File: _arraycore.c

package info (click to toggle)
python-biopython 1.86%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 128,424 kB
  • sloc: xml: 1,050,354; python: 360,709; ansic: 18,503; sql: 1,208; makefile: 132; sh: 84
file content (236 lines) | stat: -rw-r--r-- 7,958 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "_arraycore.h"


static PyTypeObject Array_Type;


static void
Array_dealloc(PyObject *self)
{
    PyTypeObject* basetype = Array_Type.tp_base;
    Fields* fields = (Fields*)((intptr_t)self + basetype->tp_basicsize);
    /* fields->alphabet may be NULL if this instance was created by numpy
     * and __array_finalize__ somehow failed.
     */
    Py_XDECREF(fields->alphabet);
    /* PyBuffer_Release won't do anything if fields->mapping.obj is NULL. */
    PyMem_Free(fields->mapping.buf);
    basetype->tp_dealloc(self);
}

static PyObject *
Array_finalize(PyObject *self, PyObject *obj)
{
    if (obj == Py_None) Py_RETURN_NONE;
    if (Py_TYPE(self) != Py_TYPE(obj)) {
        PyErr_SetString(PyExc_RuntimeError,
                        "__array_finalize__ argument is not an Array object");
        return NULL;
    }
    PyTypeObject* basetype = Array_Type.tp_base;
    Fields* self_fields = (Fields*)((intptr_t)self + basetype->tp_basicsize);
    const Fields* obj_fields = (Fields*)((intptr_t)obj + basetype->tp_basicsize);
    PyObject* alphabet = obj_fields->alphabet;
    if (alphabet) {
        Py_INCREF(alphabet);
        self_fields->alphabet = obj_fields->alphabet;
    }
    Py_RETURN_NONE;
}

static PyMethodDef Array_methods[] = {
    {"__array_finalize__", (PyCFunction)Array_finalize, METH_O,
     "Called by NumPy to finalize new views or copies"},
    {NULL}  /* Sentinel */
};

static PyObject *Array_get_alphabet(PyObject *self, void *closure) {
    PyTypeObject* basetype = Array_Type.tp_base;
    Fields* fields = (Fields*)((intptr_t)self + basetype->tp_basicsize);
    PyObject* alphabet = fields->alphabet;
    if (!alphabet) Py_RETURN_NONE;
    Py_INCREF(alphabet);
    return alphabet;
}

static int Array_set_alphabet(PyObject *self, PyObject *arg, void *closure) {
    Py_buffer view;
    const Py_ssize_t length = PySequence_Size(arg);
    PyTypeObject* basetype = Array_Type.tp_base;
    Fields* fields = (Fields*)((intptr_t)self + basetype->tp_basicsize);
    if (fields->alphabet) {
        PyErr_SetString(PyExc_ValueError, "the alphabet has already been set.");
        return -1;
    }
    if (!PySequence_Check(arg)) {
        PyErr_SetString(PyExc_TypeError,
            "alphabet must support the sequence protocol (e.g.,\n"
            "strings, lists, and tuples can be valid alphabets).");
        return -1;
    }
    if (PyObject_GetBuffer(self, &view, PyBUF_STRIDES) != 0) {
        PyErr_SetString(PyExc_RuntimeError, "failed to access matrix buffer");
        return -1;
    }
    switch (view.ndim) {
        case 1:
            if (view.shape[0] == length) break;
            PyErr_Format(PyExc_ValueError,
                "alphabet length %zd is inconsistent with array size "
                "%zd", length, view.shape[0]);
            PyBuffer_Release(&view);
            return -1;
        case 2:
            if ((view.shape[0] == length && view.shape[1] == length)
             || (view.shape[0] == length && view.shape[1] == 1)
             || (view.shape[0] == 1 && view.shape[1] == length)) break;
            PyErr_Format(PyExc_ValueError,
                "alphabet length %zd is inconsistent with array size "
                "(%zd, %zd)", length, view.shape[0], view.shape[1]);
            PyBuffer_Release(&view);
            return -1;
        default:
            PyErr_Format(PyExc_ValueError,
                         "substitution matrix has incorrect rank %d "
                         "(expected 1 or 2)", view.ndim);
            PyBuffer_Release(&view);
            return -1;
    }
    PyBuffer_Release(&view);
    if (PyUnicode_Check(arg)) {
        /* initialize mapping if alphabet is a string: */
        Py_ssize_t mapping_size;
        void* characters = PyUnicode_DATA(arg);
        int kind = PyUnicode_KIND(arg);
        int* mapping;
        Py_ssize_t i;
        switch (kind) {
            case PyUnicode_1BYTE_KIND: {
                mapping_size = 1 << 8 * sizeof(Py_UCS1);
                break;
            }
            case PyUnicode_2BYTE_KIND: {
                mapping_size = 1 << 8 * sizeof(Py_UCS2);
                break;
            }
            case PyUnicode_4BYTE_KIND: {
                mapping_size = 0x110000;  /* Maximum code point in Unicode 6.0
                                           * is 0x10ffff = 1114111 */
                break;
            }
            default:
                PyErr_SetString(PyExc_ValueError, "could not interpret alphabet");
                return -1;
        }
        mapping = PyMem_Malloc(mapping_size*sizeof(int));
        if (!mapping) return -1;
        for (i = 0; i < mapping_size; i++) mapping[i] = MISSING_LETTER;
        for (i = 0; i < length; i++) {
            Py_UCS4 character = PyUnicode_READ(kind, characters, i);
            if (mapping[character] != MISSING_LETTER) {
                PyObject* c = PyUnicode_FromKindAndData(kind, &character, 1);
                PyErr_Format(PyExc_ValueError,
                             "alphabet contains '%S' more than once", c);
                Py_XDECREF(c);
                PyMem_Free(mapping);
                return -1;
            }
            mapping[character] = i;
        }
        if (PyBuffer_FillInfo(&fields->mapping,
                              NULL,
                              mapping,
                              mapping_size * sizeof(int),
                              0,
                              PyBUF_SIMPLE) == -1) {
            PyMem_Free(mapping);
            return -1;
        }
        fields->mapping.itemsize = sizeof(int);
    }
    Py_INCREF(arg);
    fields->alphabet = arg;
    return 0;
}

static PyGetSetDef Array_getset[] = {
    {"alphabet", (getter)Array_get_alphabet, (setter)Array_set_alphabet, "alphabet", NULL},
    {NULL}
};

static PyTypeObject Array_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "_arraycore.Array",
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
    .tp_dealloc = (destructor)Array_dealloc,
    .tp_methods = Array_methods,
    .tp_getset = Array_getset,
};

static struct PyModuleDef module = {
    PyModuleDef_HEAD_INIT,
    .m_name = "_arraycore",
    .m_doc = "Base module defining the Array base class",
    .m_size = -1,
};

PyMODINIT_FUNC
PyInit__arraycore(void)
{
    int result;
    PyObject *basemodule;
    PyObject *baseclass;
    PyTypeObject* basetype;

    PyObject *mod = PyModule_Create(&module);
    if (!mod) return NULL;

    // Import the module containing the base class
    basemodule = PyImport_ImportModule("numpy");
    if (!basemodule)
        return NULL;

    // Get the base class
    baseclass = PyObject_GetAttrString(basemodule, "ndarray");
    Py_DECREF(basemodule);
    if (!baseclass || !PyType_Check(baseclass)) {
        Py_XDECREF(basemodule);
        PyErr_SetString(PyExc_RuntimeError, "Failed to get numpy.ndarray");
        return NULL;
    }

    basetype = (PyTypeObject *)baseclass;
    if (!(basetype->tp_flags & Py_TPFLAGS_BASETYPE)) {
        PyErr_SetString(PyExc_RuntimeError,
                        "numpy ndarray class is not subclassable");
        return NULL;
    }
    if (basetype->tp_itemsize != 0) {
        PyErr_Format(PyExc_RuntimeError,
                     "expected numpy arrays to have tp_itemsize 0 (found %zd)",
                     basetype->tp_itemsize);
        return NULL;
    }
    if (!basetype->tp_new) {
        PyErr_SetString(PyExc_RuntimeError,
                        "numpy ndarray class does not have tp_new");
        return NULL;
    }

    Array_Type.tp_basicsize = basetype->tp_basicsize + sizeof(Fields);
    Array_Type.tp_base = (PyTypeObject *)baseclass;

    if (PyType_Ready(&Array_Type) < 0)
        return NULL;

    result = PyModule_AddObjectRef(mod, "Array", (PyObject*)&Array_Type);
    Py_DECREF(&Array_Type);
    if (result == -1) {
        Py_DECREF(mod);
        return NULL;
    }

    return mod;
}