPSIS
<Alignment object (2 rows x 8 columns) at ...>
>>> next(alignment_iterator1) # doctest: +ELLIPSIS
<Alignment object (2 rows x 19 columns) at ...>
>>> next(alignment_iterator2) # doctest: +ELLIPSIS
<Alignment object (2 rows x 8 columns) at ...>
>>> next(alignment_iterator2) # doctest: +ELLIPSIS
<Alignment object (2 rows x 19 columns) at ...>
In contrast, ``alignment_iterator1`` and ``alignment_iterator2`` obtained
by calling ``iter`` on an ``Alignments`` object are identical to each other:
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import Alignments
>>> alignments = Alignments([alignment1, alignment2, alignment3])
>>> alignment_iterator1 = iter(alignments)
>>> alignment_iterator2 = iter(alignments)
>>> alignment_iterator1 is alignment_iterator2
True
>>> next(alignment_iterator1) # doctest: +ELLIPSIS
<Alignment object (2 rows x 24 columns) at ...>
>>> next(alignment_iterator2) # doctest: +ELLIPSIS
<Alignment object (2 rows x 8 columns) at ...>
>>> next(alignment_iterator1) # doctest: +ELLIPSIS
<Alignment object (2 rows x 19 columns) at ...>
>>> next(alignment_iterator2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
Calling ``iter`` on an ``Alignments`` object resets the iterator to its
first item, so you can loop over it again. You can also iterate over the
alignments multiple times using a ``for``-loop, which implicitly calls
``iter`` on the iterator:
.. cont-doctest
.. code:: pycon
>>> for item in alignments:
... print(repr(item)) # doctest: +ELLIPSIS
...
<Alignment object (2 rows x 24 columns) at ...>
<Alignment object (2 rows x 8 columns) at ...>
<Alignment object (2 rows x 19 columns) at ...>
>>> for item in alignments:
... print(repr(item)) # doctest: +ELLIPSIS
...
<Alignment object (2 rows x 24 columns) at ...>
<Alignment object (2 rows x 8 columns) at ...>
<Alignment object (2 rows x 19 columns) at ...>
This behavior is consistent with regular Python lists, and with iterators
returned by ``Bio.Align.parse`` (see section :ref:`subsec:align_reading`) or
by the pairwise aligner (see Section :ref:`chapter:pairwise`).
- Metadata can be stored as attributes on an ``Alignments`` object,
whereas a plain ``list`` does not accept attributes:
.. cont-doctest
.. code:: pycon
>>> alignment_list.score = 100 # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AttributeError: 'list' object has no attribute 'score'...
>>> alignments.score = 100
>>> alignments.score
100
.. _`sec:alignmentparsers`:
Reading and writing alignments
------------------------------
Output from sequence alignment software such as Clustal can be parsed
into ``Alignment`` objects by the ``Bio.Align.read`` and
``Bio.Align.parse`` functions. Their usage is analogous to the ``read``
and ``parse`` functions in ``Bio.SeqIO`` (see
Section :ref:`sec:Bio.SeqIO-input`): The ``read``
function is used to read an output file containing a single alignment
and returns an ``Alignment`` object, while the ``parse`` function
returns an iterator to iterate over alignments stored in an output file
containing one or more alignments. Section :ref:`sec:alignformats`
describes the alignment formats that can be parsed in ``Bio.Align``.
``Bio.Align`` also provides a ``write`` function that can write
alignments in most of these formats.
.. _`subsec:align_reading`:
Reading alignments
~~~~~~~~~~~~~~~~~~
Use ``Bio.Align.parse`` to parse a file of sequence alignments. For
example, the file ``ucsc_mm9_chr10.maf`` contains 48 multiple sequence
alignments in the MAF (Multiple Alignment Format) format (see section
:ref:`subsec:align_maf`):
.. cont-doctest
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("MAF/ucsc_mm9_chr10.maf", "maf")
>>> alignments # doctest: +ELLIPSIS
<Bio.Align.maf.AlignmentIterator object at 0x...>
where ``"maf"`` is the file format. The alignments object returned by
``Bio.Align.parse`` may contain attributes that store metadata found in
the file, such as the version number of the software that was used to
create the alignments. The specific attributes stored for each file
format are described in Section :ref:`sec:alignformats`. For MAF
files, we can obtain the file format version and the scoring scheme that
was used:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata
{'MAF Version': '1', 'Scoring': 'autoMZ.v1'}
As alignment files can be very large, ``Align.parse`` returns an
iterator over the alignments, so you won’t have to store all alignments
in memory at the same time. You can iterate over these alignments and
print out, for example, the number of aligned sequences in each
alignment:
.. cont-doctest
.. code:: pycon
>>> for a in alignments:
... print(len(a.sequences)) # doctest: +ELLIPSIS
...
2
4
5
6
...
15
14
7
6
You can also call ``len`` on the alignments to obtain the number of
alignments.
.. cont-doctest
.. code:: pycon
>>> len(alignments)
48
Depending on the file format, the number of alignments may be explicitly
stored in the file (for example in the case of bigBed, bigPsl, and
bigMaf files), or otherwise the number of alignments is counted by
looping over them once (and returning the iterator to its original
position). If the file is large, it may therefore take a considerable
amount of time for ``len`` to return. However, as the number of
alignments is cached, subsequent calls to ``len`` will return quickly.
If the number of alignments is not excessively large and will fit in
memory, you can convert the alignments iterator to a list of alignments.
To do so, you could call ``list`` on the ``alignments``:
.. cont-doctest
.. code:: pycon
>>> alignment_list = list(alignments)
>>> len(alignment_list)
48
>>> alignment_list[27] # doctest: +ELLIPSIS
<Alignment object (3 rows x 91 columns) at 0x...>
>>> print(alignment_list[27])
mm9.chr10 3019377 CCCCAGCATTCTGGCAGACACAGTG-AAAAGAGACAGATGGTCACTAATAAAATCTGT-A
felCat3.s 46845 CCCAAGTGTTCTGATAGCTAATGTGAAAAAGAAGCATGTGCCCACCAGTAAGCTTTGTGG
canFam2.c 47545247 CCCAAGTGTTCTGATTGCCTCTGTGAAAAAGAAACATGGGCCCGCTAATAagatttgcaa
<BLANKLINE>
mm9.chr10 3019435 TAAATTAG-ATCTCAGAGGATGGATGGACCA 3019465
felCat3.s 46785 TGAACTAGAATCTCAGAGGATG---GGACTC 46757
canFam2.c 47545187 tgacctagaatctcagaggatg---ggactc 47545159
<BLANKLINE>
But this will lose the metadata information:
.. cont-doctest
.. code:: pycon
>>> alignment_list.metadata # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AttributeError: 'list' object has no attribute 'metadata'
Instead, you can ask for a full slice of the alignments:
.. cont-doctest
.. code:: pycon
>>> type(alignments)
<class 'Bio.Align.maf.AlignmentIterator'>
>>> alignments = alignments[:]
>>> type(alignments)
<class 'Bio.Align.Alignments'>
This returns a ``Bio.Align.Alignments`` object, which can be used as a
list, while keeping the metadata information:
.. cont-doctest
.. code:: pycon
>>> len(alignments)
48
>>> print(alignments[11])
mm9.chr10 3014742 AAGTTCCCTCCATAATTCCTTCCTCCCACCCCCACA 3014778
calJac1.C 6283 AAATGTA-----TGATCTCCCCATCCTGCCCTG--- 6311
otoGar1.s 175262 AGATTTC-----TGATGCCCTCACCCCCTCCGTGCA 175231
loxAfr1.s 9317 AGGCTTA-----TG----CCACCCCCCACCCCCACA 9290
<BLANKLINE>
>>> alignments.metadata
{'MAF Version': '1', 'Scoring': 'autoMZ.v1'}
.. _`subsec:align_writing`:
Writing alignments
~~~~~~~~~~~~~~~~~~
To write alignments to a file, use
.. code:: pycon
>>> from Bio import Align
>>> target = "myfile.txt"
>>> Align.write(alignments, target, "clustal")
where ``alignments`` is either a single alignment or a list of
alignments, ``target`` is a file name or an open file-like object, and
``"clustal"`` is the file format to be used. As some file formats allow
or require metadata to be stored with the alignments, you may want to
use the ``Alignments`` (plural) class instead of a plain list of
alignments (see Section :ref:`sec:alignments`), allowing you to
store a metadata dictionary as an attribute on the ``alignments``
object:
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.Alignments(alignments)
>>> metadata = {"Program": "Biopython", "Version": "1.81"}
>>> alignments.metadata = metadata
>>> target = "myfile.txt"
>>> Align.write(alignments, target, "clustal")
.. _`subsec:align_printing`:
Printing alignments
~~~~~~~~~~~~~~~~~~~
For text (non-binary) formats, you can call Python’s built-in ``format``
function on an alignment to get a string showing the alignment in the
requested format, or use ``Alignment`` objects in formatted (f-)
strings. If called without an argument, the ``format`` function returns
the string representation of the alignment:
.. cont-doctest
.. code:: pycon
>>> str(alignment)
' 1 CGGTTTTT 9\n 0 AGGTTT-- 6\n 0 AG-TTT-- 5\n'
>>> format(alignment)
' 1 CGGTTTTT 9\n 0 AGGTTT-- 6\n 0 AG-TTT-- 5\n'
>>> print(format(alignment))
1 CGGTTTTT 9
0 AGGTTT-- 6
0 AG-TTT-- 5
<BLANKLINE>
By specifying one of the formats shown in
Section :ref:`sec:alignformats`, ``format`` will create a string
showing the alignment in the requested format:
.. cont-doctest
.. code:: pycon
>>> format(alignment, "clustal")
'sequence_0 CGGTTTTT\nsequence_1 AGGTTT--\nsequence_2 AG-TTT--\n\n\n'
>>> print(format(alignment, "clustal"))
sequence_0 CGGTTTTT
sequence_1 AGGTTT--
sequence_2 AG-TTT--
<BLANKLINE>
<BLANKLINE>
<BLANKLINE>
>>> print(f"*** this is the alignment in Clustal format: ***\n{alignment:clustal}\n***")
*** this is the alignment in Clustal format: ***
sequence_0 CGGTTTTT
sequence_1 AGGTTT--
sequence_2 AG-TTT--
<BLANKLINE>
<BLANKLINE>
<BLANKLINE>
***
>>> format(alignment, "maf")
'a\ns sequence_0 1 8 + 9 CGGTTTTT\ns sequence_1 0 6 + 6 AGGTTT--\ns sequence_2 0 5 + 7 AG-TTT--\n\n'
>>> print(format(alignment, "maf"))
a
s sequence_0 1 8 + 9 CGGTTTTT
s sequence_1 0 6 + 6 AGGTTT--
s sequence_2 0 5 + 7 AG-TTT--
<BLANKLINE>
<BLANKLINE>
As optional keyword arguments cannot be used with Python’s built-in
``format`` function or with formatted strings, the ``Alignment`` class
has a ``format`` method with optional arguments to customize the
alignment format, as described in the subsections below. For example, we
can print the alignment in BED format (see
section :ref:`subsec:align_bed`) with a specific number of
columns:
.. cont-doctest
.. code:: pycon
>>> print(pairwise_alignment)
target 1 CGGTTTTT 9
0 .|-|||-- 8
query 0 AG-TTT-- 5
<BLANKLINE>
>>> print(format(pairwise_alignment, "bed")) # doctest: +NORMALIZE_WHITESPACE
target 1 7 query 0 + 1 7 0 2 2,3, 0,3,
<BLANKLINE>
>>> print(pairwise_alignment.format("bed")) # doctest: +NORMALIZE_WHITESPACE
target 1 7 query 0 + 1 7 0 2 2,3, 0,3,
<BLANKLINE>
>>> print(pairwise_alignment.format("bed", bedN=3)) # doctest: +NORMALIZE_WHITESPACE
target 1 7
<BLANKLINE>
>>> print(pairwise_alignment.format("bed", bedN=6)) # doctest: +NORMALIZE_WHITESPACE
target 1 7 query 0 +
<BLANKLINE>
.. _`sec:alignformats`:
Alignment file formats
----------------------
The table below shows the alignment formats that can be parsed in
Bio.Align. The format argument ``fmt`` used in ``Bio.Align`` functions
to specify the file format is case-insensitive. Most of these file
formats can also be written by ``Bio.Align``, as shown in the table.
.. container:: center
+---------------+-------------+-------------+-------------+-------------+
| File format | Description | text / | Supported | Subsection |
| ``fmt`` | | binary | by | |
| | | | ``write`` | |
+---------------+-------------+-------------+-------------+-------------+
| ``a2m`` | A2M | text | yes | `1.7.11 |
| | | | | <#subsec:al |
| | | | | ign_a2m>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``bed`` | Browser | text | yes | `1.7.14 |
| | Extensible | | | <#subsec:al |
| | Data (BED) | | | ign_bed>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``bigbed`` | bigBed | binary | yes | `1.7.15 <#s |
| | | | | ubsec:align |
| | | | | _bigbed>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``bigmaf`` | bigMaf | binary | yes | `1.7.19 <#s |
| | | | | ubsec:align |
| | | | | _bigmaf>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``bigpsl`` | bigPsl | binary | yes | `1.7.17 <#s |
| | | | | ubsec:align |
| | | | | _bigpsl>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``chain`` | UCSC chain | text | yes | `1.7.20 <# |
| | file | | | subsec:alig |
| | | | | n_chain>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``clustal`` | ClustalW | text | yes | `1.7.2 <#su |
| | | | | bsec:align_ |
| | | | | clustal>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``emboss`` | EMBOSS | text | no | `1.7.5 <#s |
| | | | | ubsec:align |
| | | | | _emboss>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``exonerate`` | Exonerate | text | yes | `1 |
| | | | | .7.7 <#subs |
| | | | | ec:align_ex |
| | | | | onerate>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``fasta`` | Aligned | text | yes | `1.7.1 <# |
| | FASTA | | | subsec:alig |
| | | | | n_fasta>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``hhr`` | HH-suite | text | no | `1.7.10 |
| | output | | | <#subsec:al |
| | files | | | ign_hhr>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``maf`` | Multiple | text | yes | `1.7.18 |
| | Alignment | | | <#subsec:al |
| | Format | | | ign_maf>`__ |
| | (MAF) | | | |
+---------------+-------------+-------------+-------------+-------------+
| ``mauve`` | Mauve | text | yes | `1.7.12 <# |
| | eXtended | | | subsec:alig |
| | Multi-FastA | | | n_mauve>`__ |
| | (xmfa) | | | |
| | format | | | |
+---------------+-------------+-------------+-------------+-------------+
| ``msf`` | GCG | text | no | `1.7.6 |
| | Multiple | | | <#subsec:al |
| | Sequence | | | ign_msf>`__ |
| | Format | | | |
| | (MSF) | | | |
+---------------+-------------+-------------+-------------+-------------+
| ``nexus`` | NEXUS | text | yes | `1.7.8 <# |
| | | | | subsec:alig |
| | | | | n_nexus>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``phylip`` | PHYLIP | text | yes | `1.7.4 <#s |
| | output | | | ubsec:align |
| | files | | | _phylip>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``psl`` | Pattern | text | yes | `1.7.16 |
| | Space | | | <#subsec:al |
| | Layout | | | ign_psl>`__ |
| | (PSL) | | | |
+---------------+-------------+-------------+-------------+-------------+
| ``sam`` | Sequence | text | yes | `1.7.13 |
| | Alignment/ | | | <#subsec:al |
| | Map (SAM) | | | ign_sam>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``stockholm`` | Stockholm | text | yes | `1 |
| | | | | .7.3 <#subs |
| | | | | ec:align_st |
| | | | | ockholm>`__ |
+---------------+-------------+-------------+-------------+-------------+
| ``tabular`` | Tabular | text | no | `1.7.9 <#su |
| | output from | | | bsec:align_ |
| | BLAST or | | | tabular>`__ |
| | FASTA | | | |
+---------------+-------------+-------------+-------------+-------------+
.. _`subsec:align_fasta`:
Aligned FASTA
~~~~~~~~~~~~~
Files in the aligned FASTA format store exactly one (pairwise or
multiple) sequence alignment, in which gaps in the alignment are
represented by dashes (``-``). Use ``fmt="fasta"`` to read or write
files in the aligned FASTA format. Note that this is different from
output generated by William Pearson’s FASTA alignment program (parsing
such output is described in section :ref:`subsec:align_tabular`
instead).
The file ``probcons.fa`` in Biopython’s test suite stores one multiple
alignment in the aligned FASTA format. The contents of this file is as
follows:
.. code:: text
>plas_horvu
D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQEEYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVTV
>plas_chlre
--VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRDDYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKIIV
>plas_anava
--VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKITV
>plas_proho
VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNTKLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTITV
>azup_achcy
VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A-------FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVEV
To read this file, use
.. doctest ../Tests/Clustalw lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignment = Align.read("probcons.fa", "fasta")
>>> alignment # doctest: +ELLIPSIS
<Alignment object (5 rows x 101 columns) at ...>
We can print the alignment to see its default representation:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
plas_horv 0 D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQE
plas_chlr 0 --VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRD
plas_anav 0 --VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHK
plas_proh 0 VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNT
azup_achc 0 VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A------
<BLANKLINE>
plas_horv 57 EYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVTV 95
plas_chlr 56 DYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKIIV 94
plas_anav 58 QLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKITV 99
plas_proh 56 KLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTITV 94
azup_achc 51 -FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVEV 88
<BLANKLINE>
or we can print it in the aligned FASTA format:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "fasta"))
>plas_horvu
D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQEEYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVTV
>plas_chlre
--VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRDDYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKIIV
>plas_anava
--VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKITV
>plas_proho
VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNTKLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTITV
>azup_achcy
VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A-------FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVEV
<BLANKLINE>
or any other available format, for example Clustal (see
section :ref:`subsec:align_clustal`):
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "clustal"))
plas_horvu D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-
plas_chlre --VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-
plas_anava --VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKS
plas_proho VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-
azup_achcy VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-
<BLANKLINE>
plas_horvu VD-VSKISQEEYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVT
plas_chlre VN-ADAISRDDYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKII
plas_anava ADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKIT
plas_proho ES-APALSNTKLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTIT
azup_achcy AE-A-------FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVE
<BLANKLINE>
plas_horvu V
plas_chlre V
plas_anava V
plas_proho V
azup_achcy V
<BLANKLINE>
<BLANKLINE>
<BLANKLINE>
The sequences associated with the alignment are ``SeqRecord`` objects:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences
[SeqRecord(seq=Seq('DVLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSGVDVSKI...VTV'), id='plas_horvu', name='<unknown name>', description='', dbxrefs=[]), SeqRecord(seq=Seq('VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSGVNADAIS...IIV'), id='plas_chlre', name='<unknown name>', description='', dbxrefs=[]), SeqRecord(seq=Seq('VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKS...ITV'), id='plas_anava', name='<unknown name>', description='', dbxrefs=[]), SeqRecord(seq=Seq('VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDKVPAGESAPALS...ITV'), id='plas_proho', name='<unknown name>', description='', dbxrefs=[]), SeqRecord(seq=Seq('VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDKGHNVETIKGMIPDGAEAFKS...VEV'), id='azup_achcy', name='<unknown name>', description='', dbxrefs=[])]
Note that these sequences do not contain gaps ("``-``" characters), as
the alignment information is stored in the ``coordinates`` attribute
instead:
.. cont-doctest
.. code:: pycon
>>> print(alignment.coordinates)
[[ 0 1 1 33 34 42 44 48 48 50 50 51 58 73 73 95]
[ 0 0 0 32 33 41 43 47 47 49 49 50 57 72 72 94]
[ 0 0 0 32 33 41 43 47 48 50 51 52 59 74 77 99]
[ 0 1 2 34 35 43 43 47 47 49 49 50 57 72 72 94]
[ 0 1 2 34 34 42 44 48 48 50 50 51 51 66 66 88]]
Use ``Align.write`` to write this alignment to a file (here, we’ll use a
``StringIO`` object instead of a file):
.. cont-doctest
.. code:: pycon
>>> from io import StringIO
>>> stream = StringIO()
>>> Align.write(alignment, stream, "FASTA")
1
>>> print(stream.getvalue())
>plas_horvu
D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQEEYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVTV
>plas_chlre
--VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRDDYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKIIV
>plas_anava
--VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHKQLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKITV
>plas_proho
VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNTKLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTITV
>azup_achcy
VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A-------FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVEV
<BLANKLINE>
Note that ``Align.write`` returns the number of alignments written (1,
in this case).
.. _`subsec:align_clustal`:
ClustalW
~~~~~~~~
Clustal is a set of multiple sequence alignment programs that are
available both as standalone programs as as web servers. The file
``opuntia.aln`` (available online or in the ``Doc/examples``
subdirectory of the Biopython source code) is an output file generated
by Clustal. Its first few lines are
.. code:: text
CLUSTAL 2.1 multiple sequence alignment
gi|6273285|gb|AF191659.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273284|gb|AF191658.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273287|gb|AF191661.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273286|gb|AF191660.1|AF191 TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273290|gb|AF191664.1|AF191 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273289|gb|AF191663.1|AF191 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273291|gb|AF191665.1|AF191 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
******* **** *************************************
...
To parse this file, use
.. doctest examples lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("opuntia.aln", "clustal")
The ``metadata`` attribute on ``alignments`` stores the information
shown in the file header:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata
{'Program': 'CLUSTAL', 'Version': '2.1'}
You can call ``next`` on the ``alignments`` to pull out the first (and
only) alignment:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> print(alignment) # doctest: +ELLIPSIS
gi|627328 0 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi|627328 0 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi|627328 0 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi|627328 0 TATACATAAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi|627329 0 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi|627328 0 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
gi|627329 0 TATACATTAAAGGAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAAAAAAATGAAT
<BLANKLINE>
gi|627328 60 CTAAATGATATACGATTCCACTATGTAAGGTCTTTGAATCATATCATAAAAGACAATGTA
gi|627328 60 CTAAATGATATACGATTCCACTATGTAAGGTCTTTGAATCATATCATAAAAGACAATGTA
gi|627328 60 CTAAATGATATACGATTCCACTATGTAAGGTCTTTGAATCATATCATAAAAGACAATGTA
gi|627328 60 CTAAATGATATACGATTCCACTA...
If you are not interested in the metadata, then it is more convenient to
use the ``Align.read`` function, as anyway each Clustal file contains
only one alignment:
.. cont-doctest
.. code:: pycon
>>> from Bio import Align
>>> alignment = Align.read("opuntia.aln", "clustal")
The consensus line below each alignment block in the Clustal output file
contains an asterisk if the sequence is conserved at each position. This
information is stored in the ``column_annotations`` attribute of the
``alignment``:
.. cont-doctest
.. code:: pycon
>>> alignment.column_annotations # doctest: +ELLIPSIS
{'clustal_consensus': '******* **** **********************************...
Printing the ``alignment`` in ``clustal`` format will show the sequence
alignment, but does not include the metadata:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "clustal")) # doctest: +ELLIPSIS
gi|6273285|gb|AF191659.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273284|gb|AF191658.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273287|gb|AF191661.1|AF191 TATACATT...
Writing the ``alignments`` in ``clustal`` format will include both the
metadata and the sequence alignment:
.. cont-doctest
.. code:: pycon
>>> from io import StringIO
>>> stream = StringIO()
>>> Align.write(alignments, stream, "clustal")
1
>>> print(stream.getvalue()) # doctest: +ELLIPSIS
CLUSTAL 2.1 multiple sequence alignment
<BLANKLINE>
<BLANKLINE>
gi|6273285|gb|AF191659.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273284|gb|AF191658.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273287|gb|AF191661.1|AF191 TATACATTAAAGAAGGGGGATGCGGATAAATGGAAAGGCGAAAGAAAGAA
gi|6273286|gb|AF191660.1|AF191 TATACATAAAAGAAG...
Use an ``Alignments`` (plural) object (see
Section :ref:`sec:alignments`) if you are creating alignments by
hand, and would like to include metadata information in the output.
.. _`subsec:align_stockholm`:
Stockholm
~~~~~~~~~
This is an example of a protein sequence alignment in the Stockholm file
format used by PFAM:
.. code:: text
# STOCKHOLM 1.0
#=GF ID 7kD_DNA_binding
#=GF AC PF02294.20
#=GF DE 7kD DNA-binding domain
#=GF AU Mian N;0000-0003-4284-4749
#=GF AU Bateman A;0000-0002-6982-4660
#=GF SE Pfam-B_8148 (release 5.2)
#=GF GA 25.00 25.00;
#=GF TC 26.60 46.20;
#=GF NC 23.20 19.20;
#=GF BM hmmbuild HMM.ann SEED.ann
#=GF SM hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
#=GF TP Domain
#=GF CL CL0049
#=GF RN [1]
#=GF RM 3130377
#=GF RT Microsequence analysis of DNA-binding proteins 7a, 7b, and 7e
#=GF RT from the archaebacterium Sulfolobus acidocaldarius.
#=GF RA Choli T, Wittmann-Liebold B, Reinhardt R;
#=GF RL J Biol Chem 1988;263:7087-7093.
#=GF DR INTERPRO; IPR003212;
#=GF DR SCOP; 1sso; fa;
#=GF DR SO; 0000417; polypeptide_domain;
#=GF CC This family contains members of the hyper-thermophilic
#=GF CC archaebacterium 7kD DNA-binding/endoribonuclease P2 family.
#=GF CC There are five 7kD DNA-binding proteins, 7a-7e, found as
#=GF CC monomers in the cell. Protein 7e shows the tightest DNA-binding
#=GF CC ability.
#=GF SQ 3
#=GS DN7_METS5/4-61 AC A4YEA2.1
#=GS DN7A_SACS2/3-61 AC P61991.2
#=GS DN7A_SACS2/3-61 DR PDB; 1SSO A; 2-60;
#=GS DN7A_SACS2/3-61 DR PDB; 1JIC A; 2-60;
#=GS DN7A_SACS2/3-61 DR PDB; 2CVR A; 2-60;
#=GS DN7A_SACS2/3-61 DR PDB; 1B4O A; 2-60;
#=GS DN7E_SULAC/3-60 AC P13125.2
DN7_METS5/4-61 KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD.NGKTGRGAVSEKDAPKELLNMIGK
DN7A_SACS2/3-61 TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
#=GR DN7A_SACS2/3-61 SS EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT
DN7E_SULAC/3-60 KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD.NGKTGRGAVSEKDAPKELMDMLAR
#=GC SS_cons EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT
#=GC seq_cons KVKFKYKGEEKEVDISKIKKVWRVGKMVSFTYDD.NGKTGRGAVSEKDAPKELLsMLuK
//
This is the seed alignment for the 7kD_DNA_binding (PF02294.20) PFAM
entry, downloaded from the InterPro website
(https://www.ebi.ac.uk/interpro/). This version of the PFAM entry is
also available in the Biopython source distribution as the file
``pfam2.seed.txt`` in the subdirectory ``Tests/Stockholm/``. We can load
this file as follows:
.. doctest ../Tests/Stockholm lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignment = Align.read("pfam2.seed.txt", "stockholm")
>>> alignment # doctest: +ELLIPSIS
<Alignment object (3 rows x 59 columns) at ...>
We can print out a summary of the alignment:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
DN7_METS5 0 KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD-NGKTGRGAVSEKDAPKELLNMIGK
DN7A_SACS 0 TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
DN7E_SULA 0 KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD-NGKTGRGAVSEKDAPKELMDMLAR
<BLANKLINE>
DN7_METS5 58
DN7A_SACS 59
DN7E_SULA 58
<BLANKLINE>
You could also call Python’s built-in ``format`` function on the
alignment object to show it in a particular file format (see
section :ref:`subsec:align_printing` for details), for example in
the Stockholm format to regenerate the file:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "stockholm"))
# STOCKHOLM 1.0
#=GF ID 7kD_DNA_binding
#=GF AC PF02294.20
#=GF DE 7kD DNA-binding domain
#=GF AU Mian N;0000-0003-4284-4749
#=GF AU Bateman A;0000-0002-6982-4660
#=GF SE Pfam-B_8148 (release 5.2)
#=GF GA 25.00 25.00;
#=GF TC 26.60 46.20;
#=GF NC 23.20 19.20;
#=GF BM hmmbuild HMM.ann SEED.ann
#=GF SM hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
#=GF TP Domain
#=GF CL CL0049
#=GF RN [1]
#=GF RM 3130377
#=GF RT Microsequence analysis of DNA-binding proteins 7a, 7b, and 7e from
#=GF RT the archaebacterium Sulfolobus acidocaldarius.
#=GF RA Choli T, Wittmann-Liebold B, Reinhardt R;
#=GF RL J Biol Chem 1988;263:7087-7093.
#=GF DR INTERPRO; IPR003212;
#=GF DR SCOP; 1sso; fa;
#=GF DR SO; 0000417; polypeptide_domain;
#=GF CC This family contains members of the hyper-thermophilic
#=GF CC archaebacterium 7kD DNA-binding/endoribonuclease P2 family. There
#=GF CC are five 7kD DNA-binding proteins, 7a-7e, found as monomers in the
#=GF CC cell. Protein 7e shows the tightest DNA-binding ability.
#=GF SQ 3
#=GS DN7_METS5/4-61 AC A4YEA2.1
#=GS DN7A_SACS2/3-61 AC P61991.2
#=GS DN7A_SACS2/3-61 DR PDB; 1SSO A; 2-60;
#=GS DN7A_SACS2/3-61 DR PDB; 1JIC A; 2-60;
#=GS DN7A_SACS2/3-61 DR PDB; 2CVR A; 2-60;
#=GS DN7A_SACS2/3-61 DR PDB; 1B4O A; 2-60;
#=GS DN7E_SULAC/3-60 AC P13125.2
DN7_METS5/4-61 KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD.NGKTGRGAVSEKDAPKELLNMIGK
DN7A_SACS2/3-61 TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
#=GR DN7A_SACS2/3-61 SS EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT
DN7E_SULAC/3-60 KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD.NGKTGRGAVSEKDAPKELMDMLAR
#=GC SS_cons EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT
#=GC seq_cons KVKFKYKGEEKEVDISKIKKVWRVGKMVSFTYDD.NGKTGRGAVSEKDAPKELLsMLuK
//
<BLANKLINE>
or alternatively as aligned FASTA (see section
:ref:`subsec:align_fasta`):
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "fasta"))
>DN7_METS5/4-61
KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD-NGKTGRGAVSEKDAPKELLNMIGK
>DN7A_SACS2/3-61
TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
>DN7E_SULAC/3-60
KVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD-NGKTGRGAVSEKDAPKELMDMLAR
<BLANKLINE>
or in the PHYLIP format (see section :ref:`subsec:align_phylip`):
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "phylip"))
3 59
DN7_METS5/KIKFKYKGQDLEVDISKVKKVWKVGKMVSFTYDD-NGKTGRGAVSEKDAPKELLNMIGK
DN7A_SACS2TVKFKYKGEEKQVDISKIKKVWRVGKMISFTYDEGGGKTGRGAVSEKDAPKELLQMLEK
DN7E_SULACKVRFKYKGEEKEVDTSKIKKVWRVGKMVSFTYDD-NGKTGRGAVSEKDAPKELMDMLAR
<BLANKLINE>
General information of the alignment is stored under the ``annotations``
attribute of the ``Alignment`` object, for example
.. cont-doctest
.. code:: pycon
>>> alignment.annotations["identifier"]
'7kD_DNA_binding'
>>> alignment.annotations["clan"]
'CL0049'
>>> alignment.annotations["database references"]
[{'reference': 'INTERPRO; IPR003212;'}, {'reference': 'SCOP; 1sso; fa;'}, {'reference': 'SO; 0000417; polypeptide_domain;'}]
The individual sequences in this alignment are stored under
``alignment.sequences`` as ``SeqRecord``\ s, including any annotations
associated with each sequence record:
.. cont-doctest
.. code:: pycon
>>> for record in alignment.sequences:
... print("%s %s %s" % (record.id, record.annotations["accession"], record.dbxrefs))
...
DN7_METS5/4-61 A4YEA2.1 []
DN7A_SACS2/3-61 P61991.2 ['PDB; 1SSO A; 2-60;', 'PDB; 1JIC A; 2-60;', 'PDB; 2CVR A; 2-60;', 'PDB; 1B4O A; 2-60;']
DN7E_SULAC/3-60 P13125.2 []
The secondary structure of the second sequence (``DN7A_SACS2/3-61``) is
stored in the ``letter_annotations`` attribute of the ``SeqRecord``:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences[0].letter_annotations
{}
>>> alignment.sequences[1].letter_annotations
{'secondary structure': 'EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT'}
>>> alignment.sequences[2].letter_annotations
{}
The consensus sequence and secondary structure are associated with the
sequence alignment as a whole, and are therefore stored in the
``column_annotations`` attribute of the ``Alignment`` object:
.. cont-doctest
.. code:: pycon
>>> alignment.column_annotations # doctest: +NORMALIZE_WHITESPACE
{'consensus secondary structure': 'EEEEESSSSEEEEETTTEEEEEESSSSEEEEEE-SSSSEEEEEEETTTS-CHHHHHHTT',
'consensus sequence': 'KVKFKYKGEEKEVDISKIKKVWRVGKMVSFTYDD.NGKTGRGAVSEKDAPKELLsMLuK'}
.. _`subsec:align_phylip`:
PHYLIP output files
~~~~~~~~~~~~~~~~~~~
The PHYLIP format for sequence alignments is derived from the PHYLogeny
Interference Package from Joe Felsenstein. Files in the PHYLIP format
start with two numbers for the number of rows and columns in the printed
alignment. The sequence alignment itself can be in sequential format or
in interleaved format. An example of the former is the
``sequential.phy`` file (provided in ``Tests/Phylip/`` in the Biopython
source distribution):
.. code:: text
3 384
CYS1_DICDI -----MKVIL LFVLAVFTVF VSS------- --------RG IPPEEQ---- --------SQ
FLEFQDKFNK KY-SHEEYLE RFEIFKSNLG KIEELNLIAI NHKADTKFGV NKFADLSSDE
FKNYYLNNKE AIFTDDLPVA DYLDDEFINS IPTAFDWRTR G-AVTPVKNQ GQCGSCWSFS
TTGNVEGQHF ISQNKLVSLS EQNLVDCDHE CMEYEGEEAC DEGCNGGLQP NAYNYIIKNG
GIQTESSYPY TAETGTQCNF NSANIGAKIS NFTMIP-KNE TVMAGYIVST GPLAIAADAV
E-WQFYIGGV F-DIPCN--P NSLDHGILIV GYSAKNTIFR KNMPYWIVKN SWGADWGEQG
YIYLRRGKNT CGVSNFVSTS II--
ALEU_HORVU MAHARVLLLA LAVLATAAVA VASSSSFADS NPIRPVTDRA ASTLESAVLG ALGRTRHALR
FARFAVRYGK SYESAAEVRR RFRIFSESLE EVRSTN---- RKGLPYRLGI NRFSDMSWEE
FQATRL-GAA QTCSATLAGN HLMRDA--AA LPETKDWRED G-IVSPVKNQ AHCGSCWTFS
TTGALEAAYT QATGKNISLS EQQLVDCAGG FNNF------ --GCNGGLPS QAFEYIKYNG
GIDTEESYPY KGVNGV-CHY KAENAAVQVL DSVNITLNAE DELKNAVGLV RPVSVAFQVI
DGFRQYKSGV YTSDHCGTTP DDVNHAVLAV GYGVENGV-- ---PYWLIKN SWGADWGDNG
YFKMEMGKNM CAIATCASYP VVAA
CATH_HUMAN ------MWAT LPLLCAGAWL LGV------- -PVCGAAELS VNSLEK---- --------FH
FKSWMSKHRK TY-STEEYHH RLQTFASNWR KINAHN---- NGNHTFKMAL NQFSDMSFAE
IKHKYLWSEP QNCSAT--KS NYLRGT--GP YPPSVDWRKK GNFVSPVKNQ GACGSCWTFS
TTGALESAIA IATGKMLSLA EQQLVDCAQD FNNY------ --GCQGGLPS QAFEYILYNK
GIMGEDTYPY QGKDGY-CKF QPGKAIGFVK DVANITIYDE EAMVEAVALY NPVSFAFEVT
QDFMMYRTGI YSSTSCHKTP DKVNHAVLAV GYGEKNGI-- ---PYWIVKN SWGPQWGMNG
YFLIERGKNM CGLAACASYP IPLV
In the sequential format, the complete alignment for one sequence is
shown before proceeding to the next sequence. In the interleaved format,
the alignments for different sequences are next to each other, for
example in the file ``interlaced.phy`` (provided in ``Tests/Phylip/`` in
the Biopython source distribution):
.. code:: text
3 384
CYS1_DICDI -----MKVIL LFVLAVFTVF VSS------- --------RG IPPEEQ---- --------SQ
ALEU_HORVU MAHARVLLLA LAVLATAAVA VASSSSFADS NPIRPVTDRA ASTLESAVLG ALGRTRHALR
CATH_HUMAN ------MWAT LPLLCAGAWL LGV------- -PVCGAAELS VNSLEK---- --------FH
FLEFQDKFNK KY-SHEEYLE RFEIFKSNLG KIEELNLIAI NHKADTKFGV NKFADLSSDE
FARFAVRYGK SYESAAEVRR RFRIFSESLE EVRSTN---- RKGLPYRLGI NRFSDMSWEE
FKSWMSKHRK TY-STEEYHH RLQTFASNWR KINAHN---- NGNHTFKMAL NQFSDMSFAE
FKNYYLNNKE AIFTDDLPVA DYLDDEFINS IPTAFDWRTR G-AVTPVKNQ GQCGSCWSFS
FQATRL-GAA QTCSATLAGN HLMRDA--AA LPETKDWRED G-IVSPVKNQ AHCGSCWTFS
IKHKYLWSEP QNCSAT--KS NYLRGT--GP YPPSVDWRKK GNFVSPVKNQ GACGSCWTFS
TTGNVEGQHF ISQNKLVSLS EQNLVDCDHE CMEYEGEEAC DEGCNGGLQP NAYNYIIKNG
TTGALEAAYT QATGKNISLS EQQLVDCAGG FNNF------ --GCNGGLPS QAFEYIKYNG
TTGALESAIA IATGKMLSLA EQQLVDCAQD FNNY------ --GCQGGLPS QAFEYILYNK
GIQTESSYPY TAETGTQCNF NSANIGAKIS NFTMIP-KNE TVMAGYIVST GPLAIAADAV
GIDTEESYPY KGVNGV-CHY KAENAAVQVL DSVNITLNAE DELKNAVGLV RPVSVAFQVI
GIMGEDTYPY QGKDGY-CKF QPGKAIGFVK DVANITIYDE EAMVEAVALY NPVSFAFEVT
E-WQFYIGGV F-DIPCN--P NSLDHGILIV GYSAKNTIFR KNMPYWIVKN SWGADWGEQG
DGFRQYKSGV YTSDHCGTTP DDVNHAVLAV GYGVENGV-- ---PYWLIKN SWGADWGDNG
QDFMMYRTGI YSSTSCHKTP DKVNHAVLAV GYGEKNGI-- ---PYWIVKN SWGPQWGMNG
YIYLRRGKNT CGVSNFVSTS II--
YFKMEMGKNM CAIATCASYP VVAA
YFLIERGKNM CGLAACASYP IPLV
The parser in ``Bio.Align`` detects from the file contents if it is in
the sequential or in the interleaved format, and then parses it
appropriately.
.. doctest ../Tests/Phylip lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignment = Align.read("sequential.phy", "phylip")
>>> alignment # doctest: +ELLIPSIS
<Alignment object (3 rows x 384 columns) at ...>
>>> alignment2 = Align.read("interlaced.phy", "phylip")
>>> alignment2 # doctest: +ELLIPSIS
<Alignment object (3 rows x 384 columns) at ...>
>>> alignment == alignment2
True
Here, two alignments are considered to be equal if they have the same
sequence contents and the same alignment coordinates.
.. cont-doctest
.. code:: pycon
>>> alignment.shape
(3, 384)
>>> print(alignment)
CYS1_DICD 0 -----MKVILLFVLAVFTVFVSS---------------RGIPPEEQ------------SQ
ALEU_HORV 0 MAHARVLLLALAVLATAAVAVASSSSFADSNPIRPVTDRAASTLESAVLGALGRTRHALR
CATH_HUMA 0 ------MWATLPLLCAGAWLLGV--------PVCGAAELSVNSLEK------------FH
<BLANKLINE>
CYS1_DICD 28 FLEFQDKFNKKY-SHEEYLERFEIFKSNLGKIEELNLIAINHKADTKFGVNKFADLSSDE
ALEU_HORV 60 FARFAVRYGKSYESAAEVRRRFRIFSESLEEVRSTN----RKGLPYRLGINRFSDMSWEE
CATH_HUMA 34 FKSWMSKHRKTY-STEEYHHRLQTFASNWRKINAHN----NGNHTFKMALNQFSDMSFAE
<BLANKLINE>
CYS1_DICD 87 FKNYYLNNKEAIFTDDLPVADYLDDEFINSIPTAFDWRTRG-AVTPVKNQGQCGSCWSFS
ALEU_HORV 116 FQATRL-GAAQTCSATLAGNHLMRDA--AALPETKDWREDG-IVSPVKNQAHCGSCWTFS
CATH_HUMA 89 IKHKYLWSEPQNCSAT--KSNYLRGT--GPYPPSVDWRKKGNFVSPVKNQGACGSCWTFS
<BLANKLINE>
CYS1_DICD 146 TTGNVEGQHFISQNKLVSLSEQNLVDCDHECMEYEGEEACDEGCNGGLQPNAYNYIIKNG
ALEU_HORV 172 TTGALEAAYTQATGKNISLSEQQLVDCAGGFNNF--------GCNGGLPSQAFEYIKYNG
CATH_HUMA 145 TTGALESAIAIATGKMLSLAEQQLVDCAQDFNNY--------GCQGGLPSQAFEYILYNK
<BLANKLINE>
CYS1_DICD 206 GIQTESSYPYTAETGTQCNFNSANIGAKISNFTMIP-KNETVMAGYIVSTGPLAIAADAV
ALEU_HORV 224 GIDTEESYPYKGVNGV-CHYKAENAAVQVLDSVNITLNAEDELKNAVGLVRPVSVAFQVI
CATH_HUMA 197 GIMGEDTYPYQGKDGY-CKFQPGKAIGFVKDVANITIYDEEAMVEAVALYNPVSFAFEVT
<BLANKLINE>
CYS1_DICD 265 E-WQFYIGGVF-DIPCN--PNSLDHGILIVGYSAKNTIFRKNMPYWIVKNSWGADWGEQG
ALEU_HORV 283 DGFRQYKSGVYTSDHCGTTPDDVNHAVLAVGYGVENGV-----PYWLIKNSWGADWGDNG
CATH_HUMA 256 QDFMMYRTGIYSSTSCHKTPDKVNHAVLAVGYGEKNGI-----PYWIVKNSWGPQWGMNG
<BLANKLINE>
CYS1_DICD 321 YIYLRRGKNTCGVSNFVSTSII-- 343
ALEU_HORV 338 YFKMEMGKNMCAIATCASYPVVAA 362
CATH_HUMA 311 YFLIERGKNMCGLAACASYPIPLV 335
<BLANKLINE>
When outputting the alignment in PHYLIP format, ``Bio.Align`` writes
each of the aligned sequences on one line:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "phylip"))
3 384
CYS1_DICDI-----MKVILLFVLAVFTVFVSS---------------RGIPPEEQ------------SQFLEFQDKFNKKY-SHEEYLERFEIFKSNLGKIEELNLIAINHKADTKFGVNKFADLSSDEFKNYYLNNKEAIFTDDLPVADYLDDEFINSIPTAFDWRTRG-AVTPVKNQGQCGSCWSFSTTGNVEGQHFISQNKLVSLSEQNLVDCDHECMEYEGEEACDEGCNGGLQPNAYNYIIKNGGIQTESSYPYTAETGTQCNFNSANIGAKISNFTMIP-KNETVMAGYIVSTGPLAIAADAVE-WQFYIGGVF-DIPCN--PNSLDHGILIVGYSAKNTIFRKNMPYWIVKNSWGADWGEQGYIYLRRGKNTCGVSNFVSTSII--
ALEU_HORVUMAHARVLLLALAVLATAAVAVASSSSFADSNPIRPVTDRAASTLESAVLGALGRTRHALRFARFAVRYGKSYESAAEVRRRFRIFSESLEEVRSTN----RKGLPYRLGINRFSDMSWEEFQATRL-GAAQTCSATLAGNHLMRDA--AALPETKDWREDG-IVSPVKNQAHCGSCWTFSTTGALEAAYTQATGKNISLSEQQLVDCAGGFNNF--------GCNGGLPSQAFEYIKYNGGIDTEESYPYKGVNGV-CHYKAENAAVQVLDSVNITLNAEDELKNAVGLVRPVSVAFQVIDGFRQYKSGVYTSDHCGTTPDDVNHAVLAVGYGVENGV-----PYWLIKNSWGADWGDNGYFKMEMGKNMCAIATCASYPVVAA
CATH_HUMAN------MWATLPLLCAGAWLLGV--------PVCGAAELSVNSLEK------------FHFKSWMSKHRKTY-STEEYHHRLQTFASNWRKINAHN----NGNHTFKMALNQFSDMSFAEIKHKYLWSEPQNCSAT--KSNYLRGT--GPYPPSVDWRKKGNFVSPVKNQGACGSCWTFSTTGALESAIAIATGKMLSLAEQQLVDCAQDFNNY--------GCQGGLPSQAFEYILYNKGIMGEDTYPYQGKDGY-CKFQPGKAIGFVKDVANITIYDEEAMVEAVALYNPVSFAFEVTQDFMMYRTGIYSSTSCHKTPDKVNHAVLAVGYGEKNGI-----PYWIVKNSWGPQWGMNGYFLIERGKNMCGLAACASYPIPLV
<BLANKLINE>
We can write the alignment in PHYLIP format, parse the result, and
confirm it is the same as the original alignment object:
.. cont-doctest
.. code:: pycon
>>> from io import StringIO
>>> stream = StringIO()
>>> Align.write(alignment, stream, "phylip")
1
>>> stream.seek(0)
0
>>> alignment3 = Align.read(stream, "phylip")
>>> alignment == alignment3
True
>>> [record.id for record in alignment.sequences]
['CYS1_DICDI', 'ALEU_HORVU', 'CATH_HUMAN']
>>> [record.id for record in alignment3.sequences]
['CYS1_DICDI', 'ALEU_HORVU', 'CATH_HUMAN']
.. _`subsec:align_emboss`:
EMBOSS
~~~~~~
EMBOSS (European Molecular Biology Open Software Suite) is a set of
open-source software tools for molecular biology and
bioinformatics [Rice2000]_. It includes software such
as ``needle`` and ``water`` for pairwise sequence alignment. This is an
example of output generated by the ``water`` program for Smith-Waterman
local pairwise sequence alignment (available as ``water.txt`` in the
``Tests/Emboss`` directory of the Biopython distribution):
.. code:: text
########################################
# Program: water
# Rundate: Wed Jan 16 17:23:19 2002
# Report_file: stdout
########################################
#=======================================
#
# Aligned_sequences: 2
# 1: IXI_234
# 2: IXI_235
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 131
# Identity: 112/131 (85.5%)
# Similarity: 112/131 (85.5%)
# Gaps: 19/131 (14.5%)
# Score: 591.5
#
#
#=======================================
IXI_234 1 TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQAT 50
||||||||||||||| ||||||||||||||||||||||||||
IXI_235 1 TSPASIRPPAGPSSR---------RPSPPGPRRPTGRPCCSAAPRRPQAT 41
IXI_234 51 GGWKTCSGTCTTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAG 100
|||||||||||||||||||||||| ||||||||||||||||
IXI_235 42 GGWKTCSGTCTTSTSTRHRGRSGW----------RASRKSMRAACSRSAG 81
IXI_234 101 SRPNRFAPTLMSSCITSTTGPPAWAGDRSHE 131
|||||||||||||||||||||||||||||||
IXI_235 82 SRPNRFAPTLMSSCITSTTGPPAWAGDRSHE 112
#---------------------------------------
#---------------------------------------
As this output file contains only one alignment, we can use
``Align.read`` to extract it directly. Here, instead we will use
``Align.parse`` so we can see the metadata of this ``water`` run:
.. doctest ../Tests/Emboss lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("water.txt", "emboss")
The ``metadata`` attribute of ``alignments`` stores the information
shown in the header of the file, including the program used to generate
the output, the date and time the program was run, the output file name,
and the specific alignment file format that was used (assumed to be
``srspair`` by default):
.. cont-doctest
.. code:: pycon
>>> alignments.metadata
{'Align_format': 'srspair', 'Program': 'water', 'Rundate': 'Wed Jan 16 17:23:19 2002', 'Report_file': 'stdout'}
To pull out the alignment, we use
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> alignment # doctest: +ELLIPSIS
<Alignment object (2 rows x 131 columns) at ...>
>>> alignment.shape
(2, 131)
>>> print(alignment)
IXI_234 0 TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTC
0 |||||||||||||||---------||||||||||||||||||||||||||||||||||||
IXI_235 0 TSPASIRPPAGPSSR---------RPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTC
<BLANKLINE>
IXI_234 60 TTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTG
60 ||||||||||||||----------||||||||||||||||||||||||||||||||||||
IXI_235 51 TTSTSTRHRGRSGW----------RASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTG
<BLANKLINE>
IXI_234 120 PPAWAGDRSHE 131
120 ||||||||||| 131
IXI_235 101 PPAWAGDRSHE 112
<BLANKLINE>
>>> print(alignment.coordinates)
[[ 0 15 24 74 84 131]
[ 0 15 15 65 65 112]]
We can use indices to extract specific parts of the alignment:
.. cont-doctest
.. code:: pycon
>>> alignment[0]
'TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTGPPAWAGDRSHE'
>>> alignment[1]
'TSPASIRPPAGPSSR---------RPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGW----------RASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTGPPAWAGDRSHE'
>>> alignment[1, 10:30]
'GPSSR---------RPSPPG'
The ``annotations`` attribute of the ``alignment`` stores the
information associated with this alignment specifically:
.. cont-doctest
.. code:: pycon
>>> alignment.annotations
{'Matrix': 'EBLOSUM62', 'Gap_penalty': 10.0, 'Extend_penalty': 0.5, 'Identity': 112, 'Similarity': 112, 'Gaps': 19, 'Score': 591.5}
The number of gaps, identities, and mismatches can also be obtained by
calling the ``counts`` method on the ``alignment`` object:
.. cont-doctest
.. code:: pycon
>>> alignment.counts()
AlignmentCounts(gaps=19, identities=112, mismatches=0)
where ``AlignmentCounts`` is a ``namedtuple`` in the ``collections``
module in Python’s standard library.
The consensus line shown between the two sequences is stored in the
``column_annotations`` attribute:
.. cont-doctest
.. code:: pycon
>>> alignment.column_annotations
{'emboss_consensus': '||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||'}
Use the ``format`` function (or the ``format`` method) to print the
alignment in other formats, for example in the PHYLIP format (see
section :ref:`subsec:align_phylip`):
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "phylip"))
2 131
IXI_234 TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGWSARTTTAACLRASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTGPPAWAGDRSHE
IXI_235 TSPASIRPPAGPSSR---------RPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTSTSTRHRGRSGW----------RASRKSMRAACSRSAGSRPNRFAPTLMSSCITSTTGPPAWAGDRSHE
<BLANKLINE>
We can use ``alignment.sequences`` to get the individual sequences.
However, as this is a pairwise alignment, we can also use
``alignment.target`` and ``alignment.query`` to get the target and query
sequences:
.. cont-doctest
.. code:: pycon
>>> alignment.target
SeqRecord(seq=Seq('TSPASIRPPAGPSSRPAMVSSRRTRPSPPGPRRPTGRPCCSAAPRRPQATGGWK...SHE'), id='IXI_234', name='<unknown name>', description='<unknown description>', dbxrefs=[])
>>> alignment.query
SeqRecord(seq=Seq('TSPASIRPPAGPSSRRPSPPGPRRPTGRPCCSAAPRRPQATGGWKTCSGTCTTS...SHE'), id='IXI_235', name='<unknown name>', description='<unknown description>', dbxrefs=[])
Currently, Biopython does not support writing sequence alignments in the
output formats defined by EMBOSS.
.. _`subsec:align_msf`:
GCG Multiple Sequence Format (MSF)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Multiple Sequence Format (MSF) was created to store multiple
sequence alignments generated by the GCG (Genetics Computer Group) set
of programs. The file ``W_prot.msf`` in the ``Tests/msf`` directory of
the Biopython distribution is an example of a sequence alignment file in
the MSF format This file shows an alignment of 11 protein sequences:
.. code:: text
!!AA_MULTIPLE_ALIGNMENT
MSF: 99 Type: P Oct 18, 2017 11:35 Check: 0 ..
Name: W*01:01:01:01 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:02 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:03 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:04 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:05 Len: 99 Check: 7236 Weight: 1.00
Name: W*01:01:01:06 Len: 99 Check: 7236 Weight: 1.00
Name: W*02:01 Len: 93 Check: 9483 Weight: 1.00
Name: W*03:01:01:01 Len: 93 Check: 9974 Weight: 1.00
Name: W*03:01:01:02 Len: 93 Check: 9974 Weight: 1.00
Name: W*04:01 Len: 93 Check: 9169 Weight: 1.00
Name: W*05:01 Len: 99 Check: 7331 Weight: 1.00
//
W*01:01:01:01 GLTPFNGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*01:01:01:02 GLTPFNGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*01:01:01:03 GLTPFNGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*01:01:01:04 GLTPFNGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*01:01:01:05 GLTPFNGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*01:01:01:06 GLTPFNGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*02:01 GLTPSNGYTA ATWTRTAASS VGMNIPYDGA SYLVRNQELR SWTAADKAAQ
W*03:01:01:01 GLTPSSGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*03:01:01:02 GLTPSSGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*04:01 GLTPSNGYTA ATWTRTAASS VGMNIPYDGA SYLVRNQELR SWTAADKAAQ
W*05:01 GLTPSSGYTA ATWTRTAVSS VGMNIPYHGA SYLVRNQELR SWTAADKAAQ
W*01:01:01:01 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK DSHDPPPHL
W*01:01:01:02 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK DSHDPPPHL
W*01:01:01:03 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK DSHDPPPHL
W*01:01:01:04 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK DSHDPPPHL
W*01:01:01:05 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK DSHDPPPHL
W*01:01:01:06 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK DSHDPPPHL
W*02:01 MPWRRNMQSC SKPTCREGGR SGSAKSLRMG RRRCTAQNPK RLT
W*03:01:01:01 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK RLT
W*03:01:01:02 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK RLT
W*04:01 MPWRRNMQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK RLT
W*05:01 MPWRRNRQSC SKPTCREGGR SGSAKSLRMG RRGCSAQNPK DSHDPPPHL
To parse this file with Biopython, use
.. doctest ../Tests/msf lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignment = Align.read("W_prot.msf", "msf")
The parser skips all lines up to and including the line starting with
"``MSF:``". The following lines (until the "``//``" demarcation) are
read by the parser to verify the length of each sequence. The alignment
section (after the "``//``" demarcation) is read by the parser and
stored as an ``Alignment`` object:
.. cont-doctest
.. code:: pycon
>>> alignment # doctest: +ELLIPSIS
<Alignment object (11 rows x 99 columns) at ...>
>>> print(alignment)
W*01:01:0 0 GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 0 GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 0 GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 0 GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 0 GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*01:01:0 0 GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*02:01 0 GLTPSNGYTAATWTRTAASSVGMNIPYDGASYLVRNQELRSWTAADKAAQMPWRRNMQSC
W*03:01:0 0 GLTPSSGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*03:01:0 0 GLTPSSGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
W*04:01 0 GLTPSNGYTAATWTRTAASSVGMNIPYDGASYLVRNQELRSWTAADKAAQMPWRRNMQSC
W*05:01 0 GLTPSSGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWRRNRQSC
<BLANKLINE>
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*01:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
W*02:01 60 SKPTCREGGRSGSAKSLRMGRRRCTAQNPKRLT------ 93
W*03:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKRLT------ 93
W*03:01:0 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKRLT------ 93
W*04:01 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKRLT------ 93
W*05:01 60 SKPTCREGGRSGSAKSLRMGRRGCSAQNPKDSHDPPPHL 99
<BLANKLINE>
The sequences and their names are stored in the ``alignment.sequences``
attribute:
.. cont-doctest
.. code:: pycon
>>> len(alignment.sequences)
11
>>> alignment.sequences[0].id
'W*01:01:01:01'
>>> alignment.sequences[0].seq
Seq('GLTPFNGYTAATWTRTAVSSVGMNIPYHGASYLVRNQELRSWTAADKAAQMPWR...PHL')
The alignment coordinates are stored in the ``alignment.coordinates``
attribute:
.. cont-doctest
.. code:: pycon
>>> print(alignment.coordinates)
[[ 0 93 99]
[ 0 93 99]
[ 0 93 99]
[ 0 93 99]
[ 0 93 99]
[ 0 93 99]
[ 0 93 93]
[ 0 93 93]
[ 0 93 93]
[ 0 93 93]
[ 0 93 99]]
Currently, Biopython does not support writing sequence alignments in the
MSF format.
.. _`subsec:align_exonerate`:
Exonerate
~~~~~~~~~
Exonerate is a generic program for pairwise sequence
alignments [Slater2005]_. The sequence alignments found
by Exonerate can be output in a human-readable form, in the "cigar"
(Compact Idiosyncratic Gapped Alignment Report) format, or in the
"vulgar" (Verbose Useful Labelled Gapped Alignment Report) format. The
user can request to include one or more of these formats in the output.
The parser in ``Bio.Align`` can only parse alignments in the cigar or
vulgar formats, and will not parse output that includes alignments in
human-readable format.
The file ``exn_22_m_cdna2genome_vulgar.exn`` in the Biopython test suite
is an example of an Exonerate output file showing the alignments in
vulgar format:
.. code:: text
Command line: [exonerate -m cdna2genome ../scer_cad1.fa /media/Waterloo/Downloads/genomes/scer_s288c/scer_s288c.fa --bestn 3 --showalignment no --showcigar no --showvulgar yes]
Hostname: [blackbriar]
vulgar: gi|296143771|ref|NM_001180731.1| 0 1230 + gi|330443520|ref|NC_001136.10| 1319275 1318045 - 6146 M 1 1 C 3 3 M 1226 1226
vulgar: gi|296143771|ref|NM_001180731.1| 1230 0 - gi|330443520|ref|NC_001136.10| 1318045 1319275 + 6146 M 129 129 C 3 3 M 1098 1098
vulgar: gi|296143771|ref|NM_001180731.1| 0 516 + gi|330443688|ref|NC_001145.3| 85010 667216 + 518 M 11 11 G 1 0 M 15 15 G 2 0 M 4 4 G 1 0 M 1 1 G 1 0 M 8 8 G 4 0 M 17 17 5 0 2 I 0 168904 3 0 2 M 4 4 G 0 1 M 8 8 G 2 0 M 3 3 G 1 0 M 33 33 G 0 2 M 7 7 G 0 1 M 102 102 5 0 2 I 0 96820 3 0 2 M 14 14 G 0 2 M 10 10 G 2 0 M 5 5 G 0 2 M 10 10 G 2 0 M 4 4 G 0 1 M 20 20 G 1 0 M 15 15 G 0 1 M 5 5 G 3 0 M 4 4 5 0 2 I 0 122114 3 0 2 M 20 20 G 0 5 M 6 6 5 0 2 I 0 193835 3 0 2 M 12 12 G 0 2 M 5 5 G 1 0 M 7 7 G 0 2 M 1 1 G 0 1 M 12 12 C 75 75 M 6 6 G 1 0 M 4 4 G 0 1 M 2 2 G 0 1 M 3 3 G 0 1 M 41 41
-- completed exonerate analysis
This file includes three alignments. To parse this file, use
.. doctest ../Tests/Exonerate lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("exn_22_m_cdna2genome_vulgar.exn", "exonerate")
The dictionary ``alignments.metadata`` stores general information about
these alignments, shown at the top of the output file:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata # doctest: +NORMALIZE_WHITESPACE
{'Program': 'exonerate',
'Command line': 'exonerate -m cdna2genome ../scer_cad1.fa /media/Waterloo/Downloads/genomes/scer_s288c/scer_s288c.fa --bestn 3 --showalignment no --showcigar no --showvulgar yes',
'Hostname': 'blackbriar'}
Now we can iterate over the alignments. The first alignment, with
alignment score 6146.0, has no gaps:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> alignment.score
6146.0
>>> print(alignment.coordinates)
[[1319275 1319274 1319271 1318045]
[ 0 1 4 1230]]
>>> print(alignment) # doctest: +ELLIPSIS
gi|330443 1319275 ????????????????????????????????????????????????????????????
0 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
gi|296143 0 ????????????????????????????????????????????????????????????
...
gi|330443 1318075 ?????????????????????????????? 1318045
1200 |||||||||||||||||||||||||||||| 1230
gi|296143 1200 ?????????????????????????????? 1230
<BLANKLINE>
Note that the target (the first sequence) in the printed alignment is on
the reverse strand while the query (the second sequence) is on the
forward strand, with the target coordinate decreasing and the query
coordinate increasing. Printing this alignment in ``exonerate`` format
using Python’s built-in ``format`` function writes a vulgar line:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "exonerate"))
vulgar: gi|296143771|ref|NM_001180731.1| 0 1230 + gi|330443520|ref|NC_001136.10| 1319275 1318045 - 6146 M 1 1 C 3 3 M 1226 1226
<BLANKLINE>
Using the ``format`` method allows us to request either a vulgar line
(default) or a cigar line:
.. cont-doctest
.. code:: pycon
>>> print(alignment.format("exonerate", "vulgar"))
vulgar: gi|296143771|ref|NM_001180731.1| 0 1230 + gi|330443520|ref|NC_001136.10| 1319275 1318045 - 6146 M 1 1 C 3 3 M 1226 1226
<BLANKLINE>
>>> print(alignment.format("exonerate", "cigar"))
cigar: gi|296143771|ref|NM_001180731.1| 0 1230 + gi|330443520|ref|NC_001136.10| 1319275 1318045 - 6146 M 1 M 3 M 1226
<BLANKLINE>
The vulgar line contains information about the alignment (in the section
``M 1 1 C 3 3 M 1226``) that is missing from the cigar line
``M 1 M 3 M 1226``. The vulgar line specifies that the alignment starts
with a single aligned nucleotides, followed by three aligned nucleotides
that form a codon (``C``), followed by 1226 aligned nucleotides. In the
cigar line, we see a single aligned nucleotide, followed by three
aligned nucleotides, followed by 1226 aligned nucleotides; it does not
specify that the three aligned nucleotides form a codon. This
information from the vulgar line is stored in the ``operations``
attribute:
.. cont-doctest
.. code:: pycon
>>> alignment.operations
bytearray(b'MCM')
See the Exonerate documentation for the definition of other operation
codes.
Similarly, the ``"vulgar"`` or ``"cigar"`` argument can be used when
calling ``Bio.Align.write`` to write a file with vulgar or cigar
alignment lines.
We can print the alignment in BED and PSL format:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "bed")) # doctest: +NORMALIZE_WHITESPACE
gi|330443520|ref|NC_001136.10| 1318045 1319275 gi|296143771|ref|NM_001180731.1| 6146 - 1318045 1319275 0 3 1226,3,1, 0,1226,1229,
<BLANKLINE>
>>> print(format(alignment, "psl")) # doctest: +NORMALIZE_WHITESPACE
1230 0 0 0 0 0 0 0 - gi|296143771|ref|NM_001180731.1| 1230 0 1230 gi|330443520|ref|NC_001136.10| 1319275 1318045 1319275 3 1226,3,1, 0,1226,1229, 1318045,1319271,1319274,
<BLANKLINE>
The SAM format parser defines its own (optional) ``operations``
attribute (section :ref:`subsec:align_sam`), which is not quite
consistent with the ``operations`` attribute defined in the Exonerate
format parser. As the ``operations`` attribute is optional, we delete it
before printing the alignment in SAM format:
.. cont-doctest
.. code:: pycon
>>> del alignment.operations
>>> print(format(alignment, "sam")) # doctest: +NORMALIZE_WHITESPACE
gi|296143771|ref|NM_001180731.1| 16 gi|330443520|ref|NC_001136.10| 1318046 255 1226M3M1M * 0 0 * * AS:i:6146
<BLANKLINE>
The third alignment contains four long gaps:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments) # second alignment
>>> alignment = next(alignments) # third alignment
>>> print(alignment) # doctest: +ELLIPSIS
gi|330443 85010 ???????????-???????????????--????-?-????????----????????????
0 |||||||||||-|||||||||||||||--||||-|-||||||||----||||||||||||
gi|296143 0 ????????????????????????????????????????????????????????????
<BLANKLINE>
gi|330443 85061 ????????????????????????????????????????????????????????????
60 |||||-------------------------------------------------------
gi|296143 60 ?????-------------------------------------------------------
...
gi|330443 666990 ????????????????????????????????????????????????????????????
582000 --------------------------------------------------||||||||||
gi|296143 346 --------------------------------------------------??????????
<BLANKLINE>
gi|330443 667050 ?????????-??????????????????????????????????????????????????
582060 ||--|||||-|||||||--|-|||||||||||||||||||||||||||||||||||||||
gi|296143 356 ??--?????????????--?-???????????????????????????????????????
<BLANKLINE>
gi|330443 667109 ??????????????????????????????????????????????????????-?????
582120 ||||||||||||||||||||||||||||||||||||||||||||||||||||||-||||-
gi|296143 411 ???????????????????????????????????????????????????????????-
<BLANKLINE>
gi|330443 667168 ???????????????????????????????????????????????? 667216
582180 ||-|||-||||||||||||||||||||||||||||||||||||||||| 582228
gi|296143 470 ??-???-????????????????????????????????????????? 516
<BLANKLINE>
>>> print(format(alignment, "exonerate")) # doctest: +NORMALIZE_WHITESPACE
vulgar: gi|296143771|ref|NM_001180731.1| 0 516 + gi|330443688|ref|NC_001145.3|
85010 667216 + 518 M 11 11 G 1 0 M 15 15 G 2 0 M 4 4 G 1 0 M 1 1 G 1 0 M 8 8
G 4 0 M 17 17 5 0 2 I 0 168904 3 0 2 M 4 4 G 0 1 M 8 8 G 2 0 M 3 3 G 1 0
M 33 33 G 0 2 M 7 7 G 0 1 M 102 102 5 0 2 I 0 96820 3 0 2 M 14 14 G 0 2 M 10 10
G 2 0 M 5 5 G 0 2 M 10 10 G 2 0 M 4 4 G 0 1 M 20 20 G 1 0 M 15 15 G 0 1 M 5 5
G 3 0 M 4 4 5 0 2 I 0 122114 3 0 2 M 20 20 G 0 5 M 6 6 5 0 2 I 0 193835 3 0 2
M 12 12 G 0 2 M 5 5 G 1 0 M 7 7 G 0 2 M 1 1 G 0 1 M 12 12 C 75 75 M 6 6 G 1 0
M 4 4 G 0 1 M 2 2 G 0 1 M 3 3 G 0 1 M 41 41
<BLANKLINE>
.. _`subsec:align_nexus`:
NEXUS
~~~~~
The NEXUS file format [Maddison1997]_ is used by
several programs to store phylogenetic information. This is an example
of a file in the NEXUS format (available as ``codonposset.nex`` in the
``Tests/Nexus`` subdirectory in the Biopython distribution):
.. code:: text
#NEXUS
[MacClade 4.05 registered to Computational Biologist, University]
BEGIN DATA;
DIMENSIONS NTAX=2 NCHAR=22;
FORMAT DATATYPE=DNA MISSING=? GAP=- ;
MATRIX
[ 10 20 ]
[ . . ]
Aegotheles AAAAAGGCATTGTGGTGGGAAT [22]
Aerodramus ?????????TTGTGGTGGGAAT [13]
;
END;
BEGIN CODONS;
CODONPOSSET * CodonPositions =
N: 1-10,
1: 11-22\3,
2: 12-22\3,
3: 13-22\3;
CODESET * UNTITLED = Universal: all ;
END;
In general, files in the NEXUS format can be much more complex.
``Bio.Align`` relies heavily on NEXUS parser in ``Bio.Nexus`` (see
Chapter :ref:`chapter:phylo`) to extract ``Alignment``
objects from NEXUS files.
To read the alignment in this NEXUS file, use
.. doctest ../Tests/Nexus lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignment = Align.read("codonposset.nex", "nexus")
>>> print(alignment)
Aegothele 0 AAAAAGGCATTGTGGTGGGAAT 22
0 .........||||||||||||| 22
Aerodramu 0 ?????????TTGTGGTGGGAAT 22
<BLANKLINE>
>>> alignment.shape
(2, 22)
The sequences are stored under the ``sequences`` attribute:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences[0].id
'Aegotheles'
>>> alignment.sequences[0].seq
Seq('AAAAAGGCATTGTGGTGGGAAT')
>>> alignment.sequences[0].annotations
{'molecule_type': 'DNA'}
>>> alignment.sequences[1].id
'Aerodramus'
>>> alignment.sequences[1].seq
Seq('?????????TTGTGGTGGGAAT')
>>> alignment.sequences[1].annotations
{'molecule_type': 'DNA'}
To print this alignment in the NEXUS format, use
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "nexus"))
#NEXUS
begin data;
dimensions ntax=2 nchar=22;
format datatype=dna missing=? gap=-;
matrix
Aegotheles AAAAAGGCATTGTGGTGGGAAT
Aerodramus ?????????TTGTGGTGGGAAT
;
end;
<BLANKLINE>
Similarly, you can use
``Align.write(alignment, "myfilename.nex", "nexus")`` to write the
alignment in the NEXUS format to the file ``myfilename.nex``.
.. _`subsec:align_tabular`:
Tabular output from BLAST or FASTA
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alignment output in tabular output is generated by the FASTA
aligner [Pearson1988]_ run with the ``-m 8CB`` or
``-m 8CC`` argument, or by BLAST [Altschul1990]_ run
with the ``-outfmt 7`` argument.
The file ``nucleotide_m8CC.txt`` in the ``Tests/Fasta`` subdirectory of
the Biopython source distribution is an example of an output file
generated by FASTA with the ``-m 8CC`` argument:
.. code:: text
# fasta36 -m 8CC seq/mgstm1.nt seq/gst.nlib
# FASTA 36.3.8h May, 2020
# Query: pGT875 - 657 nt
# Database: seq/gst.nlib
# Fields: query id, subject id, % identity, alignment length, mismatches, gap opens, q. start, q. end, s. start, s. end, evalue, bit score, aln_code
# 12 hits found
pGT875 pGT875 100.00 657 0 0 1 657 38 694 4.6e-191 655.6 657M
pGT875 RABGLTR 79.10 646 135 0 1 646 34 679 1.6e-116 408.0 646M
pGT875 BTGST 59.56 413 167 21 176 594 228 655 1.9e-07 45.7 149M1D7M1I17M3D60M5I6M1I13M2I13M4I30M2I6M2D112M
pGT875 RABGSTB 66.93 127 42 8 159 289 157 287 3.2e-07 45.0 15M2I17M2D11M1I58M1I11M1D7M1D8M
pGT875 OCDHPR 91.30 23 2 1 266 289 2303 2325 0.012 29.7 17M1D6M
...
# FASTA processed 1 queries
To parse this file, use
.. doctest ../Tests/Fasta lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("nucleotide_m8CC.txt", "tabular")
Information shown in the file header is stored in the ``metadata``
attribute of ``alignments``:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata # doctest: +NORMALIZE_WHITESPACE
{'Command line': 'fasta36 -m 8CC seq/mgstm1.nt seq/gst.nlib',
'Program': 'FASTA',
'Version': '36.3.8h May, 2020',
'Database': 'seq/gst.nlib'}
Extract a specific alignment by iterating over the ``alignments``. As an
example, let’s go to the fourth alignment:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> print(alignment)
RABGSTB 156 ??????????????????????????????????--????????????????????????
0 |||||||||||||||--|||||||||||||||||--|||||||||||-||||||||||||
pGT875 158 ???????????????--??????????????????????????????-????????????
<BLANKLINE>
RABGSTB 214 ??????????????????????????????????????????????????????????-?
60 ||||||||||||||||||||||||||||||||||||||||||||||-|||||||||||-|
pGT875 215 ??????????????????????????????????????????????-?????????????
<BLANKLINE>
RABGSTB 273 ??????-???????? 287
120 ||||||-|||||||| 135
pGT875 274 ??????????????? 289
<BLANKLINE>
>>> print(alignment.coordinates)
[[156 171 173 190 190 201 202 260 261 272 272 279 279 287]
[158 173 173 190 192 203 203 261 261 272 273 280 281 289]]
>>> alignment.aligned
array([[[156, 171],
[173, 190],
[190, 201],
[202, 260],
[261, 272],
[272, 279],
[279, 287]],
<BLANKLINE>
[[158, 173],
[173, 190],
[192, 203],
[203, 261],
[261, 272],
[273, 280],
[281, 289]]])
The sequence information of the target and query sequences is stored in
the ``target`` and ``query`` attributes (as well as under
``alignment.sequences``):
.. cont-doctest
.. code:: pycon
>>> alignment.target
SeqRecord(seq=Seq(None, length=287), id='RABGSTB', name='<unknown name>', description='<unknown description>', dbxrefs=[])
>>> alignment.query
SeqRecord(seq=Seq(None, length=657), id='pGT875', name='<unknown name>', description='<unknown description>', dbxrefs=[])
Information of the alignment is stored under the ``annotations``
attribute of the ``alignment``:
.. cont-doctest
.. code:: pycon
>>> alignment.annotations # doctest: +NORMALIZE_WHITESPACE
{'% identity': 66.93,
'mismatches': 42,
'gap opens': 8,
'evalue': 3.2e-07,
'bit score': 45.0}
BLAST in particular offers many options to customize tabular output by
including or excluding specific columns; see the BLAST documentation for
details. This information is stored in the dictionaries
``alignment.annotations``, ``alignment.target.annotations``, or
``alignment.query.annotations``, as appropriate.
.. _`subsec:align_hhr`:
HH-suite output files
~~~~~~~~~~~~~~~~~~~~~
Alignment files in the ``hhr`` format are generated by ``hhsearch`` or
``hhblits`` in HH-suite [Steinegger2019]_. As an
example, see the file ``2uvo_hhblits.hhr`` in Biopython’s test suite:
.. code:: text
Query 2UVO:A|PDBID|CHAIN|SEQUENCE
Match_columns 171
No_of_seqs 1560 out of 4005
Neff 8.3
Searched_HMMs 34
Date Fri Feb 15 16:34:13 2019
Command hhblits -i 2uvoAh.fasta -d /pdb70
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 2uvo_A Agglutinin isolectin 1; 100.0 3.7E-34 4.8E-38 210.3 0.0 171 1-171 1-171 (171)
2 2wga ; lectin (agglutinin); 99.9 1.1E-30 1.4E-34 190.4 0.0 162 2-169 2-163 (164)
3 1ulk_A Lectin-C; chitin-bindin 99.8 5.2E-24 6.6E-28 148.2 0.0 120 1-124 2-121 (126)
...
31 4z8i_A BBTPGRP3, peptidoglycan 79.6 0.12 1.5E-05 36.1 0.0 37 1-37 9-54 (236)
32 1wga ; lectin (agglutinin); 40.4 2.6 0.00029 25.9 0.0 106 54-163 11-116 (164)
No 1
>2uvo_A Agglutinin isolectin 1; carbohydrate-binding protein, hevein domain, chitin-binding, GERM agglutinin, chitin-binding protein; HET: NDG NAG GOL; 1.40A {Triticum aestivum} PDB: 1wgc_A* 2cwg_A* 2x3t_A* 4aml_A* 7wga_A 9wga_A 2wgc_A 1wgt_A 1k7t_A* 1k7v_A* 1k7u_A 2x52_A* 1t0w_A*
Probab=99.95 E-value=3.7e-34 Score=210.31 Aligned_cols=171 Identities=100% Similarity=2.050 Sum_probs=166.9
Q 2UVO:A|PDBID|C 1 ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQCCSQYGYCGFGAEYCGAGCQG 80 (171)
Q Consensus 1 ~~cg~~~~~~~c~~~~CCs~~g~CG~~~~~c~~~c~~~~c~~~~~Cg~~~~~~~c~~~~CCs~~g~CG~~~~~c~~~c~~ 80 (171)
||||++.++..||++.|||+|+|||.+.+||+++||.+.|++..+|+++++.++|....|||.++||+.+.+||+.+||.
T Consensus 1 ~~cg~~~~~~~c~~~~CCS~~g~Cg~~~~~Cg~gC~~~~c~~~~~cg~~~~~~~c~~~~CCs~~g~Cg~~~~~c~~~c~~ 80 (171)
T 2uvo_A 1 ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQCCSQYGYCGFGAEYCGAGCQG 80 (171)
T ss_dssp CBCBGGGTTBBCGGGCEECTTSBEEBSHHHHSTTCCBSSCSSCCBCBGGGTTBCCSTTCEECTTSBEEBSHHHHSTTCCB
T ss_pred CCCCCCCCCcCCCCCCeeCCCCeECCCcccccCCccccccccccccCcccCCcccCCccccCCCceeCCCccccCCCccc
Confidence 79999999999999999999999999999999999999999999999999999999999999999999999999999999
Q 2UVO:A|PDBID|C 81 GPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGGCQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYC 160 (171)
Q Consensus 81 ~~~~~~~~Cg~~~~~~~c~~~~CCS~~G~CG~~~~~C~~~Cq~~~c~~~~~Cg~~~~~~~c~~~~CCS~~G~CG~~~~~C 160 (171)
+++++|+.|+...+++.||++.|||.|||||...+||+.+||+++|++|.+|++.+++++|..+.|||+++-||+...||
T Consensus 81 ~~~~~~~~cg~~~~~~~c~~~~CCs~~g~CG~~~~~C~~gCq~~~c~~~~~cg~~~~~~~c~~~~ccs~~g~Cg~~~~~C 160 (171)
T 2uvo_A 81 GPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGGCQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYC 160 (171)
T ss_dssp SSCSSCCBCBGGGTTBCCGGGCEECTTSBEEBSHHHHSTTCCBSSCSSCCCCBTTTTTBCCSTTCEECTTSCEEBSHHHH
T ss_pred ccccccccccccccCCCCCCCcccCCCCccCCCcccccCCCcCCccccccccccccccccCCCCCCcCCCCEecCchhhc
Confidence 99999999999988999999999999999999999999999999999999999999999999999999999999999999
Q 2UVO:A|PDBID|C 161 GAGCQSGGCDG 171 (171)
Q Consensus 161 ~~gCq~~~c~~ 171 (171)
+++||++.|||
T Consensus 161 ~~~cq~~~~~~ 171 (171)
T 2uvo_A 161 GAGCQSGGCDG 171 (171)
T ss_dssp STTCCBSSCC-
T ss_pred ccccccCCCCC
Confidence 99999999986
No 2
...
No 32
>1wga ; lectin (agglutinin); NMR {}
Probab=40.43 E-value=2.6 Score=25.90 Aligned_cols=106 Identities=20% Similarity=0.652 Sum_probs=54.7
Q 2UVO:A|PDBID|C 54 TCTNNQCCSQYGYCGFGAEYCGAGCQGGPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGGCQSGACSTDKPCG 133 (171)
Q Consensus 54 ~c~~~~CCs~~g~CG~~~~~c~~~c~~~~~~~~~~Cg~~~~~~~c~~~~CCS~~G~CG~~~~~C~~~Cq~~~c~~~~~Cg 133 (171)
.|....||.....|......|...|....|.....|... ...|....||.....|......|...|....+.....|.
T Consensus 11 ~c~~~~cc~~~~~c~~~~~~c~~~c~~~~c~~~~~c~~~--~~~c~~~~cc~~~~~c~~~~~~c~~~c~~~~c~~~~~c~ 88 (164)
T 1wga 11 XCXXXXCCXXXXXCXXXXXXCXXXCXXXXCXXXXXCXXX--XXXCXXXXCCXXXXXCXXXXXXCXXXCXXXXCXXXXXCX 88 (164)
T ss_pred ccccccccccccccccccccccccccccccccccccccc--ccccccccccccccccccccccccccccccccccccccc
Confidence 344556666666666666566555543333223333321 234666677777777777766666655544332223333
Q 2UVO:A|PDBID|C 134 KDAGGRVCTNNYCCSKWGSCGIGPGYCGAG 163 (171)
Q Consensus 134 ~~~~~~~c~~~~CCS~~G~CG~~~~~C~~g 163 (171)
.. ...|....||.....|......|...
T Consensus 89 ~~--~~~c~~~~cc~~~~~c~~~~~~c~~~ 116 (164)
T 1wga 89 XX--XXXCXXXXCCXXXXXCXXXXXXCXXX 116 (164)
T ss_pred cc--cccccccccccccccccccccccccc
Confidence 22 23344455555555555555544433
Done!
The file contains three sections:
- A header with general information about the alignments;
- A summary with one line for each of the alignments obtained;
- The alignments shown consecutively in detail.
To parse this file, use
.. doctest ../Tests/HHsuite lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("2uvo_hhblits.hhr", "hhr")
Most of the header information is stored in the ``metadata`` attribute
of ``alignments``:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata # doctest: +NORMALIZE_WHITESPACE
{'Match_columns': 171,
'No_of_seqs': (1560, 4005),
'Neff': 8.3,
'Searched_HMMs': 34,
'Rundate': 'Fri Feb 15 16:34:13 2019',
'Command line': 'hhblits -i 2uvoAh.fasta -d /pdb70'}
except the query name, which is stored as an attribute:
.. cont-doctest
.. code:: pycon
>>> alignments.query_name
'2UVO:A|PDBID|CHAIN|SEQUENCE'
as it will reappear in each of the alignments.
Iterate over the alignments:
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print(alignment.target.id) # doctest: +ELLIPSIS
...
2uvo_A
2wga
1ulk_A
...
4z8i_A
1wga
Let’s look at the first alignment in more detail:
.. cont-doctest
.. code:: pycon
>>> alignments = iter(alignments)
>>> alignment = next(alignments)
>>> alignment # doctest: +ELLIPSIS
<Alignment object (2 rows x 171 columns) at ...>
>>> print(alignment)
2uvo_A 0 ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQC
0 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2UVO:A|PD 0 ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGATCTNNQC
<BLANKLINE>
2uvo_A 60 CSQYGYCGFGAEYCGAGCQGGPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGG
60 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2UVO:A|PD 60 CSQYGYCGFGAEYCGAGCQGGPCRADIKCGSQAGGKLCPNNLCCSQWGFCGLGSEFCGGG
<BLANKLINE>
2uvo_A 120 CQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYCGAGCQSGGCDG 171
120 ||||||||||||||||||||||||||||||||||||||||||||||||||| 171
2UVO:A|PD 120 CQSGACSTDKPCGKDAGGRVCTNNYCCSKWGSCGIGPGYCGAGCQSGGCDG 171
<BLANKLINE>
The target and query sequences are stored in ``alignment.sequences``. As
these are pairwise alignments, we can also access them through
``alignment.target`` and ``alignment.query``:
.. cont-doctest
.. code:: pycon
>>> alignment.target is alignment.sequences[0]
True
>>> alignment.query is alignment.sequences[1]
True
The ID of the query is set from the ``alignments.query_name`` (note that
the query ID printed in the alignment in the ``hhr`` file is
abbreviated):
.. cont-doctest
.. code:: pycon
>>> alignment.query.id
'2UVO:A|PDBID|CHAIN|SEQUENCE'
The ID of the target is taken from the sequence alignment block (the
line starting with ``T 2uvo_A``):
.. code:: pycon
>>> alignment.target.id
'2uvo_A'
The sequence contents of the target and query are filled in from the
information available in this alignment:
.. cont-doctest
.. code:: pycon
>>> alignment.target.seq
Seq('ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGAT...CDG')
>>> alignment.query.seq
Seq('ERCGEQGSNMECPNNLCCSQYGYCGMGGDYCGKGCQNGACWTSKRCGSQAGGAT...CDG')
The sequence contents will be incomplete (a partially defined sequence;
see Section :ref:`sec:partial-seq`) if the alignment
does not extend over the full sequence.
The second line of this alignment block, starting with "``>``", shows
the name and description of the Hidden Markov Model from which the
target sequence was taken. These are stored under the keys
``"hmm_name"`` and ``"hmm_description"`` in the
``alignment.target.annotations`` dictionary:
.. cont-doctest
.. code:: pycon
>>> alignment.target.annotations # doctest: +NORMALIZE_WHITESPACE
{'hmm_name': '2uvo_A',
'hmm_description': 'Agglutinin isolectin 1; carbohydrate-binding protein, hevein domain, chitin-binding, GERM agglutinin, chitin-binding protein; HET: NDG NAG GOL; 1.40A {Triticum aestivum} PDB: 1wgc_A* 2cwg_A* 2x3t_A* 4aml_A* 7wga_A 9wga_A 2wgc_A 1wgt_A 1k7t_A* 1k7v_A* 1k7u_A 2x52_A* 1t0w_A*'}
The dictionary ``alignment.target.letter_annotations`` stores the target
alignent consensus sequence, the secondary structure as predicted by
PSIPRED, and the target secondary structure as determined by DSSP:
.. cont-doctest
.. code:: pycon
>>> alignment.target.letter_annotations # doctest: +NORMALIZE_WHITESPACE
{'Consensus': '~~cg~~~~~~~c~~~~CCS~~g~Cg~~~~~Cg~gC~~~~c~~~~~cg~~~~~~~c~~~~CCs~~g~Cg~~~~~c~~~c~~~~~~~~~~cg~~~~~~~c~~~~CCs~~g~CG~~~~~C~~gCq~~~c~~~~~cg~~~~~~~c~~~~ccs~~g~Cg~~~~~C~~~cq~~~~~~',
'ss_pred': 'CCCCCCCCCcCCCCCCeeCCCCeECCCcccccCCccccccccccccCcccCCcccCCccccCCCceeCCCccccCCCcccccccccccccccccCCCCCCCcccCCCCccCCCcccccCCCcCCccccccccccccccccCCCCCCcCCCCEecCchhhcccccccCCCCC',
'ss_dssp': 'CBCBGGGTTBBCGGGCEECTTSBEEBSHHHHSTTCCBSSCSSCCBCBGGGTTBCCSTTCEECTTSBEEBSHHHHSTTCCBSSCSSCCBCBGGGTTBCCGGGCEECTTSBEEBSHHHHSTTCCBSSCSSCCCCBTTTTTBCCSTTCEECTTSCEEBSHHHHSTTCCBSSCC '}
In this example, for the query sequence only the consensus sequence is
available:
.. cont-doctest
.. code:: pycon
>>> alignment.query.letter_annotations
{'Consensus': '~~cg~~~~~~~c~~~~CCs~~g~CG~~~~~c~~~c~~~~c~~~~~Cg~~~~~~~c~~~~CCs~~g~CG~~~~~c~~~c~~~~~~~~~~Cg~~~~~~~c~~~~CCS~~G~CG~~~~~C~~~Cq~~~c~~~~~Cg~~~~~~~c~~~~CCS~~G~CG~~~~~C~~gCq~~~c~~'}
The ``alignment.annotations`` dictionary stores information about the
alignment shown on the third line of the alignment block:
.. cont-doctest
.. code:: pycon
>>> alignment.annotations # doctest: +NORMALIZE_WHITESPACE
{'Probab': 99.95,
'E-value': 3.7e-34,
'Score': 210.31,
'Identities': 100.0,
'Similarity': 2.05,
'Sum_probs': 166.9}
Confidence values for the pairwise alignment are stored under the
``"Confidence"`` key in the ``alignment.column_annotations`` dictionary.
This dictionary also stores the score for each column, shown between the
query and the target section of each alignment block:
.. cont-doctest
.. code:: pycon
>>> alignment.column_annotations # doctest: +NORMALIZE_WHITESPACE
{'column score': '||||++.++..||++.|||+|+|||.+.+||+++||.+.|++..+|+++++.++|....|||.++||+.+.+||+.+||.+++++|+.|+...+++.||++.|||.|||||...+||+.+||+++|++|.+|++.+++++|..+.|||+++-||+...||+++||++.|||',
'Confidence': '799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998899999999999999999999999999999999999999999999999999999999999999999999999999986'}
.. _`subsec:align_a2m`:
A2M
~~~
A2M files are alignment files created by ``align2model`` or ``hmmscore``
in the SAM Sequence Alignment and Modeling Software
System [Krogh1994]_, [Hughey1996]_. An A2M file contains
one multiple alignment. The A2M file format is similar to aligned FASTA
(see section :ref:`subsec:align_fasta`). However, to distinguish
insertions from deletions, A2M uses both dashes and periods to represent
gaps, and both upper and lower case characters in the aligned sequences.
Matches are represented by upper case letters and deletions by dashes in
alignment columns containing matches or deletions only. Insertions are
represented by lower case letters, with gaps aligned to the insertion
shown as periods. Header lines start with "``>``" followed by the name
of the sequence, and optionally a description.
The file ``probcons.a2m`` in Biopython’s test suite is an example of an
A2M file (see section :ref:`subsec:align_fasta` for the same
alignment in aligned FASTA format):
.. code:: text
>plas_horvu
D.VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG.VD.VSKISQEEYLTAPGETFSVTLTV...PGTYGFYCEPHAGAGMVGKVT
V
>plas_chlre
-.VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG.VN.ADAISRDDYLNAPGETYSVKLTA...AGEYGYYCEPHQGAGMVGKII
V
>plas_anava
-.VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKsADlAKSLSHKQLLMSPGQSTSTTFPAdapAGEYTFYCEPHRGAGMVGKIT
V
>plas_proho
VqIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG.ES.APALSNTKLRIAPGSFYSVTLGT...PGTYSFYCTPHRGAGMVGTIT
V
>azup_achcy
VhMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG.AE.A-------FKSKINENYKVTFTA...PGVYGVKCTPHYGMGMVGVVE
V
To parse this alignment, use
.. doctest ../Tests/Clustalw lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignment = Align.read("probcons.a2m", "a2m")
>>> alignment # doctest: +ELLIPSIS
<Alignment object (5 rows x 101 columns) at ...>
>>> print(alignment)
plas_horv 0 D-VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG-VD-VSKISQE
plas_chlr 0 --VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG-VN-ADAISRD
plas_anav 0 --VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKSADLAKSLSHK
plas_proh 0 VQIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG-ES-APALSNT
azup_achc 0 VHMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG-AE-A------
<BLANKLINE>
plas_horv 57 EYLTAPGETFSVTLTV---PGTYGFYCEPHAGAGMVGKVTV 95
plas_chlr 56 DYLNAPGETYSVKLTA---AGEYGYYCEPHQGAGMVGKIIV 94
plas_anav 58 QLLMSPGQSTSTTFPADAPAGEYTFYCEPHRGAGMVGKITV 99
plas_proh 56 KLRIAPGSFYSVTLGT---PGTYSFYCTPHRGAGMVGTITV 94
azup_achc 51 -FKSKINENYKVTFTA---PGVYGVKCTPHYGMGMVGVVEV 88
<BLANKLINE>
The parser analyzes the pattern of dashes, periods, and lower and upper
case letters in the A2M file to determine if a column is an
match/mismatch/deletion ("``D``") or an insertion ("``I``"). This
information is stored under the ``match`` key of the
``alignment.column_annotations`` dictionary:
.. cont-doctest
.. code:: pycon
>>> alignment.column_annotations
{'state': 'DIDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDIDDIDDDDDDDDDDDDDDDDDDDDDDDIIIDDDDDDDDDDDDDDDDDDDDDD'}
As the state information is stored in the ``alignment``, we can print
the alignment in the A2M format:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "a2m"))
>plas_horvu
D.VLLGANGGVLVFEPNDFSVKAGETITFKNNAGYPHNVVFDEDAVPSG.VD.VSKISQEEYLTAPGETFSVTLTV...PGTYGFYCEPHAGAGMVGKVTV
>plas_chlre
-.VKLGADSGALEFVPKTLTIKSGETVNFVNNAGFPHNIVFDEDAIPSG.VN.ADAISRDDYLNAPGETYSVKLTA...AGEYGYYCEPHQGAGMVGKIIV
>plas_anava
-.VKLGSDKGLLVFEPAKLTIKPGDTVEFLNNKVPPHNVVFDAALNPAKsADlAKSLSHKQLLMSPGQSTSTTFPAdapAGEYTFYCEPHRGAGMVGKITV
>plas_proho
VqIKMGTDKYAPLYEPKALSISAGDTVEFVMNKVGPHNVIFDK--VPAG.ES.APALSNTKLRIAPGSFYSVTLGT...PGTYSFYCTPHRGAGMVGTITV
>azup_achcy
VhMLNKGKDGAMVFEPASLKVAPGDTVTFIPTDK-GHNVETIKGMIPDG.AE.A-------FKSKINENYKVTFTA...PGVYGVKCTPHYGMGMVGVVEV
<BLANKLINE>
Similarly, the alignment can be written in the A2M format to an output
file using ``Align.write`` (see
section :ref:`subsec:align_writing`).
.. _`subsec:align_mauve`:
Mauve eXtended Multi-FastA (xmfa) format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mauve [Darling2004]_ is a software package for
constructing multiple genome alignments. These alignments are stored in
the eXtended Multi-FastA (xmfa) format. Depending on how exactly
``progressiveMauve`` (the aligner program in Mauve) was called, the xmfa
format is slightly different.
If ``progressiveMauve`` is called with a single sequence input file, as
in
.. code:: text
progressiveMauve combined.fasta --output=combined.xmfa ...
where ``combined.fasta`` contains the genome sequences:
.. code:: text
>equCab1
GAAAAGGAAAGTACGGCCCGGCCACTCCGGGTGTGTGCTAGGAGGGCTTA
>mm9
GAAGAGGAAAAGTAGATCCCTGGCGTCCGGAGCTGGGACGT
>canFam2
CAAGCCCTGCGCGCTCAGCCGGAGTGTCCCGGGCCCTGCTTTCCTTTTC
then the output file ``combined.xmfa`` is as follows:
.. code:: text
#FormatVersion Mauve1
#Sequence1File combined.fa
#Sequence1Entry 1
#Sequence1Format FastA
#Sequence2File combined.fa
#Sequence2Entry 2
#Sequence2Format FastA
#Sequence3File combined.fa
#Sequence3Entry 3
#Sequence3Format FastA
#BackboneFile combined.xmfa.bbcols
> 1:2-49 - combined.fa
AAGCCCTCCTAGCACACACCCGGAGTGG-CCGGGCCGTACTTTCCTTTT
> 2:0-0 + combined.fa
-------------------------------------------------
> 3:2-48 + combined.fa
AAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGCTTTCCTTTT
=
> 1:1-1 + combined.fa
G
=
> 1:50-50 + combined.fa
A
=
> 2:1-41 + combined.fa
GAAGAGGAAAAGTAGATCCCTGGCGTCCGGAGCTGGGACGT
=
> 3:1-1 + combined.fa
C
=
> 3:49-49 + combined.fa
C
=
with numbers (1, 2, 3) referring to the input genome sequences for horse
(``equCab1``), mouse (``mm9``), and dog (``canFam2``), respectively.
This xmfa file consists of six alignment blocks, separated by ``=``
characters. Use ``Align.parse`` to extract these alignments:
.. doctest ../Tests/Mauve lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("combined.xmfa", "mauve")
The file header data are stored in the ``metadata`` attribute:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata # doctest: +NORMALIZE_WHITESPACE
{'FormatVersion': 'Mauve1',
'BackboneFile': 'combined.xmfa.bbcols',
'File': 'combined.fa'}
The ``identifiers`` attribute stores the sequence identifiers for the
three sequences, which in this case is the three numbers:
.. cont-doctest
.. code:: pycon
>>> alignments.identifiers
['0', '1', '2']
These identifiers are used in the individual alignments:
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print([record.id for record in alignment.sequences])
... print(alignment)
... print("******")
...
['0', '1', '2']
0 49 AAGCCCTCCTAGCACACACCCGGAGTGG-CCGGGCCGTACTTTCCTTTT 1
1 0 ------------------------------------------------- 0
2 1 AAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGCTTTCCTTTT 48
<BLANKLINE>
******
['0']
0 0 G 1
<BLANKLINE>
******
['0']
0 49 A 50
<BLANKLINE>
******
['1']
1 0 GAAGAGGAAAAGTAGATCCCTGGCGTCCGGAGCTGGGACGT 41
<BLANKLINE>
******
['2']
2 0 C 1
<BLANKLINE>
******
['2']
2 48 C 49
<BLANKLINE>
******
Note that only the first block is a real alignment; the other blocks
contain only a single sequence. By including these blocks, the xmfa file
contains the full sequence that was provided in the ``combined.fa``
input file.
If ``progressiveMauve`` is called with a separate input file for each
genome, as in
.. code:: text
progressiveMauve equCab1.fa canFam2.fa mm9.fa --output=separate.xmfa ...
where each Fasta file contains the genome sequence for one species only,
then the output file ``separate.xmfa`` is as follows:
.. code:: text
#FormatVersion Mauve1
#Sequence1File equCab1.fa
#Sequence1Format FastA
#Sequence2File canFam2.fa
#Sequence2Format FastA
#Sequence3File mm9.fa
#Sequence3Format FastA
#BackboneFile separate.xmfa.bbcols
> 1:1-50 - equCab1.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC
> 3:1-19 - mm9.fa
---------------------------------GGATCTACTTTTCCTCTTC
=
> 3:20-41 + mm9.fa
CTGGCGTCCGGAGCTGGGACGT
=
The identifiers ``equCab1`` for horse, ``mm9`` for mouse, and
``canFam2`` for dog are now shown explicitly in the output file. This
xmfa file consists of two alignment blocks, separated by ``=``
characters. Use ``Align.parse`` to extract these alignments:
.. doctest ../Tests/Mauve lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("separate.xmfa", "mauve")
The file header data now does not include the input file name:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata # doctest: +NORMALIZE_WHITESPACE
{'FormatVersion': 'Mauve1',
'BackboneFile': 'separate.xmfa.bbcols'}
The ``identifiers`` attribute stores the sequence identifiers for the
three sequences:
.. cont-doctest
.. code:: pycon
>>> alignments.identifiers
['equCab1.fa', 'canFam2.fa', 'mm9.fa']
These identifiers are used in the individual alignments:
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print([record.id for record in alignment.sequences])
... print(alignment)
... print("******")
...
['equCab1.fa', 'canFam2.fa', 'mm9.fa']
equCab1.f 50 TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC 0
canFam2.f 0 CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC 49
mm9.fa 19 ---------------------------------GGATCTACTTTTCCTCTTC 0
<BLANKLINE>
******
['mm9.fa']
mm9.fa 19 CTGGCGTCCGGAGCTGGGACGT 41
<BLANKLINE>
******
To output the alignments in Mauve format, use ``Align.write``:
.. cont-doctest
.. code:: pycon
>>> from io import StringIO
>>> stream = StringIO()
>>> alignments = Align.parse("separate.xmfa", "mauve")
>>> Align.write(alignments, stream, "mauve")
2
>>> print(stream.getvalue()) # doctest: +NORMALIZE_WHITESPACE
#FormatVersion Mauve1
#Sequence1File equCab1.fa
#Sequence1Format FastA
#Sequence2File canFam2.fa
#Sequence2Format FastA
#Sequence3File mm9.fa
#Sequence3Format FastA
#BackboneFile separate.xmfa.bbcols
> 1:1-50 - equCab1.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC
> 3:1-19 - mm9.fa
---------------------------------GGATCTACTTTTCCTCTTC
=
> 3:20-41 + mm9.fa
CTGGCGTCCGGAGCTGGGACGT
=
<BLANKLINE>
Here, the writer makes use of the information stored in
``alignments.metadata`` and ``alignments.identifiers`` to create this
format. If your ``alignments`` object does not have these attributes,
you can provide them as keyword arguments to ``Align.write``:
.. cont-doctest
.. code:: pycon
>>> stream = StringIO()
>>> alignments = Align.parse("separate.xmfa", "mauve")
>>> metadata = alignments.metadata
>>> identifiers = alignments.identifiers
>>> alignments = list(alignments) # this drops the attributes
>>> alignments.metadata # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AttributeError: 'list' object has no attribute 'metadata'
>>> alignments.identifiers # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AttributeError: 'list' object has no attribute 'identifiers'
>>> Align.write(alignments, stream, "mauve", metadata=metadata, identifiers=identifiers)
2
>>> print(stream.getvalue()) # doctest: +NORMALIZE_WHITESPACE
#FormatVersion Mauve1
#Sequence1File equCab1.fa
#Sequence1Format FastA
#Sequence2File canFam2.fa
#Sequence2Format FastA
#Sequence3File mm9.fa
#Sequence3Format FastA
#BackboneFile separate.xmfa.bbcols
> 1:1-50 - equCab1.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC
> 3:1-19 - mm9.fa
---------------------------------GGATCTACTTTTCCTCTTC
=
> 3:20-41 + mm9.fa
CTGGCGTCCGGAGCTGGGACGT
=
<BLANKLINE>
Python does not allow you to add these attributes to the ``alignments``
object directly, as in this example it was converted to a plain list.
However, you can construct an ``Alignments`` object and add attributes
to it (see Section :ref:`sec:alignments`):
.. cont-doctest
.. code:: pycon
>>> alignments = Align.Alignments(alignments)
>>> alignments.metadata = metadata
>>> alignments.identifiers = identifiers
>>> stream = StringIO()
>>> Align.write(alignments, stream, "mauve", metadata=metadata, identifiers=identifiers)
2
>>> print(stream.getvalue()) # doctest: +NORMALIZE_WHITESPACE
#FormatVersion Mauve1
#Sequence1File equCab1.fa
#Sequence1Format FastA
#Sequence2File canFam2.fa
#Sequence2Format FastA
#Sequence3File mm9.fa
#Sequence3Format FastA
#BackboneFile separate.xmfa.bbcols
> 1:1-50 - equCab1.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC
> 3:1-19 - mm9.fa
---------------------------------GGATCTACTTTTCCTCTTC
=
> 3:20-41 + mm9.fa
CTGGCGTCCGGAGCTGGGACGT
=
<BLANKLINE>
When printing a single alignment in ``Mauve`` format, use keyword
arguments to provide the metadata and identifiers:
.. cont-doctest
.. code:: pycon
>>> alignment = alignments[0]
>>> print(alignment.format("mauve", metadata=metadata, identifiers=identifiers))
> 1:1-50 - equCab1.fa
TAAGCCCTCCTAGCACACACCCGGAGTGGCC-GGGCCGTAC-TTTCCTTTTC
> 2:1-49 + canFam2.fa
CAAGCCCTGC--GCGCTCAGCCGGAGTGTCCCGGGCCCTGC-TTTCCTTTTC
> 3:1-19 - mm9.fa
---------------------------------GGATCTACTTTTCCTCTTC
=
<BLANKLINE>
.. _`subsec:align_sam`:
Sequence Alignment/Map (SAM)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Files in the Sequence Alignment/Map (SAM) format
[Li2009]_ store pairwise sequence alignments, usually
of next-generation sequencing data against a reference genome. The file
``ex1.sam`` in Biopython’s test suite is an example of a minimal file in
the SAM format. Its first few lines are as follows:
.. code:: text
EAS56_57:6:190:289:82 69 chr1 100 0 * = 100 0 CTCAAGGTTGTTGCAAGGGGGTCTATGTGAACAAA <<<7<<<;<<<<<<<<8;;<7;4<;<;;;;;94<; MF:i:192
EAS56_57:6:190:289:82 137 chr1 100 73 35M = 100 0 AGGGGTGCAGAGCCGAGTCACGGGGTTGCCAGCAC <<<<<<;<<<<<<<<<<;<<;<<<<;8<6;9;;2; MF:i:64 Aq:i:0 NM:i:0 UQ:i:0 H0:i:1 H1:i:0
EAS51_64:3:190:727:308 99 chr1 103 99 35M = 263 195 GGTGCAGAGCCGAGTCACGGGGTTGCCAGCACAGG <<<<<<<<<<<<<<<<<<<<<<<<<<<::<<<844 MF:i:18 Aq:i:73 NM:i:0 UQ:i:0 H0:i:1 H1:i:0
...
To parse this file, use
.. doctest ../Tests/SamBam lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("ex1.sam", "sam")
>>> alignment = next(alignments)
The ``flag`` of the first line is 69. According to the SAM/BAM file
format specification, lines for which the flag contains the bitwise flag
4 are unmapped. As 69 has the bit corresponding to this position set to
True, this sequence is unmapped and was not aligned to the genome (in
spite of the first line showing ``chr1``). The target of this alignment
(or the first item in ``alignment.sequences``) is therefore ``None``:
.. cont-doctest
.. code:: pycon
>>> alignment.flag
69
>>> bin(69)
'0b1000101'
>>> bin(4)
'0b100'
>>> if alignment.flag & 4:
... print("unmapped")
... else:
... print("mapped")
...
unmapped
>>> alignment.sequences
[None, SeqRecord(seq=Seq('CTCAAGGTTGTTGCAAGGGGGTCTATGTGAACAAA'), id='EAS56_57:6:190:289:82', name='<unknown name>', description='', dbxrefs=[])]
>>> alignment.target is None
True
The second line represents an alignment to chromosome 1:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> if alignment.flag & 4:
... print("unmapped")
... else:
... print("mapped")
...
mapped
>>> alignment.target
SeqRecord(seq=None, id='chr1', name='<unknown name>', description='', dbxrefs=[])
As this SAM file does not store the genome sequence information for each
alignment, we cannot print the alignment. However, we can print the
alignment information in SAM format or any other format (such as BED,
see section :ref:`subsec:align_bed`) that does not require the
target sequence information:
.. cont-doctest
.. code:: pycon
>>> format(alignment, "sam")
'EAS56_57:6:190:289:82\t137\tchr1\t100\t73\t35M\t=\t100\t0\tAGGGGTGCAGAGCCGAGTCACGGGGTTGCCAGCAC\t<<<<<<;<<<<<<<<<<;<<;<<<<;8<6;9;;2;\tMF:i:64\tAq:i:0\tNM:i:0\tUQ:i:0\tH0:i:1\tH1:i:0\n'
>>> format(alignment, "bed")
'chr1\t99\t134\tEAS56_57:6:190:289:82\t0\t+\t99\t134\t0\t1\t35,\t0,\n'
However, we cannot print the alignment in PSL format (see
section :ref:`subsec:align_psl`) as that would require knowing
the size of the target sequence chr1:
.. cont-doctest
.. code:: pycon
>>> format(alignment, "psl") # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: ...
If you know the size of the target sequences, you can set them by hand:
.. cont-doctest
.. code:: pycon
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> target = SeqRecord(Seq(None, length=1575), id="chr1")
>>> alignment.target = target
>>> format(alignment, "psl") # doctest: +ELLIPSIS
'35\t0\t0\t0\t0\t0\t0\t0\t+\tEAS56_57:6:190:289:82\t35\t0\t35\tchr1\t1575\t99\t134\t1\t35,\t0,\t99,\n'
The file ``ex1_header.sam`` in Biopython’s test suite contains the same
alignments, but now also includes a header. Its first few lines are as
follows:
.. code:: text
@HD\tVN:1.3\tSO:coordinate
@SQ\tSN:chr1\tLN:1575
@SQ\tSN:chr2\tLN:1584
EAS56_57:6:190:289:82 69 chr1 100 0 * = 100 0 CTCAAGGTTGTTGCAAGGGGGTCTATGTGAACAAA <<<7<<<;<<<<<<<<8;;<7;4<;<;;;;;94<; MF:i:192
...
The header stores general information about the alignments, including
the size of the target chromosomes. The target information is stored in
the ``targets`` attribute of the ``alignments`` object:
.. doctest ../Tests/SamBam lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("ex1_header.sam", "sam")
>>> len(alignments.targets)
2
>>> alignments.targets[0]
SeqRecord(seq=Seq(None, length=1575), id='chr1', name='<unknown name>', description='', dbxrefs=[])
>>> alignments.targets[1]
SeqRecord(seq=Seq(None, length=1584), id='chr2', name='<unknown name>', description='', dbxrefs=[])
Other information provided in the header is stored in the ``metadata``
attribute:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata
{'HD': {'VN': '1.3', 'SO': 'coordinate'}}
With the target information, we can now also print the alignment in PSL
format:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments) # the unmapped sequence; skip it
>>> alignment = next(alignments)
>>> format(alignment, "psl")
'35\t0\t0\t0\t0\t0\t0\t0\t+\tEAS56_57:6:190:289:82\t35\t0\t35\tchr1\t1575\t99\t134\t1\t35,\t0,\t99,\n'
We can now also print the alignment in human-readable form, but note
that the target sequence contents is not available from this file:
.. cont-doctest
.. code:: pycon
>>> print(alignment)
chr1 99 ??????????????????????????????????? 134
0 ................................... 35
EAS56_57: 0 AGGGGTGCAGAGCCGAGTCACGGGGTTGCCAGCAC 35
<BLANKLINE>
Alignments in the file ``sam1.sam`` in the Biopython test suite contain
an additional ``MD`` tag that shows how the query sequence differs from
the target sequence:
.. code:: text
@SQ SN:1 LN:239940
@PG ID:bwa PN:bwa VN:0.6.2-r126
HWI-1KL120:88:D0LRBACXX:1:1101:1780:2146 77 * 0 0 * * 0 0 GATGGGAAACCCATGGCCGAGTGGGAAGAAACCAGCTGAGGTCACATCACCAGAGGAGGGAGAGTGTGGCCCCTGACTCAGTCCATCAGCTTGTGGAGCTG @=?DDDDBFFFF7A;E?GGEGE8BB?FF?F>G@F=GIIDEIBCFF<FEFEC@EEEE2?8B8/=@((-;?@2<B9@##########################
...
HWI-1KL120:88:D0LRBACXX:1:1101:2852:2134 137 1 136186 25 101M = 136186 0 TCACGGTGGCCTGTTGAGGCAGGGGCTCACGCTGACCTCTCTCGGCGTGGGAGGGGCCGGTGTGAGGCAAGGGCTCACGCTGACCTCTCTCGGCGTGGGAG @C@FFFDFHGHHHJJJIJJJJIJJJGEDHHGGHGBGIIGIIAB@GEE=BDBBCCDD@D@B7@;@DDD?<A?DD728:>8()009>:>>C@>5??B###### XT:A:U NM:i:5 SM:i:25 AM:i:0 X0:i:1 X1:i:0 XM:i:5 XO:i:0 XG:i:0 MD:Z:25G14G2C34A12A9
The parser reconstructs the local genome sequence from the ``MD`` tag,
allowing us to see the target sequence explicitly when printing the
alignment:
.. doctest ../Tests/SamBam lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("sam1.sam", "sam")
>>> for alignment in alignments:
... if not alignment.flag & 4: # Skip the unmapped lines
... break
...
>>> alignment # doctest: +ELLIPSIS
<Alignment object (2 rows x 101 columns) at ...>
>>> print(alignment)
1 136185 TCACGGTGGCCTGTTGAGGCAGGGGGTCACGCTGACCTCTGTCCGCGTGGGAGGGGCCGG
0 |||||||||||||||||||||||||.||||||||||||||.||.||||||||||||||||
HWI-1KL12 0 TCACGGTGGCCTGTTGAGGCAGGGGCTCACGCTGACCTCTCTCGGCGTGGGAGGGGCCGG
<BLANKLINE>
1 136245 TGTGAGGCAAGGGCTCACACTGACCTCTCTCAGCGTGGGAG 136286
60 ||||||||||||||||||.||||||||||||.||||||||| 101
HWI-1KL12 60 TGTGAGGCAAGGGCTCACGCTGACCTCTCTCGGCGTGGGAG 101
<BLANKLINE>
SAM files may include additional information to distinguish simple
sequence insertions and deletions from skipped regions of the genome
(e.g. introns), hard and soft clipping, and padded sequence regions. As
this information cannot be stored in the ``coordinates`` attribute of an
``Alignment`` object, and is stored in a dedicated ``operations``
attribute instead. Let’s use the third alignment in this SAM file as an
example:
.. doctest ../Tests/Blat lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("dna_rna.sam", "sam")
>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> alignment = next(alignments)
>>> print(format(alignment, "SAM")) # doctest: +NORMALIZE_WHITESPACE
NR_111921.1 0 chr3 48663768 0 46M1827N82M3376N76M12H * 0 0 CACGAGAGGAGCGGAGGCGAGGGGTGAACGCGGAGCACTCCAATCGCTCCCAACTAGAGGTCCACCCAGGACCCAGAGACCTGGATTTGAGGCTGCTGGGCGGCAGATGGAGCGATCAGAAGACCAGGAGACGGGAGCTGGAGTGCAGTGGCTGTTCACAAGCGTGAAAGCAAAGATTAAAAAATTTGTTTTTATATTAAAAAA * AS:i:1000 NM:i:0
<BLANKLINE>
>>> print(alignment.coordinates)
[[48663767 48663813 48665640 48665722 48669098 48669174]
[ 0 46 46 128 128 204]]
>>> alignment.operations
bytearray(b'MNMNM')
>>> alignment.query.annotations["hard_clip_right"]
12
In this alignment, the cigar string ``63M1062N75M468N43M`` defines 46
aligned nucleotides, an intron of 1827 nucleotides, 82 aligned
nucleotides, an intron of 3376 nucleotides, 76 aligned nucleotides, and
12 hard-clipped nucleotides. These operations are shown in the
``operations`` attribute, except for hard-clipping, which is stored in
``alignment.query.annotations["hard_clip_right"]`` (or
``alignment.query.annotations["hard_clip_left"]``, if applicable)
instead.
To write a SAM file with alignments created from scratch, use an
``Alignments`` (plural) object (see Section :ref:`sec:alignments`)
to store the alignments as well as the metadata and targets:
.. doctest . lib:numpy
.. code:: pycon
>>> from io import StringIO
>>> import numpy as np
>>> from Bio import Align
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> alignments = Align.Alignments()
>>> seq1 = Seq(None, length=10000)
>>> target1 = SeqRecord(seq1, id="chr1")
>>> seq2 = Seq(None, length=15000)
>>> target2 = SeqRecord(seq2, id="chr2")
>>> alignments.targets = [target1, target2]
>>> alignments.metadata = {"HD": {"VN": "1.3", "SO": "coordinate"}}
>>> seqA = Seq(None, length=20)
>>> queryA = SeqRecord(seqA, id="readA")
>>> sequences = [target1, queryA]
>>> coordinates = np.array([[4300, 4320], [0, 20]])
>>> alignment = Align.Alignment(sequences, coordinates)
>>> alignments.append(alignment)
>>> seqB = Seq(None, length=25)
>>> queryB = SeqRecord(seqB, id="readB")
>>> sequences = [target1, queryB]
>>> coordinates = np.array([[5900, 5925], [25, 0]])
>>> alignment = Align.Alignment(sequences, coordinates)
>>> alignments.append(alignment)
>>> seqC = Seq(None, length=40)
>>> queryC = SeqRecord(seqC, id="readC")
>>> sequences = [target2, queryC]
>>> coordinates = np.array([[12300, 12318], [0, 18]])
>>> alignment = Align.Alignment(sequences, coordinates)
>>> alignments.append(alignment)
>>> stream = StringIO()
>>> Align.write(alignments, stream, "sam")
3
>>> print(stream.getvalue()) # doctest: +NORMALIZE_WHITESPACE
@HD VN:1.3 SO:coordinate
@SQ SN:chr1 LN:10000
@SQ SN:chr2 LN:15000
readA 0 chr1 4301 255 20M * 0 0 * *
readB 16 chr1 5901 255 25M * 0 0 * *
readC 0 chr2 12301 255 18M22S * 0 0 * *
<BLANKLINE>
.. _`subsec:align_bed`:
Browser Extensible Data (BED)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
BED (Browser Extensible Data) files are typically used to store the
alignments of gene transcripts to the genome. See the `description from
UCSC <http://genome.cse.ucsc.edu/FAQ/FAQformat.html#format1>`__ for a
full explanation of the BED format.
BED files have three required fields and nine optional fields. The file
``bed12.bed`` in subdirectory ``Tests/Blat`` is an example of a BED file
with 12 fields:
.. code:: text
chr22 1000 5000 mRNA1 960 + 1200 4900 255,0,0 2 567,488, 0,3512,
chr22 2000 6000 mRNA2 900 - 2300 5960 0,255,0 2 433,399, 0,3601,
To parse this file, use
.. doctest ../Tests/Blat lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("bed12.bed", "bed")
>>> len(alignments)
2
>>> for alignment in alignments:
... print(alignment.coordinates)
...
[[1000 1567 4512 5000]
[ 0 567 567 1055]]
[[2000 2433 5601 6000]
[ 832 399 399 0]]
Note that the first sequence ("``mRNA1``") was mapped to the forward
strand, while the second sequence ("``mRNA2``") was mapped to the
reverse strand.
As a BED file does not store the length of each chromosome, the length
of the target sequence is set to its maximum:
.. code:: pycon
>>> alignment.target
SeqRecord(seq=Seq(None, length=9223372036854775807), id='chr22', name='<unknown name>', description='', dbxrefs=[])
The length of the query sequence can be inferred from its alignment
information:
.. cont-doctest
.. code:: pycon
>>> alignment.query
SeqRecord(seq=Seq(None, length=832), id='mRNA2', name='<unknown name>', description='', dbxrefs=[])
The alignment score (field 5) and information stored in fields 7-9
(referred to as ``thickStart``, ``thickEnd``, and ``itemRgb`` in the BED
format specification) are stored as attributes on the ``alignment``
object:
.. cont-doctest
.. code:: pycon
>>> alignment.score
900.0
>>> alignment.thickStart
2300
>>> alignment.thickEnd
5960
>>> alignment.itemRgb
'0,255,0'
To print an alignment in the BED format, you can use Python’s built-in
``format`` function:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "bed")) # doctest: +NORMALIZE_WHITESPACE
chr22 2000 6000 mRNA2 900 - 2300 5960 0,255,0 2 433,399, 0,3601,
<BLANKLINE>
or you can use the ``format`` method of the ``alignment`` object. This
allows you to specify the number of fields to be written as the ``bedN``
keyword argument:
.. cont-doctest
.. code:: pycon
>>> print(alignment.format("bed")) # doctest: +NORMALIZE_WHITESPACE
chr22 2000 6000 mRNA2 900 - 2300 5960 0,255,0 2 433,399, 0,3601,
<BLANKLINE>
>>> print(alignment.format("bed", 3)) # doctest: +NORMALIZE_WHITESPACE
chr22 2000 6000
<BLANKLINE>
>>> print(alignment.format("bed", 6)) # doctest: +NORMALIZE_WHITESPACE
chr22 2000 6000 mRNA2 900 -
<BLANKLINE>
The same keyword argument can be used with ``Align.write``:
.. code:: pycon
>>> Align.write(alignments, "mybed3file.bed", "bed", bedN=3)
2
>>> Align.write(alignments, "mybed6file.bed", "bed", bedN=6)
2
>>> Align.write(alignments, "mybed12file.bed", "bed")
2
.. _`subsec:align_bigbed`:
bigBed
~~~~~~
The bigBed file format is an indexed binary version of a BED
file :ref:`subsec:align_bed`. To create a bigBed file, you can
either use the ``bedToBigBed`` program from UCSC
(`) <https://genome.ucsc.edu/goldenPath/help/bigBed.html>`__. or you can
use Biopython for it by calling the ``Bio.Align.write`` function with
``fmt="bigbed"``. While the two methods should result in identical
bigBed files, using ``bedToBigBed`` is much faster and may be more
reliable, as it is the gold standard. As bigBed files come with a
built-in index, it allows you to quickly search a specific genomic
region.
As an example, let’s parse the bigBed file ``dna_rna.bb``, available in
the ``Tests/Blat`` subdirectory in the Biopython distribution:
.. doctest ../Tests/Blat lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("dna_rna.bb", "bigbed")
>>> len(alignments)
4
>>> print(alignments.declaration) # doctest: +NORMALIZE_WHITESPACE
table bed
"Browser Extensible Data"
(
string chrom; "Reference sequence chromosome or scaffold"
uint chromStart; "Start position in chromosome"
uint chromEnd; "End position in chromosome"
string name; "Name of item."
uint score; "Score (0-1000)"
char[1] strand; "+ or - for strand"
uint thickStart; "Start of where display should be thick (start codon)"
uint thickEnd; "End of where display should be thick (stop codon)"
uint reserved; "Used as itemRgb as of 2004-11-22"
int blockCount; "Number of blocks"
int[blockCount] blockSizes; "Comma separated list of block sizes"
int[blockCount] chromStarts; "Start positions relative to chromStart"
)
<BLANKLINE>
The ``declaration`` contains the specification of the columns, in
AutoSql format, that was used to create the bigBed file. Target
sequences (typically, the chromosomes against which the sequences were
aligned) are stored in the ``targets`` attribute. In the bigBed format,
only the identifier and the size of each target is stored. In this
example, there is only a single chromosome:
.. cont-doctest
.. code:: pycon
>>> alignments.targets
[SeqRecord(seq=Seq(None, length=198295559), id='chr3', name='<unknown name>', description='<unknown description>', dbxrefs=[])]
Let’s look at the individual alignments. The alignment information is
stored in the same way as for a BED file (see section
:ref:`subsec:align_bed`):
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> alignment.target.id
'chr3'
>>> alignment.query.id
'NR_046654.1'
>>> alignment.coordinates
array([[42530895, 42530958, 42532020, 42532095, 42532563, 42532606],
[ 181, 118, 118, 43, 43, 0]])
>>> alignment.thickStart
42530895
>>> alignment.thickEnd
42532606
>>> print(alignment) # doctest: +ELLIPSIS
chr3 42530895 ????????????????????????????????????????????????????????????
0 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NR_046654 181 ????????????????????????????????????????????????????????????
<BLANKLINE>
chr3 42530955 ????????????????????????????????????????????????????????????
60 |||---------------------------------------------------------
NR_046654 121 ???---------------------------------------------------------
...
chr3 42532515 ????????????????????????????????????????????????????????????
1620 ------------------------------------------------||||||||||||
NR_046654 43 ------------------------------------------------????????????
<BLANKLINE>
chr3 42532575 ??????????????????????????????? 42532606
1680 ||||||||||||||||||||||||||||||| 1711
NR_046654 31 ??????????????????????????????? 0
<BLANKLINE>
The default bigBed format does not store the sequence contents of the
target and query. If these are available elsewhere (for example, a Fasta
file), you can set ``alignment.target.seq`` and ``alignment.query.seq``
to show the sequence contents when printing the alignment, or to write
the alignment in formats that require the sequence contents (such as
Clustal, see section :ref:`subsec:align_clustal`). The test script
``test_Align_bigbed.py`` in the ``Tests`` subdirectory in the Biopython
distribution gives some examples on how to do that.
Now let’s see how to search for a sequence region. These are the
sequences stored in the bigBed file, printed in BED format (see section
:ref:`subsec:align_bed`):
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print(format(alignment, "bed")) # doctest: +NORMALIZE_WHITESPACE
...
chr3 42530895 42532606 NR_046654.1 1000 - 42530895 42532606 0 3 63,75,43, 0,1125,1668,
<BLANKLINE>
chr3 42530895 42532606 NR_046654.1_modified 978 - 42530895 42532606 0 5 27,36,17,56,43, 0,27,1125,1144,1668,
<BLANKLINE>
chr3 48663767 48669174 NR_111921.1 1000 + 48663767 48669174 0 3 46,82,76, 0,1873,5331,
<BLANKLINE>
chr3 48663767 48669174 NR_111921.1_modified 972 + 48663767 48669174 0 5 28,17,76,6,76, 0,29,1873,1949,5331,
<BLANKLINE>
Use the ``search`` method on the ``alignments`` object to find regions
on chr3 between positions 48000000 and 49000000. This method returns an
iterator:
.. cont-doctest
.. code:: pycon
>>> selected_alignments = alignments.search("chr3", 48000000, 49000000)
>>> for alignment in selected_alignments:
... print(alignment.query.id)
...
NR_111921.1
NR_111921.1_modified
The chromosome name may be ``None`` to include all chromosomes, and the
start and end positions may be ``None`` to start searching from position
0 or to continue searching until the end of the chromosome,
respectively.
Writing alignments in the bigBed format is as easy as calling
``Bio.Align.write``:
.. code:: pycon
>>> Align.write(alignments, "output.bb", "bigbed")
You can specify the number of BED fields to be included in the bigBed
file. For example, to write a BED6 file, use
.. code:: pycon
>>> Align.write(alignments, "output.bb", "bigbed", bedN=6)
Same as for ``bedToBigBed``, you can include additional columns in the
bigBed output. Suppose the file ``bedExample2.as`` (available in the
``Tests/Blat`` subdirectory of the Biopython distribution) stores the
declaration of the included BED fields in AutoSql format. We can read
this declaration as follows:
.. cont-doctest
.. code:: pycon
>>> from Bio.Align import bigbed
>>> with open("bedExample2.as") as stream:
... autosql_data = stream.read()
...
>>> declaration = bigbed.AutoSQLTable.from_string(autosql_data)
>>> type(declaration)
<class 'Bio.Align.bigbed.AutoSQLTable'>
>>> print(declaration)
table hg18KGchr7
"UCSC Genes for chr7 with color plus GeneSymbol and SwissProtID"
(
string chrom; "Reference sequence chromosome or scaffold"
uint chromStart; "Start position of feature on chromosome"
uint chromEnd; "End position of feature on chromosome"
string name; "Name of gene"
uint score; "Score"
char[1] strand; "+ or - for strand"
uint thickStart; "Coding region start"
uint thickEnd; "Coding region end"
uint reserved; "Green on + strand, Red on - strand"
string geneSymbol; "Gene Symbol"
string spID; "SWISS-PROT protein Accession number"
)
<BLANKLINE>
Now we can write a bigBed file with the 9 BED fields plus the additional
fields ``geneSymbol`` and ``spID`` by calling
.. code:: pycon
>>> Align.write(
... alignments,
... "output.bb",
... "bigbed",
... bedN=9,
... declaration=declaration,
... extraIndex=["name", "geneSymbol"],
... )
Here, we also requested to include additional indices on the ``name``
and ``geneSymbol`` in the bigBed file. ``Align.write`` expects to find
the keys ``geneSymbol`` and ``spID`` in the ``alignment.annotations``
dictionary. Please refer to the test script ``test_Align_bigbed.py`` in
the ``Tests`` subdirectory in the Biopython distribution for more
examples of writing alignment files in the bigBed format.
Optional arguments are ``compress`` (default value is ``True``), ``blockSize``
(default value is 256), and ``itemsPerSlot`` (default value is 512). See the
documentation of UCSC's ``bedToBigBed`` program for a description of these
arguments. Searching a ``bigBed`` file can be faster by using
``compress=False`` and ``itemsPerSlot=1`` when creating the bigBed file.
.. _`subsec:align_psl`:
Pattern Space Layout (PSL)
~~~~~~~~~~~~~~~~~~~~~~~~~~
PSL (Pattern Space Layout) files are are generated by the BLAST-Like
Alignment Tool BLAT [Kent2002]_. Like BED files (see
section :ref:`subsec:align_bed`), PSL files are typically used to
store alignments of transcripts to genomes. This is an example of a
short BLAT file (available as ``dna_rna.psl`` in the ``Tests/Blat``
subdirectory of the Biopython distribution), with the standard PSL
header consisting of 5 lines:
.. code:: text
psLayout version 3
match mis- rep. N's Q gap Q gap T gap T gap strand Q Q Q Q T T T T block blockSizes qStarts tStarts
match match count bases count bases name size start end name size start end count
---------------------------------------------------------------------------------------------------------------------------------------------------------------
165 0 39 0 0 0 2 5203 + NR_111921.1 216 0 204 chr3 198295559 48663767 48669174 3 46,82,76, 0,46,128, 48663767,48665640,48669098,
175 0 6 0 0 0 2 1530 - NR_046654.1 181 0 181 chr3 198295559 42530895 42532606 3 63,75,43, 0,63,138, 42530895,42532020,42532563,
162 2 39 0 1 2 3 5204 + NR_111921.1_modified 220 3 208 chr3 198295559 48663767 48669174 5 28,17,76,6,76, 3,31,48,126,132, 48663767,48663796,48665640,48665716,48669098,
172 1 6 0 1 3 3 1532 - NR_046654.1_modified 190 3 185 chr3 198295559 42530895 42532606 5 27,36,17,56,43, 5,35,71,88,144, 42530895,42530922,42532020,42532039,42532563,
To parse this file, use
.. doctest ../Tests/Blat lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("dna_rna.psl", "psl")
>>> alignments.metadata
{'psLayout version': '3'}
Iterate over the alignments to get one ``Alignment`` object for each
line:
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print(alignment.target.id, alignment.query.id)
...
chr3 NR_046654.1
chr3 NR_046654.1_modified
chr3 NR_111921.1
chr3 NR_111921.1_modified
Let’s look at the last alignment in more detail. The first four columns
in the PSL file show the number of matches, the number of mismatches,
the number of nucleotides aligned to repeat regions, and the number of
nucleotides aligned to N (unknown) characters. These values are stored
as attributes to the ``Alignment`` object:
.. cont-doctest
.. code:: pycon
>>> alignment.matches
162
>>> alignment.misMatches
2
>>> alignment.repMatches
39
>>> alignment.nCount
0
As the sequence data of the target and query are not stored explicitly
in the PSL file, the sequence content of ``alignment.target`` and
``alignment.query`` is undefined. However, their sequence lengths are
known:
.. cont-doctest
.. code:: pycon
>>> alignment.target # doctest: +ELLIPSIS
SeqRecord(seq=Seq(None, length=198295559), id='chr3', ...)
>>> alignment.query # doctest: +ELLIPSIS
SeqRecord(seq=Seq(None, length=220), id='NR_111921.1_modified', ...)
We can print the alignment in BED or PSL format:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "bed")) # doctest: +NORMALIZE_WHITESPACE
chr3 48663767 48669174 NR_111921.1_modified 0 + 48663767 48669174 0 5 28,17,76,6,76, 0,29,1873,1949,5331,
<BLANKLINE>
>>> print(format(alignment, "psl")) # doctest: +NORMALIZE_WHITESPACE
162 2 39 0 1 2 3 5204 + NR_111921.1_modified 220 3 208 chr3 198295559 48663767 48669174 5 28,17,76,6,76, 3,31,48,126,132, 48663767,48663796,48665640,48665716,48669098,
<BLANKLINE>
Here, the number of matches, mismatches, repeat region matches, and
matches to unknown nucleotides were taken from the corresponding
attributes of the ``Alignment`` object. If these attributes are not
available, for example if the alignment did not come from a PSL file,
then these numbers are calculated using the sequence contents, if
available. Repeat regions in the target sequence are indicated by
masking the sequence as lower-case or upper-case characters, as defined
by the following values for the ``mask`` keyword argument:
- ``False`` (default): Do not count matches to masked sequences
separately;
- ``"lower"``: Count and report matches to lower-case characters as
matches to repeat regions;
- ``"upper"``: Count and report matches to upper-case characters as
matches to repeat regions;
The character used for unknown nucleotides is defined by the
``wildcard`` argument. For consistency with BLAT, the wildcard character
is ``"N"`` by default. Use ``wildcard=None`` if you don’t want to count
matches to any unknown nucleotides separately.
.. doctest . lib:numpy
.. code:: pycon
>>> import numpy as np
>>> from Bio import Align
>>> query = "GGTGGGGG"
>>> target = "AAAAAAAggggGGNGAAAAA"
>>> coordinates = np.array([[0, 7, 15, 20], [0, 0, 8, 8]])
>>> alignment = Align.Alignment([target, query], coordinates)
>>> print(alignment)
target 0 AAAAAAAggggGGNGAAAAA 20
0 -------....||.|----- 20
query 0 -------GGTGGGGG----- 8
<BLANKLINE>
>>> line = alignment.format("psl")
>>> print(line) # doctest: +NORMALIZE_WHITESPACE
6 1 0 1 0 0 0 0 + query 8 0 8 target 20 7 15 1 8, 0, 7,
>>> line = alignment.format("psl", mask="lower")
>>> print(line) # doctest: +NORMALIZE_WHITESPACE
3 1 3 1 0 0 0 0 + query 8 0 8 target 20 7 15 1 8, 0, 7,
>>> line = alignment.format("psl", mask="lower", wildcard=None)
>>> print(line) # doctest: +NORMALIZE_WHITESPACE
3 2 3 0 0 0 0 0 + query 8 0 8 target 20 7 15 1 8, 0, 7,
The same arguments can be used when writing alignments to an output file
in PSL format using ``Bio.Align.write``. This function has an additional
keyword ``header`` (``True`` by default) specifying if the PSL header
should be written.
In addition to the ``format`` method, you can use Python’s built-in
``format`` function:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "psl")) # doctest: +NORMALIZE_WHITESPACE
6 1 0 1 0 0 0 0 + query 8 0 8 target 20 7 15 1 8, 0, 7,
allowing ``Alignment`` objects to be used in formatted (f-) strings in
Python:
.. code:: pycon
>>> line = f"The alignment in PSL format is '{alignment:psl}'."
>>> print(line) # doctest: +NORMALIZE_WHITESPACE
The alignment in PSL format is '6 1 0 1 0 0 0 0 + query 8 0 8 target 20 7 15 1 8, 0, 7,
'
Note that optional keyword arguments cannot be used with the ``format``
function or with formatted strings.
.. _`subsec:align_bigpsl`:
bigPsl
~~~~~~
A bigPsl file is a bigBed file with a BED12+13 format consisting of the
12 predefined BED fields and 13 custom fields defined in the AutoSql
file `bigPsl.as <https://genome.ucsc.edu/goldenPath/help/bigPsl.html>`__
provided by UCSC, creating an indexed binary version of a PSL file (see
section :ref:`subsec:align_psl`). To create a bigPsl file, you
can either use the ``pslToBigPsl`` and ``bedToBigBed`` programs from
UCSC. or you can use Biopython by calling the ``Bio.Align.write``
function with ``fmt="bigpsl"``. While the two methods should result in
identical bigPsl files, the UCSC tools are much faster and may be more
reliable, as it is the gold standard. As bigPsl files are bigBed files,
they come with a built-in index, allowing you to quickly search a
specific genomic region.
As an example, let’s parse the bigBed file ``dna_rna.psl.bb``, available
in the ``Tests/Blat`` subdirectory in the Biopython distribution. This
file is the bigPsl equivalent of the bigBed file ``dna_rna.bb`` (see
section :ref:`subsec:align_bigbed`) and of the PSL file
``dna_rna.psl`` (see section :ref:`subsec:align_psl`).
.. doctest ../Tests/Blat lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("dna_rna.psl.bb", "bigpsl")
>>> len(alignments)
4
>>> print(alignments.declaration) # doctest: +NORMALIZE_WHITESPACE
table bigPsl
"bigPsl pairwise alignment"
(
string chrom; "Reference sequence chromosome or scaffold"
uint chromStart; "Start position in chromosome"
uint chromEnd; "End position in chromosome"
string name; "Name or ID of item, ideally both human readable and unique"
uint score; "Score (0-1000)"
char[1] strand; "+ or - indicates whether the query aligns to the + or - strand on the reference"
uint thickStart; "Start of where display should be thick (start codon)"
uint thickEnd; "End of where display should be thick (stop codon)"
uint reserved; "RGB value (use R,G,B string in input file)"
int blockCount; "Number of blocks"
int[blockCount] blockSizes; "Comma separated list of block sizes"
int[blockCount] chromStarts; "Start positions relative to chromStart"
uint oChromStart; "Start position in other chromosome"
uint oChromEnd; "End position in other chromosome"
char[1] oStrand; "+ or -, - means that psl was reversed into BED-compatible coordinates"
uint oChromSize; "Size of other chromosome."
int[blockCount] oChromStarts; "Start positions relative to oChromStart or from oChromStart+oChromSize depending on strand"
lstring oSequence; "Sequence on other chrom (or edit list, or empty)"
string oCDS; "CDS in NCBI format"
uint chromSize; "Size of target chromosome"
uint match; "Number of bases matched."
uint misMatch; "Number of bases that don't match"
uint repMatch; "Number of bases that match but are part of repeats"
uint nCount; "Number of 'N' bases"
uint seqType; "0=empty, 1=nucleotide, 2=amino_acid"
)
<BLANKLINE>
The declaration contains the specification of the columns as defined by
the ``bigPsl.as`` AutoSql file from UCSC. Target sequences (typically,
the chromosomes against which the sequences were aligned) are stored in
the ``targets`` attribute. In the bigBed format, only the identifier and
the size of each target is stored. In this example, there is only a
single chromosome:
.. cont-doctest
.. code:: pycon
>>> alignments.targets
[SeqRecord(seq=Seq(None, length=198295559), id='chr3', name='<unknown name>', description='<unknown description>', dbxrefs=[])]
Iterating over the alignments gives one Alignment object for each line:
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print(alignment.target.id, alignment.query.id)
...
chr3 NR_046654.1
chr3 NR_046654.1_modified
chr3 NR_111921.1
chr3 NR_111921.1_modified
Let’s look at the individual alignments. The alignment information is
stored in the same way as for the corresponding PSL file (see
section :ref:`subsec:align_psl`):
.. cont-doctest
.. code:: pycon
>>> alignment.coordinates
array([[48663767, 48663795, 48663796, 48663813, 48665640, 48665716,
48665716, 48665722, 48669098, 48669174],
[ 3, 31, 31, 48, 48, 124,
126, 132, 132, 208]])
>>> alignment.thickStart
48663767
>>> alignment.thickEnd
48669174
>>> alignment.matches
162
>>> alignment.misMatches
2
>>> alignment.repMatches
39
>>> alignment.nCount
0
We can print the alignment in BED or PSL format:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "bed")) # doctest: +NORMALIZE_WHITESPACE
chr3 48663767 48669174 NR_111921.1_modified 1000 + 48663767 48669174 0 5 28,17,76,6,76, 0,29,1873,1949,5331,
<BLANKLINE>
>>> print(format(alignment, "psl")) # doctest: +NORMALIZE_WHITESPACE
162 2 39 0 1 2 3 5204 + NR_111921.1_modified 220 3 208 chr3 198295559 48663767 48669174 5 28,17,76,6,76, 3,31,48,126,132, 48663767,48663796,48665640,48665716,48669098,
<BLANKLINE>
As a bigPsl file is a special case of a bigBed file, you can use the
``search`` method on the alignments object to find alignments to
specific genomic regions. For example, we can look for regions on chr3
between positions 48000000 and 49000000:
.. cont-doctest
.. code:: pycon
>>> selected_alignments = alignments.search("chr3", 48000000, 49000000)
>>> for alignment in selected_alignments:
... print(alignment.query.id)
...
NR_111921.1
NR_111921.1_modified
The chromosome name may be ``None`` to include all chromosomes, and the
start and end positions may be ``None`` to start searching from position
0 or to continue searching until the end of the chromosome,
respectively.
To write a bigPsl file with Biopython, use
``Bio.Align.write(alignments, "myfilename.bb", fmt="bigpsl")``, where
``myfilename.bb`` is the name of the output bigPsl file. Alternatively,
you can use a (binary) stream for output. Additional options are
- ``compress``: If ``True`` (default), compress data using zlib; if
``False``, do not compress data.
- ``extraIndex``: List of strings with the names of extra columns to be
indexed.
- ``cds``: If ``True``, look for a query feature of type CDS and write
it in NCBI style in the PSL file (default: ``False``).
- ``fa``: If ``True``, include the query sequence in the PSL file
(default: ``False``).
- ``mask``: Specify if repeat regions in the target sequence are masked
and should be reported in the ``repMatches`` field instead of in the
``matches`` field. Acceptable values are
- ``None``: no masking (default);
- ``"lower"``: masking by lower-case characters;
- ``"upper"``: masking by upper-case characters.
- ``wildcard``: Report alignments to the wildcard character
(representing unknown nucleotides) in the target or query sequence in
the ``nCount`` field instead of in the ``matches``, ``misMatches``,
or ``repMatches`` fields. Default value is ``"N"``.
See section :ref:`subsec:align_psl` for an explanation on how the
number of matches, mismatches, repeat region matches, and matches to
unknown nucleotides are obtained.
Further optional arguments are ``blockSize`` (default value is 256), and
``itemsPerSlot`` (default value is 512). See the documentation of UCSC's
``bedToBigBed`` program for a description of these arguments. Searching a
``bigPsl`` file can be faster by using ``compress=False`` and
``itemsPerSlot=1`` when creating the bigPsl file.
.. _`subsec:align_maf`:
Multiple Alignment Format (MAF)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MAF (Multiple Alignment Format) files store a series of multiple
sequence alignments in a human-readable format. MAF files are typically
used to store alignment s of genomes to each other. The file
``ucsc_test.maf`` in the ``Tests/MAF`` subdirectory of the Biopython
distribution is an example of a simple MAF file:
.. code:: text
track name=euArc visibility=pack mafDot=off frames="multiz28wayFrames" speciesOrder="hg16 panTro1 baboon mm4 rn3" description="A sample alignment"
##maf version=1 scoring=tba.v8
# tba.v8 (((human chimp) baboon) (mouse rat))
# multiz.v7
# maf_project.v5 _tba_right.maf3 mouse _tba_C
# single_cov2.v4 single_cov2 /dev/stdin
a score=23262.0
s hg16.chr7 27578828 38 + 158545518 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s panTro1.chr6 28741140 38 + 161576975 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s baboon 116834 38 + 4622798 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
s mm4.chr6 53215344 38 + 151104725 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
s rn3.chr4 81344243 40 + 187371129 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG
a score=5062.0
s hg16.chr7 27699739 6 + 158545518 TAAAGA
s panTro1.chr6 28862317 6 + 161576975 TAAAGA
s baboon 241163 6 + 4622798 TAAAGA
s mm4.chr6 53303881 6 + 151104725 TAAAGA
s rn3.chr4 81444246 6 + 187371129 taagga
a score=6636.0
s hg16.chr7 27707221 13 + 158545518 gcagctgaaaaca
s panTro1.chr6 28869787 13 + 161576975 gcagctgaaaaca
s baboon 249182 13 + 4622798 gcagctgaaaaca
s mm4.chr6 53310102 13 + 151104725 ACAGCTGAAAATA
To parse this file, use
.. doctest ../Tests/MAF lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("ucsc_test.maf", "maf")
Information shown in the file header (the track line and subsequent
lines starting with "``#``")) is stored in the ``metadata`` attribute of
the ``alignments`` object:
.. cont-doctest
.. code:: pycon
>>> alignments.metadata # doctest: +NORMALIZE_WHITESPACE
{'name': 'euArc',
'visibility': 'pack',
'mafDot': 'off',
'frames': 'multiz28wayFrames',
'speciesOrder': ['hg16', 'panTro1', 'baboon', 'mm4', 'rn3'],
'description': 'A sample alignment',
'MAF Version': '1',
'Scoring': 'tba.v8',
'Comments': ['tba.v8 (((human chimp) baboon) (mouse rat))',
'multiz.v7',
'maf_project.v5 _tba_right.maf3 mouse _tba_C',
'single_cov2.v4 single_cov2 /dev/stdin']}
By iterating over the ``alignments`` we obtain one ``Alignment`` object
for each alignment block in the MAF file:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> alignment.score
23262.0
>>> {seq.id: len(seq) for seq in alignment.sequences} # doctest: +NORMALIZE_WHITESPACE
{'hg16.chr7': 158545518,
'panTro1.chr6': 161576975,
'baboon': 4622798,
'mm4.chr6': 151104725,
'rn3.chr4': 187371129}
>>> print(alignment.coordinates)
[[27578828 27578829 27578831 27578831 27578850 27578850 27578866]
[28741140 28741141 28741143 28741143 28741162 28741162 28741178]
[ 116834 116835 116837 116837 116856 116856 116872]
[53215344 53215344 53215346 53215347 53215366 53215366 53215382]
[81344243 81344243 81344245 81344245 81344264 81344267 81344283]]
>>> print(alignment)
hg16.chr7 27578828 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 27578866
panTro1.c 28741140 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 28741178
baboon 116834 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG 116872
mm4.chr6 53215344 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG 53215382
rn3.chr4 81344243 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG 81344283
<BLANKLINE>
>>> print(format(alignment, "phylip"))
5 42
hg16.chr7 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
panTro1.chAAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
baboon AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
mm4.chr6 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
rn3.chr4 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG
<BLANKLINE>
In addition to the "``a``" (alignment block) and "``s``" (sequence)
lines, MAF files may contain "``i``" lines with information about the
genome sequence before and after this block, "``e``" lines with
information about empty parts of the alignment, and "``q``" lines
showing the quality of each aligned base. This is an example of an
alignment block including such lines:
.. code:: text
a score=19159.000000
s mm9.chr10 3014644 45 + 129993255 CCTGTACC---CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG
s hg18.chr6 15870786 46 - 170899992 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT
i hg18.chr6 I 9085 C 0
s panTro2.chr6 16389355 46 - 173908612 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT
q panTro2.chr6 99999999999999999999999-9999999999999999999-9999
i panTro2.chr6 I 9106 C 0
s calJac1.Contig6394 6182 46 + 133105 CCTATACCTTTCTTTCATGAGAA-TTTTGTTTGAATCCTAAAC-TTTT
i calJac1.Contig6394 N 0 C 0
s loxAfr1.scaffold_75566 1167 34 - 10574 ------------TTTGGTTAGAA-TTATGCTTTAATTCAAAAC-TTCC
q loxAfr1.scaffold_75566 ------------99999699899-9999999999999869998-9997
i loxAfr1.scaffold_75566 N 0 C 0
e tupBel1.scaffold_114895.1-498454 167376 4145 - 498454 I
e echTel1.scaffold_288249 87661 7564 + 100002 I
e otoGar1.scaffold_334.1-359464 181217 2931 - 359464 I
e ponAbe2.chr6 16161448 8044 - 174210431 I
This is the 10th alignment block in the file ``ucsc_mm9_chr10.maf``
(available in the ``Tests/MAF`` subdirectory of the Biopython
distribution):
.. doctest ../Tests/MAF lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("ucsc_mm9_chr10.maf", "maf")
>>> for i in range(10):
... alignment = next(alignments)
...
>>> alignment.score
19159.0
>>> print(alignment)
mm9.chr10 3014644 CCTGTACC---CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG 3014689
hg18.chr6 155029206 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 155029160
panTro2.c 157519257 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 157519211
calJac1.C 6182 CCTATACCTTTCTTTCATGAGAA-TTTTGTTTGAATCCTAAAC-TTTT 6228
loxAfr1.s 9407 ------------TTTGGTTAGAA-TTATGCTTTAATTCAAAAC-TTCC 9373
<BLANKLINE>
The "``i``" lines show the relationship between the sequence in the
current alignment block to the ones in the preceding and subsequent
alignment block. This information is stored in the ``annotations``
attribute of the corresponding sequence:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences[0].annotations
{}
>>> alignment.sequences[1].annotations
{'leftStatus': 'I', 'leftCount': 9085, 'rightStatus': 'C', 'rightCount': 0}
showing that there are 9085 bases inserted ("``I``") between this block
and the preceding one, while the block is contiguous ("``C``") with the
subsequent one. See the `UCSC
documentation <https://genome.ucsc.edu/FAQ/FAQformat.html#format5>`__
for the full description of these fields and status characters.
The "``q``" lines show the sequence quality, which is stored under the
"``quality``" dictionary key of the\ ``annotations`` attribute of the
corresponding sequence:
.. cont-doctest
.. code:: pycon
>>> alignment.sequences[2].annotations["quality"]
'9999999999999999999999999999999999999999999999'
>>> alignment.sequences[4].annotations["quality"]
'9999969989999999999999998699989997'
The "``e``" lines show information about species with a contiguous
sequence before and after this alignment bloack, but with no aligning
nucleotides in this alignment block. This is stored under the
"``empty``" key of the ``alignment.annotations`` dictionary:
.. cont-doctest
.. code:: pycon
>>> alignment.annotations["empty"] # doctest: +NORMALIZE_WHITESPACE
[(SeqRecord(seq=Seq(None, length=498454), id='tupBel1.scaffold_114895.1-498454', name='', description='', dbxrefs=[]), (331078, 326933), 'I'),
(SeqRecord(seq=Seq(None, length=100002), id='echTel1.scaffold_288249', name='', description='', dbxrefs=[]), (87661, 95225), 'I'),
(SeqRecord(seq=Seq(None, length=359464), id='otoGar1.scaffold_334.1-359464', name='', description='', dbxrefs=[]), (178247, 175316), 'I'),
(SeqRecord(seq=Seq(None, length=174210431), id='ponAbe2.chr6', name='', description='', dbxrefs=[]), (158048983, 158040939), 'I')]
This shows for example that there were non-aligning bases inserted
("``I``") from position 158040939 to 158048983 on the opposite strand of
the ``ponAbe2.chr6`` genomic sequence. Again, see the `UCSC
documentation <https://genome.ucsc.edu/FAQ/FAQformat.html#format5>`__
for the full definition of "``e``" lines.
To print an alignment in MAF format, you can use Python’s built-in
``format`` function:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "MAF"))
a score=19159.000000
s mm9.chr10 3014644 45 + 129993255 CCTGTACC---CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG
s hg18.chr6 15870786 46 - 170899992 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT
i hg18.chr6 I 9085 C 0
s panTro2.chr6 16389355 46 - 173908612 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT
q panTro2.chr6 99999999999999999999999-9999999999999999999-9999
i panTro2.chr6 I 9106 C 0
s calJac1.Contig6394 6182 46 + 133105 CCTATACCTTTCTTTCATGAGAA-TTTTGTTTGAATCCTAAAC-TTTT
i calJac1.Contig6394 N 0 C 0
s loxAfr1.scaffold_75566 1167 34 - 10574 ------------TTTGGTTAGAA-TTATGCTTTAATTCAAAAC-TTCC
q loxAfr1.scaffold_75566 ------------99999699899-9999999999999869998-9997
i loxAfr1.scaffold_75566 N 0 C 0
e tupBel1.scaffold_114895.1-498454 167376 4145 - 498454 I
e echTel1.scaffold_288249 87661 7564 + 100002 I
e otoGar1.scaffold_334.1-359464 181217 2931 - 359464 I
e ponAbe2.chr6 16161448 8044 - 174210431 I
<BLANKLINE>
<BLANKLINE>
To write a complete MAF file, use
``Bio.Align.write(alignments, "myfilename.maf", fmt="maf")``, where
``myfilename.maf`` is the name of the output MAF file. Alternatively,
you can use a (text) stream for output. File header information will be
taken from the ``metadata`` attribute of the ``alignments`` object. If
you are creating the alignments from scratch, you can use the
``Alignments`` (plural) class to create a list-like ``alignments``
object (see Section :ref:`sec:alignments`) and give it a
``metadata`` attribute.
.. _`subsec:align_bigmaf`:
bigMaf
~~~~~~
A bigMaf file is a bigBed file with a BED3+1 format consisting of the 3
required BED fields plus a custom field that stores a MAF alignment
block as a string, creating an indexed binary version of a MAF file (see
section :ref:`subsec:align_maf`). The associated AutoSql file
`bigMaf.as <https://genome.ucsc.edu/goldenPath/help/examples/bigMaf.as>`__
is provided by UCSC. To create a bigMaf file, you can either use the
``mafToBigMaf`` and ``bedToBigBed`` programs from UCSC. or you can use
Biopython by calling the Bio.Align.write function with ``fmt="bigmaf"``.
While the two methods should result in identical bigMaf files, the UCSC
tools are much faster and may be more reliable, as it is the gold
standard. As bigMaf files are bigBed files, they come with a built-in
index, allowing you to quickly search a specific region of the reference
genome.
The file ``ucsc_test.bb`` in the ``Tests/MAF`` subdirectory of the
Biopython distribution is an example of a bigMaf file. This file is
equivalent to the MAF file ``ucsc_test.maf`` (see
section :ref:`subsec:align_maf`). To parse this file, use
.. doctest ../Tests/MAF lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("ucsc_test.bb", "bigmaf")
>>> len(alignments)
3
>>> print(alignments.declaration) # doctest: +NORMALIZE_WHITESPACE
table bedMaf
"Bed3 with MAF block"
(
string chrom; "Reference sequence chromosome or scaffold"
uint chromStart; "Start position in chromosome"
uint chromEnd; "End position in chromosome"
lstring mafBlock; "MAF block"
)
<BLANKLINE>
The declaration contains the specification of the columns as defined by
the bigMaf.as AutoSql file from UCSC.
The bigMaf file does not store the header information found in the MAF
file, but it does define a reference genome. The corresponding
``SeqRecord`` is stored in the ``targets`` attribute of the
``alignments`` object:
.. cont-doctest
.. code:: pycon
>>> alignments.reference
'hg16'
>>> alignments.targets # doctest: +ELLIPSIS
[SeqRecord(seq=Seq(None, length=158545518), id='hg16.chr7', ...)]
By iterating over the ``alignments`` we obtain one ``Alignment`` object
for each alignment block in the bigMaf file:
.. cont-doctest
.. code:: pycon
>>> alignment = next(alignments)
>>> alignment.score
23262.0
>>> {seq.id: len(seq) for seq in alignment.sequences} # doctest: +NORMALIZE_WHITESPACE
{'hg16.chr7': 158545518,
'panTro1.chr6': 161576975,
'baboon': 4622798,
'mm4.chr6': 151104725,
'rn3.chr4': 187371129}
>>> print(alignment.coordinates)
[[27578828 27578829 27578831 27578831 27578850 27578850 27578866]
[28741140 28741141 28741143 28741143 28741162 28741162 28741178]
[ 116834 116835 116837 116837 116856 116856 116872]
[53215344 53215344 53215346 53215347 53215366 53215366 53215382]
[81344243 81344243 81344245 81344245 81344264 81344267 81344283]]
>>> print(alignment)
hg16.chr7 27578828 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 27578866
panTro1.c 28741140 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG 28741178
baboon 116834 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG 116872
mm4.chr6 53215344 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG 53215382
rn3.chr4 81344243 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG 81344283
<BLANKLINE>
>>> print(format(alignment, "phylip"))
5 42
hg16.chr7 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
panTro1.chAAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
baboon AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
mm4.chr6 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
rn3.chr4 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG
<BLANKLINE>
Information in the "``i``", "``e``", and "``q``" lines is stored in the
same way as in the corresponding MAF file (see
section :ref:`subsec:align_maf`):
.. doctest ../Tests/MAF lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("ucsc_mm9_chr10.bb", "bigmaf")
>>> for i in range(10):
... alignment = next(alignments)
...
>>> alignment.score
19159.0
>>> print(alignment)
mm9.chr10 3014644 CCTGTACC---CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG 3014689
hg18.chr6 155029206 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 155029160
panTro2.c 157519257 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT 157519211
calJac1.C 6182 CCTATACCTTTCTTTCATGAGAA-TTTTGTTTGAATCCTAAAC-TTTT 6228
loxAfr1.s 9407 ------------TTTGGTTAGAA-TTATGCTTTAATTCAAAAC-TTCC 9373
<BLANKLINE>
>>> print(format(alignment, "MAF"))
a score=19159.000000
s mm9.chr10 3014644 45 + 129993255 CCTGTACC---CTTTGGTGAGAATTTTTGTTTCAGTGTTAAAAGTTTG
s hg18.chr6 15870786 46 - 170899992 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT
i hg18.chr6 I 9085 C 0
s panTro2.chr6 16389355 46 - 173908612 CCTATACCTTTCTTTTATGAGAA-TTTTGTTTTAATCCTAAAC-TTTT
q panTro2.chr6 99999999999999999999999-9999999999999999999-9999
i panTro2.chr6 I 9106 C 0
s calJac1.Contig6394 6182 46 + 133105 CCTATACCTTTCTTTCATGAGAA-TTTTGTTTGAATCCTAAAC-TTTT
i calJac1.Contig6394 N 0 C 0
s loxAfr1.scaffold_75566 1167 34 - 10574 ------------TTTGGTTAGAA-TTATGCTTTAATTCAAAAC-TTCC
q loxAfr1.scaffold_75566 ------------99999699899-9999999999999869998-9997
i loxAfr1.scaffold_75566 N 0 C 0
e tupBel1.scaffold_114895.1-498454 167376 4145 - 498454 I
e echTel1.scaffold_288249 87661 7564 + 100002 I
e otoGar1.scaffold_334.1-359464 181217 2931 - 359464 I
e ponAbe2.chr6 16161448 8044 - 174210431 I
<BLANKLINE>
<BLANKLINE>
>>> alignment.sequences[1].annotations
{'leftStatus': 'I', 'leftCount': 9085, 'rightStatus': 'C', 'rightCount': 0}
>>> alignment.sequences[2].annotations["quality"]
'9999999999999999999999999999999999999999999999'
>>> alignment.sequences[4].annotations["quality"]
'9999969989999999999999998699989997'
>>> alignment.annotations["empty"] # doctest: +NORMALIZE_WHITESPACE
[(SeqRecord(seq=Seq(None, length=498454), id='tupBel1.scaffold_114895.1-498454', name='', description='', dbxrefs=[]), (331078, 326933), 'I'),
(SeqRecord(seq=Seq(None, length=100002), id='echTel1.scaffold_288249', name='', description='', dbxrefs=[]), (87661, 95225), 'I'),
(SeqRecord(seq=Seq(None, length=359464), id='otoGar1.scaffold_334.1-359464', name='', description='', dbxrefs=[]), (178247, 175316), 'I'),
(SeqRecord(seq=Seq(None, length=174210431), id='ponAbe2.chr6', name='', description='', dbxrefs=[]), (158048983, 158040939), 'I')]
To write a complete bigMaf file, use
``Bio.Align.write(alignments, "myfilename.bb", fmt="bigMaf")``, where
``myfilename.bb`` is the name of the output bigMaf file. Alternatively,
you can use a (binary) stream for output. If you are creating the
alignments from scratch, you can use the ``Alignments`` (plural) class
to create a list-like ``alignments`` object (see
Section :ref:`sec:alignments`) and give it a ``targets`` attribute.
The latter must be a list of ``SeqRecord`` objects for the chromosomes
for the reference species in the order in which they appear in the
alignments. Alternatively, you can use the ``targets`` keyword argument
when calling ``Bio.Align.write``. The ``id`` of each ``SeqRecord`` must
be of the form ``reference.chromosome``, where ``reference`` refers to
the reference species. ``Bio.Align.write`` has the additional keyword
argument ``compress`` (``True`` by default) specifying whether the data
should be compressed using zlib.
Further optional arguments are ``blockSize`` (default value is 256), and
``itemsPerSlot`` (default value is 512). See the documentation of UCSC's
``bedToBigBed`` program for a description of these arguments.
As a bigMaf file is a special case of a bigBed file, you can use the
``search`` method on the ``alignments`` object to find alignments to
specific regions of the reference species. For example, we can look for
regions on chr10 between positions 3018000 and 3019000 on chromosome 10:
.. cont-doctest
.. code:: pycon
>>> selected_alignments = alignments.search("mm9.chr10", 3018000, 3019000)
>>> for alignment in selected_alignments:
... start, end = alignment.coordinates[0, 0], alignment.coordinates[0, -1]
... print(start, end)
...
3017743 3018161
3018161 3018230
3018230 3018359
3018359 3018482
3018482 3018644
3018644 3018822
3018822 3018932
3018932 3019271
The chromosome name may be ``None`` to include all chromosomes, and the
start and end positions may be ``None`` to start searching from position
0 or to continue searching until the end of the chromosome,
respectively. Note that we can search on genomic position for the
reference species only.
Searching a ``bigMaf`` file can be faster by using ``compress=False`` and
``itemsPerSlot=1`` when creating the bigMaf file.
.. _`subsec:align_chain`:
UCSC chain file format
~~~~~~~~~~~~~~~~~~~~~~
Chain files describe a pairwise alignment between two nucleotide
sequences, allowing gaps in both sequences. Only the length of each
aligned subsequences and the gap lengths are stored in a chain file; the
sequences themselves are not stored. Chain files are typically used to
store alignments between two genome assembly versions, allowing
alignments to one genome assembly version to be lifted over to the other
genome assembly. This is an example of a chain file (available as
``psl_34_001.chain`` in the ``Tests/Blat`` subdirectory of the Biopython
distribution):
.. code:: text
chain 16 chr4 191154276 + 61646095 61646111 hg18_dna 33 + 11 27 1
16
chain 33 chr1 249250621 + 10271783 10271816 hg18_dna 33 + 0 33 2
33
chain 17 chr2 243199373 + 53575980 53575997 hg18_dna 33 - 8 25 3
17
chain 35 chr9 141213431 + 85737865 85737906 hg19_dna 50 + 9 50 4
41
chain 41 chr8 146364022 + 95160479 95160520 hg19_dna 50 + 8 49 5
41
chain 30 chr22 51304566 + 42144400 42144436 hg19_dna 50 + 11 47 6
36
chain 41 chr2 243199373 + 183925984 183926028 hg19_dna 50 + 1 49 7
6 0 4
38
chain 31 chr19 59128983 + 35483340 35483510 hg19_dna 50 + 10 46 8
25 134 0
11
chain 39 chr18 78077248 + 23891310 23891349 hg19_dna 50 + 10 49 9
39
...
This file was generated by running UCSC’s ``pslToChain`` program on the
PSL file ``psl_34_001.psl``. According to the chain file format
specification, there should be a blank line after each chain block, but
some tools (including ``pslToChain``) apparently do not follow this
rule.
To parse this file, use
.. doctest ../Tests/Blat lib:numpy
.. code:: pycon
>>> from Bio import Align
>>> alignments = Align.parse("psl_34_001.chain", "chain")
Iterate over alignments to get one ``Alignment`` object for each chain:
.. cont-doctest
.. code:: pycon
>>> for alignment in alignments:
... print(alignment.target.id, alignment.query.id) # doctest: +ELLIPSIS
...
chr4 hg18_dna
chr1 hg18_dna
chr2 hg18_dna
chr9 hg19_dna
chr8 hg19_dna
chr22 hg19_dna
chr2 hg19_dna
...
chr1 hg19_dna
Iterate from the start until we reach the seventh alignment:
.. cont-doctest
.. code:: pycon
>>> alignments = iter(alignments)
>>> for i in range(7):
... alignment = next(alignments)
...
Check the alignment score and chain ID (the first and last number,
respectively, in the header line of each chain block) to confirm that we
got the seventh alignment:
.. cont-doctest
.. code:: pycon
>>> alignment.score
41.0
>>> alignment.annotations["id"]
'7'
We can print the alignment in the chain file format. The alignment
coordinates are consistent with the information in the chain block, with
an aligned section of 6 nucleotides, a gap of 4 nucleotides, and an
aligned section of 38 nucleotides:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "chain")) # doctest: +NORMALIZE_WHITESPACE
chain 41 chr2 243199373 + 183925984 183926028 hg19_dna 50 + 1 49 7
6 0 4
38
<BLANKLINE>
<BLANKLINE>
>>> alignment.coordinates
array([[183925984, 183925990, 183925990, 183926028],
[ 1, 7, 11, 49]])
>>> print(alignment)
chr2 183925984 ??????----?????????????????????????????????????? 183926028
0 ||||||----|||||||||||||||||||||||||||||||||||||| 48
hg19_dna 1 ???????????????????????????????????????????????? 49
<BLANKLINE>
We can also print the alignment in a few other alignment fite formats:
.. cont-doctest
.. code:: pycon
>>> print(format(alignment, "BED")) # doctest: +NORMALIZE_WHITESPACE
chr2 183925984 183926028 hg19_dna 41 + 183925984 183926028 0 2 6,38, 0,6,
<BLANKLINE>
>>> print(format(alignment, "PSL")) # doctest: +NORMALIZE_WHITESPACE
44 0 0 0 1 4 0 0 + hg19_dna 50 1 49 chr2 243199373 183925984 183926028 2 6,38, 1,11, 183925984,183925990,
<BLANKLINE>
>>> print(format(alignment, "exonerate"))
vulgar: hg19_dna 1 49 + chr2 183925984 183926028 + 41 M 6 6 G 4 0 M 38 38
<BLANKLINE>
>>> print(alignment.format("exonerate", "cigar"))
cigar: hg19_dna 1 49 + chr2 183925984 183926028 + 41 M 6 I 4 M 38
<BLANKLINE>
>>> print(format(alignment, "sam")) # doctest: +NORMALIZE_WHITESPACE
hg19_dna 0 chr2 183925985 255 1S6M4I38M1S * 0 0 * * AS:i:41 id:A:7
<BLANKLINE>
|