File: tricks.py

package info (click to toggle)
python-bitarray 3.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,288 kB
  • sloc: python: 11,456; ansic: 7,657; makefile: 73; sh: 6
file content (249 lines) | stat: -rw-r--r-- 8,297 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
This file contains some little tricks and verifications for some code which
is used in the C implementation of bitarray.
"""
from random import randint
import unittest


# ---------------------------- Range checks ---------------------------------

class RangeTests(unittest.TestCase):

    def test_check_simple(self):
        r = range(0, 256)
        for k in range(-10, 300):
            self.assertEqual(k < 0 or k > 0xff, bool(k >> 8))
            self.assertEqual(k not in r, bool(k >> 8))

    def test_check(self):
        # used in various places in C code
        for i in range(0, 11):
            m = 1 << i
            for k in range(-10, 2000):
                res1 = k not in range(0, m)
                res2 = k < 0 or k >= m
                self.assertEqual(res1, res2)
                # simply shift i to right and see if anything remains
                res3 = bool(k >> i)
                self.assertEqual(res1, res3)

    def test_check_2(self):
        # this is used in _util.c in set_count()
        for i in range(0, 11):
            m = 1 << i
            for k in range(-10, 2000):
                res1 = k not in range(0, m + 1)
                res2 = k < 0 or k > m
                self.assertEqual(res1, res2)
                # same as above but combined with k substracted by 1
                res3 = bool(k >> i) and bool((k - 1) >> i)
                self.assertEqual(res1, res3)

# ------------------------------ Slicing ------------------------------------

def adjust_step_positive(slicelength, start, stop, step):
    """
    This is the adjust_step_positive() implementation from bitarray.h.
    """
    if step < 0:
        stop = start + 1
        start = stop + step * (slicelength - 1) - 1
        step = -step

    assert start >= 0 and stop >= 0
    assert step > 0
    assert slicelength >= 0
    if slicelength == 0:
        assert stop <= start
    elif step == 1:
        assert stop - start == slicelength

    return start, stop, step


def slicelength(start, stop, step):
    """
    This is the slicelength implementation from PySlice_AdjustIndices().

    a / b does integer division.  If either a or b is negative, the result
    depends on the compiler (rounding can go toward 0 or negative infinity).
    Therefore, we are careful that both a and b are always positive.
    """
    if step < 0:
        if stop < start:
            return (start - stop - 1) // (-step) + 1
    else:
        if start < stop:
            return (stop - start - 1) // step + 1
    return 0


class ListSliceTests(unittest.TestCase):

    def random_slices(self, max_len=100, repeat=10_000):
        for _ in range(repeat):
            n = randint(0, max_len)
            s = slice(randint(-n - 2, n + 2),
                      randint(-n - 2, n + 2),
                      randint(-5, 5) or 1)
            yield n, s, range(n)[s]

    def test_basic(self):
        for n, s, r in self.random_slices():
            self.assertEqual(range(*s.indices(n)), r)

    def test_indices(self):
        for n, s, r in self.random_slices():
            start, stop, step = s.indices(n)
            self.assertEqual(start, r.start)
            self.assertEqual(stop, r.stop)
            self.assertEqual(step, r.step)

            self.assertNotEqual(step, 0)
            if step > 0:
                self.assertTrue(0 <= start <= n)
                self.assertTrue(0 <= stop <= n)
            else:
                self.assertTrue(-1 <= start < n)
                self.assertTrue(-1 <= stop < n)
            self.assertEqual(range(start, stop, step), r)

    def test_list_get(self):
        for n, s, r in self.random_slices():
            a = list(range(n))
            b = a[s]
            self.assertEqual(len(b), len(r))
            self.assertEqual(b, list(r))

    def test_list_set(self):
        for n, s, r in self.random_slices(20):
            a = n * [None]
            b = list(a)
            a[s] = range(len(r))
            for i, j in enumerate(r):
                b[j] = i
            self.assertEqual(a, b)

    def test_list_del(self):
        for n, s, r in self.random_slices():
            a = list(range(n))
            b = list(a)
            del a[s]
            self.assertEqual(len(a), n - len(r))
            for i in sorted(r, reverse=True):
                del b[i]
            self.assertEqual(a, b)

    def test_adjust_step_positive(self):
        for n, s, r in self.random_slices():
            if s.step < 0:
                r = r[::-1]

            start, stop, step = adjust_step_positive(len(r), *s.indices(n))

            self.assertEqual(range(start, stop, step), r)
            self.assertTrue(step > 0)
            if r:
                self.assertTrue(0 <= start < n)
                self.assertTrue(0 < stop <= n)

    def test_slicelength(self):
        for n, s, r in self.random_slices():
            self.assertEqual(slicelength(r.start, r.stop, r.step), len(r))

# ------------------------- Modular Arithmetic ------------------------------

class ModularTests(unittest.TestCase):

    def test_remainder(self):
        for _ in range(1000):
            a = randint(-20, 20)
            b = randint(1, 20)
            # integer division in Python returns the floor of the result
            # instead of truncating towards zero like C
            q = a // b
            if a < 0:
                self.assertTrue(q < 0)
            r = a % b
            self.assertEqual(b * q + r, a)
            self.assertTrue(0 <= r < b)

    def test_avoid_neg_numerator(self):
        #
        # equality:   a % b = (b - (-a) % b) % b
        #
        for _ in range(1000):
            a = randint(-20, 20)
            b = randint(1, 20)
            r = a % b
            # Note that even though a may be negative, the remainder is
            # always positive:
            self.assertTrue(r >= 0)
            # The following equality:
            s = (b - (-a) % b) % b
            self.assertEqual(s, r)
            # can be used to implement a % b in C when a <= 0
            if a <= 0:
                # here % always operates on positive numerator
                self.assertTrue(-a >= 0)
                self.assertTrue(b - (-a) % b > 0)

# ----------------------------- Segments ------------------------------------

class SegmentTests(unittest.TestCase):

    def test_nseg(self):
        SEGSIZE = 32  # segment size in bytes
        SEGBITS = 8 * SEGSIZE
        for nbits in range(1000):
            nbytes = (nbits + 7) // 8

            # number of segments in terms of bytes
            nseg = (nbytes + SEGSIZE - 1) // SEGSIZE

            # and in terms of bits
            self.assertEqual((nbits + SEGBITS - 1) // SEGBITS, nseg)

            # number of complete segments
            cseg = nbits // SEGBITS
            self.assertTrue(cseg <= nseg)

            # The number of complete segments cannot be calculated in terms
            # of bytes, as it isn't possible to tell how many bits are
            # actually used within the last byte of each segment.
            if (nbits % SEGBITS > SEGBITS - 8):
                self.assertNotEqual(nbytes // SEGSIZE, cseg)
            else:
                self.assertEqual(nbytes // SEGSIZE, cseg)

            # remaining bits
            rbits = nbits % SEGBITS
            self.assertEqual(cseg * SEGBITS + rbits, nbits)
            if cseg == nseg:
                self.assertEqual(rbits, 0)
                self.assertEqual(nbytes % SEGSIZE, 0)
            else:
                self.assertEqual(nseg, cseg + 1)
                self.assertTrue(rbits > 0)

# ------------------------ Variable Length Format ---------------------------

class VLFTests(unittest.TestCase):

    def test_padding(self):
        LEN_PAD_BITS = 3
        for nbits in range(1000):
            n = (nbits + LEN_PAD_BITS + 6) // 7  # number of resulting bytes
            padding = 7 * n - LEN_PAD_BITS - nbits
            self.assertTrue(0 <= padding < 7)
            self.assertEqual(divmod(nbits + padding + LEN_PAD_BITS, 7),
                             (n, 0))

            # alternative equation for padding
            padding_2 = (7 - (nbits + LEN_PAD_BITS) % 7) % 7
            self.assertEqual(padding_2, padding)


if __name__ == '__main__':
    unittest.main()