1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
"""
Statistical Tests for Random Functions in bitarray.util
-------------------------------------------------------
These are statistical tests. They do not test any basic functionality of
random functions. Those are already tested in the regular utility tests.
Therefore, and because these tests take longer to run, we decided to put
them in a separate file.
In addition, this file contains some important verification tests that don't
test actual functionality in random_p(), but rather verify some of the logic
and establish some tricky equations.
"""
import sys
import unittest
from copy import deepcopy
from collections import Counter
from itertools import pairwise
from math import comb, fmod, sqrt
from statistics import fmean, stdev, pstdev
from random import randint, randrange, random, binomialvariate
from bitarray import bitarray, frozenbitarray
from bitarray.util import (
zeros, ones, urandom, random_k, random_p, sum_indices,
int2ba, count_and, count_or, count_xor, parity,
)
from bitarray.util import _Random # type: ignore
HEAVY = False # set True for heavy testing
_r = _Random()
M = _r.M
K = _r.K
limit = 1.0 / (K + 1) # lower limit for p
SMALL_P = _r.SMALL_P
def count_each_index(arrays):
"""
Given an iterable of bitarrays, count the sums of all bits at each
index and return those counts in a Counter object.
For example, for a returned Counter c, c[2] = 4 means that a sum of 2
across all bitarrays occurs at 4 indices.
"""
b = bitarray()
n = None # length of each bitarray
for a in arrays:
if n is None:
n = len(a)
elif len(a) != n:
raise ValueError("bitarrays of same length expected")
b.extend(a)
if n is None:
return Counter()
return Counter(b.count(1, i, len(b), n) for i in range(n))
class CountEachIndexTests(unittest.TestCase):
def test_example(self):
arrays = [bitarray("0011101"),
bitarray("1010100"),
bitarray("1011001")]
# sums: 2032202
c = count_each_index(arrays)
self.assertEqual(c.total(), 7) # length of each bitarray
self.assertEqual(c[0], 2)
self.assertEqual(c[1], 0)
self.assertEqual(c[2], 4)
self.assertEqual(c[3], 1)
def test_random(self):
for _ in range(1_000):
m = randrange(10)
n = randrange(10) if m else 0
arrays = [urandom(n) for _ in range(m)]
c = count_each_index(arrays)
self.assertEqual(c.total(), n)
for j in range(m + 1):
self.assertTrue(0 <= c[j] <= n)
c2 = Counter(sum(arrays[j][i] for j in range(m))
for i in range(n))
self.assertEqual(c, c2)
# generator
gen = (arrays[j] for j in range(m))
self.assertEqual(count_each_index(gen), c)
self.assertEqual(list(gen), [])
def test_empty(self):
arrays = []
for m in range(10):
self.assertEqual(count_each_index(arrays), Counter())
arrays.append(bitarray())
def test_zeros_ones(self):
for _ in range(1_000):
m = randrange(10)
n = randrange(10) if m else 0
c = count_each_index(zeros(n) for _ in range(m))
self.assertEqual(c[0], n)
c = count_each_index(ones(n) for _ in range(m))
self.assertEqual(c[m], n)
def test_errors(self):
C = count_each_index
self.assertRaises(ValueError, C, "ABC")
self.assertRaises(TypeError, C, [0, 1])
self.assertRaises(ValueError, C, [bitarray("01"), bitarray("1")])
def create_masks(m):
"""
Create a list with m masks. Each mask has a length of 2**m bits.
"""
masks = []
for i in range(m):
j = 1 << i
mask = zeros(j) + ones(j)
mask *= 1 << (m - i - 1)
masks.append(mask)
return masks
class CreateMasksTests(unittest.TestCase):
def test_explict(self):
C = create_masks
self.assertEqual(C(0), [])
self.assertEqual(C(1), [bitarray("01")])
self.assertEqual(C(2), [bitarray("0101"),
bitarray("0011")])
self.assertEqual(C(3), [bitarray("01010101"),
bitarray("00110011"),
bitarray("00001111")])
def test_11(self):
m = 11
masks = create_masks(m)
n = 1 << m
self.assertEqual(len(masks), m)
self.assertEqual(count_each_index(masks),
Counter(int2ba(i).count() for i in range(n)))
for i in range(m):
a = masks[i]
self.assertEqual(len(a), n)
self.assertEqual(a.count(), n // 2)
for j in range(i):
b = masks[j]
self.assertEqual(count_and(a, b), n // 4)
self.assertEqual(count_or(a, b), 3 * n // 4)
self.assertEqual(count_xor(a, b), n // 2)
class Util(unittest.TestCase):
def check_binomial_dist(self, n, p, x):
mu = n * p
sigma = sqrt(n * p * (1.0 - p))
msg = "n=%d p=%f mu=%f sigma=%f x=%f" % (n, p, mu, sigma, x)
self.assertTrue(abs(x - mu) < 10.0 * sigma, msg)
def check_probability(self, a, p):
n = len(a)
c = a.count()
if p == 0:
self.assertEqual(c, 0)
elif p == 1:
self.assertEqual(c, n)
else:
self.check_binomial_dist(n, p, c)
class UtilTests(Util):
def test_check_probability(self):
C = self.check_probability
N = 1_000_000
a = zeros(N)
C(a, 0.0)
a.setall(1)
C(a, 1.0)
a[::2] = 0
self.assertEqual(a.count(), N // 2)
C(a, 0.501)
C(a, 0.499)
self.assertRaises(AssertionError, C, a, 0.506)
self.assertRaises(AssertionError, C, a, 0.494)
class URandomTests(Util):
def test_count(self):
a = urandom(10_000_000)
self.check_probability(a, 0.5)
def test_stat(self):
for c in [
Counter(urandom(100).count() for _ in range(100_000)),
count_each_index(urandom(100_000) for _ in range(100)),
]:
self.assertTrue(set(c) <= set(range(101)))
self.assertEqual(c.total(), 100_000)
x = sum(c[k] for k in range(40, 51))
# p = 0.522195 mean = 52219.451858 stdev = 157.958033
self.assertTrue(abs(x - 52_219) <= 1_580)
class Random_K_Tests(Util):
def test_mean(self):
M = 100_000 # number of trails
N = 1_000 # bitarray length
K = 500 # sample size
C = Counter()
ranges = [0.0, 500.0, 510.0, 520.0, 1000.0]
for _ in range(M):
x = sum_indices(random_k(N, K)) / K
for i, (x1, x2) in enumerate(pairwise(ranges)):
if x1 <= x < x2:
C[i] += 1
self.assertEqual(C.total(), M)
# python random/sample.py 100_000 1000 500 0 500 510 520 1000
self.assertTrue(abs(C[0] - 52_183) <= 1_580) # p = 0.521829
self.assertTrue(abs(C[1] - 35_303) <= 1_511) # p = 0.353025
self.assertTrue(abs(C[2] - 11_275) <= 1_000) # p = 0.112747
self.assertTrue(abs(C[3] - 1_240) <= 350) # p = 0.012399
def test_mean_2(self):
M = 100_000 # number of trails
N = 500 # bitarray length
K = 400 # sample size
C = Counter()
ranges = [200.0, 249.5, 251.0, 255.0, 260.0, 300.0]
for _ in range(M):
x = sum_indices(random_k(N, K)) / K
for i, (x1, x2) in enumerate(pairwise(ranges)):
if x1 <= x < x2:
C[i] += 1
self.assertEqual(C.total(), M)
# python random/sample.py 100_000 500 400 200 249.5 251 255 260 300
self.assertTrue(abs(C[0] - 50_000) <= 1_581) # p = 0.500000
self.assertTrue(abs(C[1] - 17_878) <= 1_212) # p = 0.178781
self.assertTrue(abs(C[2] - 27_688) <= 1_415) # p = 0.276879
self.assertTrue(abs(C[3] - 4_376) <= 647) # p = 0.043762
def test_apply_masks(self):
Na = 25_000 # number of bitarrays to test against masks
Nm = 12 # number of masks
n = 1 << Nm # length of each mask
# Create masks for selecting half elements in random bitarray a.
# For example, masks[0] selects all odd elements, and masks[-1]
# selects the upper half of a.
masks = create_masks(Nm)
cm = Nm * [0] # counter for each mask
for _ in range(Na):
k = randrange(1, n, 2) # k is odd
a = random_k(n, k)
self.assertEqual(len(a), n)
self.assertTrue(parity(a)) # count is odd
for i in range(Nm):
c1 = count_and(a, masks[i])
c0 = k - c1
# counts cannot be equal because k is odd
self.assertNotEqual(c0, c1)
# the probability for having more, e.g. even than
# odd (masks[0]) elements should be 1/2, or having more bits
# in upper vs lower half (mask(-1))
if c0 > c1:
cm[i] += 1
for c in cm: # for each mask, check counter
self.check_binomial_dist(Na, 0.5, c)
def test_random_masks(self):
Na = 10 # number of arrays to test
Nm = 500_000 if HEAVY else 25_000 # number of masks
n = 7000 # bitarray length
# count for each array
ka = [randrange(1, n, 2) for _ in range(Na)]
arrays = [random_k(n, k) for k in ka]
for k, a in zip(ka, arrays): # sanity check arrays
self.assertEqual(len(a), n)
self.assertEqual(a.count(), k)
self.assertTrue(parity(a))
ca = Na * [0] # counter for each array
for _ in range(Nm):
# each mask has exactly half elements set to 1
mask = random_k(n, n//2)
self.assertEqual(mask.count(0), mask.count(1))
# test each array against this masks
for i in range(Na):
c1 = count_and(arrays[i], mask)
c0 = ka[i] - c1
# counts cannot be equal because k is odd
self.assertNotEqual(c0, c1)
if c0 > c1:
ca[i] += 1
for c in ca: # for each array, check counter
self.check_binomial_dist(Nm, 0.5, c)
def test_elements_uniform(self):
arrays = [random_k(100_000, 30_000) for _ in range(100)]
for a in arrays:
# for each bitarray check sample size k
self.assertEqual(a.count(), 30_000)
c = count_each_index(arrays)
self.assertTrue(abs(c[30] - 8_678) <= 890)
x = sum(c[k] for k in range(20, 31))
# p = 0.540236 mean = 54023.639245 stdev = 157.601089
self.assertTrue(abs(x - 54_024) <= 1_576)
self.assertEqual(c.total(), 100_000)
def test_all_bits_active(self):
for _ in range(100):
n = randrange(10, 10_000)
cum = zeros(n)
for _ in range(10_000):
k = n // 7
a = random_k(n, k)
self.assertEqual(len(a), n)
self.assertEqual(a.count(), k)
cum |= a
if cum.all():
break
else:
self.fail()
def test_combinations(self):
# for entire range of 0 <= k <= n, validate that random_k()
# generates all possible combinations
n = 12
total = 0
for k in range(n + 1):
expected = comb(n, k)
combs = set()
for _ in range(100_000):
a = random_k(n, k)
self.assertEqual(a.count(), k)
combs.add(frozenbitarray(a))
if len(combs) == expected:
total += expected
break
else:
self.fail()
self.assertEqual(total, 2 ** n)
def test_evenly(self):
# Calculate random_k(n, k) N times, and count each specific outcome.
# We know that there are m=comb(n, k) possible outcomes, so each one
# has a probability 1/m and the mean of the count should be N/m.
N = 100_000
n = 9
k = 3
m = comb(n, k)
c = Counter()
for _ in range(N):
a = frozenbitarray(random_k(n, k))
c[a] += 1
self.assertEqual(c.total(), N)
self.assertEqual(len(c), m)
p = 1.0 / m
self.assertAlmostEqual(fmean(c.values()), N * p)
if 0:
print(m)
print(N * p)
print(sqrt(N * p * (1.0 - p)))
print(stdev(c.values()))
for x in c.values():
self.check_binomial_dist(N, p, x)
def random_p_alt(self, n, p=0.5):
"""
Alternative implementation of random_p(). While the performance is
about the same for large n, we found that for smaller n the handling
of special cases leads to better overall performance in the current
implementation.
"""
k = binomialvariate(n, p)
self.assertTrue(0 <= k <= n)
a = random_k(n, k)
self.assertEqual(len(a), n)
self.assertEqual(a.count(), k)
return a
def test_random_p_alt(self):
n = 1_000_000
for _ in range(100):
p = random()
a = self.random_p_alt(n, p)
self.check_probability(a, p)
class Random_P_Tests(Util):
def test_apply_masks(self):
M = 12 # number of masks
# Create masks for selecting half elements in the random bitarray a.
# For example, masks[0] selects all odd elements, and masks[-1]
# selects the upper half of a.
masks = create_masks(M)
n = M * [0] # sample size for each mask
c = M * [0] # count for each mask
for _ in range(25_000):
p = 1.5 * SMALL_P * random()
a = random_p(1 << M, p)
tot = a.count()
for i in range(M):
c1 = count_and(a, masks[i])
c0 = tot - c1
if c0 == c1: # counts are equal ->
continue # ignore this mask for this bitarray a
n[i] += 1
# counts are not equal, the probability for having more,
# e.g. even than odd (masks[0]) elements should be 1/2,
# or having more bits in upper vs lower half (mask(-1))
if c0 > c1:
c[i] += 1
for i in range(M):
self.assertTrue(n[i] > 20_000, n[i])
self.check_binomial_dist(n[i], 0.5, c[i])
def test_elements_uniform(self):
arrays = [random_p(100_000, 0.3) for _ in range(100)]
for a in arrays:
# for each bitarray see if population is within expectation
self.check_probability(a, 0.3)
c = count_each_index(arrays)
self.assertTrue(abs(c[30] - 8_678) <= 890)
x = sum(c[k] for k in range(20, 31))
# p = 0.540236 mean = 54023.639245 stdev = 157.601089
self.assertTrue(abs(x - 54_024) <= 1_576)
self.assertEqual(c.total(), 100_000)
def test_tiny_p(self):
for n in 4, 10, 1000:
for p in 1e-9, 1e-12, 1e-15, 1e-18:
a = random_p(n, p)
self.assertTrue(a.count() <= 1)
def test_literal(self):
# test "literal definition" case, n = 5
M = 250_000 # number of trails
C = Counter(random_p(5, 0.3).count() for _ in range(M))
self.assertEqual(C.total(), M)
# python random/binomial.py 250_000 5 0.3
self.assertTrue(abs(C[0] - 42_017) <= 1_870) # p = 0.168070
self.assertTrue(abs(C[1] - 90_037) <= 2_400) # p = 0.360150
self.assertTrue(abs(C[2] - 77_175) <= 2_310) # p = 0.308700
self.assertTrue(abs(C[3] - 33_075) <= 1_694) # p = 0.132300
self.assertTrue(abs(C[4] - 7_087) <= 830) # p = 0.028350
def test_small_p(self):
# test small p case
C = Counter(random_p(50, p=0.005).count() for _ in range(100_000))
self.assertEqual(C.total(), 100_000)
# python random/binomial.py 100_000 50 .005
self.assertTrue(abs(C[0] - 77_831) <= 1_314) # p = 0.778313
self.assertTrue(abs(C[1] - 19_556) <= 1_254) # p = 0.195556
def test_small_p_symmetry(self):
# same as above - exploiting symmetry
C = Counter(random_p(50, p=0.995).count() for _ in range(100_000))
self.assertEqual(C.total(), 100_000)
self.assertTrue(abs(C[49] - 19_556) <= 1_254)
self.assertTrue(abs(C[50] - 77_831) <= 1_314)
def test_small_p_uniform(self):
C = count_each_index(random_p(100_000, 0.005) for _ in range(50))
self.assertEqual(C.total(), 100_000)
self.assertTrue(abs(C[0] - 77_831) <= 1_314)
self.assertTrue(abs(C[1] - 19_556) <= 1_254)
def test_p375(self):
# test .combine_half()
M = 100_000 # number of trails
C = Counter(random_p(100, 0.375).count() for _ in range(M))
self.assertEqual(C.total(), M)
# python random/binomial.py 100_000 100 .375 37..48
self.assertTrue(abs(C[36] - 7_898) <= 853) # p = 0.078977
self.assertTrue(abs(C[37] - 8_196) <= 867) # p = 0.081965
self.assertTrue(abs(C[38] - 8_153) <= 865) # p = 0.081533
self.assertTrue(abs(C[39] - 7_777) <= 847) # p = 0.077770
x = sum(C[k] for k in range(37, 49))
self.assertTrue(abs(x - 56_614) <= 1_567) # p = 0.566139
def test_ne5(self):
M = 25_000 # number of trails
C = Counter(random_p(100_000, 0.5).count() for _ in range(M))
self.assertEqual(C.total(), M)
# python binomial.py 25_000 100_000 .5 48_000..50_000 50_000..50_200
x = sum(C[k] for k in range(48000, 50001))
self.assertTrue(abs(x - 12_532) <= 791) # p = 0.501262
x = sum(C[k] for k in range(50000, 50201))
self.assertTrue(abs(x - 9_972) <= 774) # p = 0.398876
def test_probabilities(self):
n = 100_000_000
special_p = [
65 / 257 - 1e-9, # largest x for OR
65 / 257 + 1e-9, # smallest x for AND
0.0, 1e-12, 0.25, 1/3, 3/8, 127/257, 0.5,
]
for j in range(100 if HEAVY else 2):
sys.stdout.write('.')
sys.stdout.flush()
try:
p = special_p[j]
except IndexError:
p = random()
a = random_p(n, p)
self.check_probability(a, p)
class VerificationTests(Util):
def test_uniform_stdev(self):
# verify that the standard deviation of a uniform distribution
# of population size n is given by: n / sqrt(12)
for _ in range(100):
n = randrange(10, 10_000)
pop = list(range(n))
self.assertEqual(fmean(pop), (n - 1) / 2)
self.assertAlmostEqual(pstdev(pop), n / sqrt(12), delta=0.1)
def test_operations(self):
C = self.check_probability
n = 1_000_000
values = [i / 16.0 for i in range(17)]
arrays0, arrays1 = ([(random_p(n, p), p) for p in values]
for _ in range(2))
for a, p in arrays0:
C(a, p)
C(~a, 1.0 - p) # invert
for b, q in arrays1:
C(b, q)
C(a & b, p * q) # AND
C(a | b, p + q - p * q) # OR
C(a ^ b, p + q - 2 * p * q) # XOR
for b, q in arrays0:
C(b, q)
for a, p in deepcopy(arrays1):
C(a, p)
a &= b # in-place AND
p *= q
C(a, p)
for a, p in deepcopy(arrays1):
C(a, p)
a |= b # in-place OR
p += q * (1.0 - p)
C(a, p)
for a, p in deepcopy(arrays1):
C(a, p)
a ^= b # in-place XOR
p += q * (1.0 - 2 * p)
C(a, p)
# ---------------- verifications relevant for random_k() ----------------
def test_decide_on_sequence(self):
N = 100_000
cdiff = Counter()
for _ in range(N):
n = randrange(1, 10_000)
k = randint(0, n // 2)
self.assertTrue(0 <= k <= n // 2)
if k < 16 or k * K < 3 * n:
# for small k, we increase the count of a zeros(n) bitarray
i = 0
else:
# We could simply have `i = int(k / n * K)`. However,
# when k is small, many reselections are required to
# decrease the count. On the other hand, for k near n/2,
# increasing and decreasing the count is equally expensive.
p = k / n # p <= 0.5
# Numerator: f(p)=(1-2*p)*c -> f(0)=c, f(1/2)=0
# As the standard deviation of the .combine_half() bitarrays
# gets smaller with larger n, we divide by sqrt(n).
p -= (0.2 - 0.4 * p) / sqrt(n)
# Note that we divide by K+1. This will round towards the
# nearest probability as we get closer to p = 1/2.
i = int(p * (K + 1))
if i < 3:
# a = zeros(n), count is 0
diff = -k
else:
self.assertTrue(k >= 16)
self.assertTrue(n >= 32)
self.assertTrue(3 <= i <= K // 2)
# a = self.combine_half(self.op_seq(i))
# count is given by binomialvariate(n, i / K)
diff = binomialvariate(n, i / K) - k
cdiff[diff] += 1
self.assertEqual(cdiff.total(), N)
# count the number of cases where the count needs to be decreased
above = sum(cdiff[i] for i in range(1, max(cdiff) + 1))
self.assertTrue(M != 8 or 0.28 < above / N < 0.34)
# ---------------- verifications relevant for random_p() ----------------
def test_equal_x(self):
"""
Verify that the probabilities p for which final AND and OR result in
equal x are: p = j / (K + 1) j in range(1, K)
Also, verify these x are all: x = 1 / (K + 1) = limit
These are also the maximal x.
"""
for j in range(1, K):
# probabilities p for which final AND and OR result in equal x
p = j / (K + 1)
i = int(p * K)
self.assertEqual(i, j - 1) # as K / (K + 1) < 1
self.assertEqual(p * (K + 1), i + 1)
q = i / K
x1 = (p - q) / (1.0 - q) # OR
x2 = 1.0 - p / (q + 1.0 / K) # AND x2 = 1 - p / next q
self.assertAlmostEqual(x1, x2, delta=1e-14)
self.assertAlmostEqual(x1, limit, delta=1e-14)
def special_p(self):
"""
generate special test values of p < 0.5
"""
EPS = 1e-12
for j in range(1, K // 2 + 1):
# probabilities for which final AND and OR result in equal x
p = j / (K + 1)
for e in -EPS, EPS:
yield p + e
for j in range(1, K // 2):
# probabilities for which no final AND or OR is not necessary
p = j / K
for e in -EPS, 0.0, EPS:
yield p + e
for p in 0.0, EPS, 0.5 - EPS:
yield p
for e in -EPS, 0.0, EPS:
yield SMALL_P + e
for _ in range(10_000):
yield 0.5 * random()
def test_decide_on_operation(self):
"""
Verify that `x1 > x2` equates to `p * (K + 1) > i + 1`.
"""
for p in self.special_p():
self.assertTrue(0 <= p < 0.5, p)
i = int(p * K)
q = i / K
self.assertTrue(q <= p)
x1 = (p - q) / (1.0 - q) # OR
x2 = 1.0 - p / (q + 1.0 / K) # AND x2 = 1 - p / next q
# decided whether to use next i (next q)
self.assertEqual(x1 > x2,
p * (K + 1) > i + 1)
def test_decision_limit(self):
"""
Verify that decision operation works as desired, and that resulting
probability q is within limit of p.
"""
# limit = 1/(K+1) is slightly smaller than 1/K:
self.assertEqual(limit, 1.0 / K - 1.0 / (K * (K + 1)))
self.assertTrue(1.0 / K - limit < K ** -2 == 1.0 / (1 << (2 * M)))
for p in self.special_p():
i = int(p * K)
q0 = i / K
q1 = (i + 1) / K
self.assertTrue(q0 <= p < q1)
self.assertTrue(q1 - q0 == 1.0 / K > limit)
self.assertTrue(q0 + 0.5 * limit < q1 - 0.5 * limit)
if p * (K + 1) > i + 1:
self.assertTrue(q1 - 0.5 * limit < p < q1)
# implies:
self.assertNotEqual(q0, p)
q = q1
self.assertTrue(q > p) # use AND operation
else:
self.assertTrue(q0 <= p < q0 + limit)
q = q0
self.assertTrue(q <= p) # use OR operation
self.assertTrue(p - limit < q < p + 0.5 * limit)
self.assertTrue(abs(p - q) < limit)
self.assertEqual(bool(q != p), bool(fmod(p, 1.0 / K)))
def test_final_op(self):
"""
Verify final operation always gives us the correct probability.
"""
for p in self.special_p():
i = int(p * K)
if p * (K + 1) > i + 1: # see above
i += 1
if p > limit:
self.assertNotEqual(i, 0)
# Note that all the below handles this case fine.
# However, rather than extending .op_seq() and .combine_half()
# to handle i=0, we decided to "filter out" i=0 by the small p
# case (see test below).
self.assertTrue(0 <= i <= K // 2)
q = i / K
self.assertTrue(abs(p - q) < limit) # see above
if q < p: # increase probability - OR
x = (p - q) / (1.0 - q)
# ensure small p case is called
self.assertTrue(0.0 < x < limit)
q += x * (1.0 - q) # OR
elif q > p: # decrease probability - AND
x = p / q
# ensure small p case is called (after symmetry is exploited)
self.assertTrue(0.0 < 1.0 - x < limit)
q *= x # AND
self.assertEqual(q, p)
def test_i_not_0(self):
"""
Verify that for `p > limit`, we always get `i > 0`.
This is important, as the small p case has to "filter out" `i = 0`,
as the sequence of operations do not handle `i = 0`.
"""
p = limit + 1e-12
i = int(p * K)
self.assertEqual(i, 0) # as K / (K + 1) < 1
if p * (K + 1) > i + 1:
i += 1
# So for i be non-zero we must have:
# p * (K + 1) > 1
# or
# p > 1 / (K + 1) = limit q.e.d.
self.assertEqual(i, 1)
def dummy_random_p(self, p=0.5, verbose=False):
"""
Unlike random_p(), this function returns the desired probability q
itself, and not a random bitarray. The point of this function is to
illustrate how random_p() essentially works.
Instead of actual bitarray operations, we change q accordingly.
This method is neither concerned with the bitarray length n nor
endianness.
"""
# error check inputs and handle edge cases
if p <= 0.0 or p == 0.5 or p >= 1.0:
if p in (0.0, 0.5, 1.0):
return p
raise ValueError("p must be in range 0.0 <= p <= 1.0, got %f", p)
# exploit symmetry to establish: p < 0.5
if p > 0.5:
return 1.0 - self.dummy_random_p(1.0 - p, verbose)
# for small p set randomly individual bits, which is much faster
if p < SMALL_P:
return p # random.binomialvariate() and .random_pop()
# calculate operator sequence
i = int(p * K)
if p * (K + 1) > i + 1:
i += 1
self.assertTrue(0 < i <= K // 2)
a = bitarray(i.to_bytes(2, byteorder="little"), "little")
seq = a[a.index(1) + 1 : M]
# combine random bitarrays using bitwise AND and OR operations
q = 0.5 # start with randbytes()
for k in seq:
if k:
q += 0.5 * (1.0 - q) # OR
else:
q *= 0.5 # AND
self.assertEqual(q, i / K)
x = 0.0
if q < p: # increase probability
x = (p - q) / (1.0 - q)
self.assertTrue(0.0 < x < SMALL_P)
q += x * (1.0 - q) # OR
elif q > p: # decrease probability
x = p / q
self.assertTrue(0.0 < 1.0 - x < SMALL_P)
q *= x # AND
if verbose:
print("%15.9f %9d %9d %15.9f" % (p, len(seq) + 1, i, x))
self.assertEqual(q, p)
return q
def test_dummy_random_p(self):
for p in self.special_p():
self.assertEqual(self.dummy_random_p(p), p)
# test 0 <= p < 1; self.special_p() only gives us 0 <= p < 0.5
for _ in range(10_000):
p = random()
self.assertEqual(self.dummy_random_p(p), p)
def disp():
i = sys.argv.index('--disp')
args = sys.argv[i + 1:]
if args:
plist = [float(eval(s)) for s in args]
else:
plist = [1/4, 1/8, 1/16, 1/32, 1/64, 3/128, 127/256,
SMALL_P, 0.1, 0.2, 0.3, 0.4,
65/257, 127/257 + 1e-9, 0.5 - 1e-9]
print(" p k i x")
print(55 * '-')
for p in plist:
VerificationTests().dummy_random_p(p, True)
if __name__ == '__main__':
if '--disp' in sys.argv:
disp()
sys.exit()
if "--heavy" in sys.argv:
HEAVY = True
sys.argv.remove("--heavy")
unittest.main()
|