1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
"""
This file contains some little tricks and verifications for some code which
is used in the C implementation of bitarray.
"""
from random import randint
import unittest
# ---------------------------- Range checks ---------------------------------
class RangeTests(unittest.TestCase):
def test_check_simple(self):
r = range(0, 256)
for k in range(-10, 300):
self.assertEqual(k < 0 or k > 0xff, bool(k >> 8))
self.assertEqual(k not in r, bool(k >> 8))
def test_check(self):
# used in various places in C code
for i in range(0, 11):
m = 1 << i
for k in range(-10, 2000):
res1 = k not in range(0, m)
res2 = k < 0 or k >= m
self.assertEqual(res1, res2)
# simply shift i to right and see if anything remains
res3 = bool(k >> i)
self.assertEqual(res1, res3)
def test_check_2(self):
# this is used in _util.c in set_count()
for i in range(0, 11):
m = 1 << i
for k in range(-10, 2000):
res1 = k not in range(0, m + 1)
res2 = k < 0 or k > m
self.assertEqual(res1, res2)
# same as above but combined with k substracted by 1
res3 = bool(k >> i) and bool((k - 1) >> i)
self.assertEqual(res1, res3)
# ------------------------------ Slicing ------------------------------------
def adjust_step_positive(slicelength, start, stop, step):
"""
This is the adjust_step_positive() implementation from bitarray.h.
"""
if step < 0:
stop = start + 1
start = stop + step * (slicelength - 1) - 1
step = -step
assert start >= 0 and stop >= 0
assert step > 0
assert slicelength >= 0
if slicelength == 0:
assert stop <= start
elif step == 1:
assert stop - start == slicelength
return start, stop, step
def slicelength(start, stop, step):
"""
This is the slicelength implementation from PySlice_AdjustIndices().
a / b does integer division. If either a or b is negative, the result
depends on the compiler (rounding can go toward 0 or negative infinity).
Therefore, we are careful that both a and b are always positive.
"""
if step < 0:
if stop < start:
return (start - stop - 1) // (-step) + 1
else:
if start < stop:
return (stop - start - 1) // step + 1
return 0
class ListSliceTests(unittest.TestCase):
def random_slices(self, max_len=100, repeat=10_000):
for _ in range(repeat):
n = randint(0, max_len)
s = slice(randint(-n - 2, n + 2),
randint(-n - 2, n + 2),
randint(-5, 5) or 1)
yield n, s, range(n)[s]
def test_basic(self):
for n, s, r in self.random_slices():
self.assertEqual(range(*s.indices(n)), r)
def test_indices(self):
for n, s, r in self.random_slices():
start, stop, step = s.indices(n)
self.assertEqual(start, r.start)
self.assertEqual(stop, r.stop)
self.assertEqual(step, r.step)
self.assertNotEqual(step, 0)
if step > 0:
self.assertTrue(0 <= start <= n)
self.assertTrue(0 <= stop <= n)
else:
self.assertTrue(-1 <= start < n)
self.assertTrue(-1 <= stop < n)
self.assertEqual(range(start, stop, step), r)
def test_list_get(self):
for n, s, r in self.random_slices():
a = list(range(n))
b = a[s]
self.assertEqual(len(b), len(r))
self.assertEqual(b, list(r))
def test_list_set(self):
for n, s, r in self.random_slices(20):
a = n * [None]
b = list(a)
a[s] = range(len(r))
for i, j in enumerate(r):
b[j] = i
self.assertEqual(a, b)
def test_list_del(self):
for n, s, r in self.random_slices():
a = list(range(n))
b = list(a)
del a[s]
self.assertEqual(len(a), n - len(r))
for i in sorted(r, reverse=True):
del b[i]
self.assertEqual(a, b)
def test_adjust_step_positive(self):
for n, s, r in self.random_slices():
if s.step < 0:
r = r[::-1]
start, stop, step = adjust_step_positive(len(r), *s.indices(n))
self.assertEqual(range(start, stop, step), r)
self.assertTrue(step > 0)
if r:
self.assertTrue(0 <= start < n)
self.assertTrue(0 < stop <= n)
def test_slicelength(self):
for n, s, r in self.random_slices():
self.assertEqual(slicelength(r.start, r.stop, r.step), len(r))
# ------------------------- Modular Arithmetic ------------------------------
class ModularTests(unittest.TestCase):
def test_remainder(self):
for _ in range(1000):
a = randint(-20, 20)
b = randint(1, 20)
# integer division in Python returns the floor of the result
# instead of truncating towards zero like C
q = a // b
if a < 0:
self.assertTrue(q < 0)
r = a % b
self.assertEqual(b * q + r, a)
self.assertTrue(0 <= r < b)
def test_avoid_neg_numerator(self):
#
# equality: a % b = (b - (-a) % b) % b
#
for _ in range(1000):
a = randint(-20, 20)
b = randint(1, 20)
r = a % b
# Note that even though a may be negative, the remainder is
# always positive:
self.assertTrue(r >= 0)
# The following equality:
s = (b - (-a) % b) % b
self.assertEqual(s, r)
# can be used to implement a % b in C when a <= 0
if a <= 0:
# here % always operates on positive numerator
self.assertTrue(-a >= 0)
self.assertTrue(b - (-a) % b > 0)
# ----------------------------- Segments ------------------------------------
class SegmentTests(unittest.TestCase):
def test_nseg(self):
SEGSIZE = 32 # segment size in bytes
SEGBITS = 8 * SEGSIZE
for nbits in range(1000):
nbytes = (nbits + 7) // 8
# number of segments in terms of bytes
nseg = (nbytes + SEGSIZE - 1) // SEGSIZE
# and in terms of bits
self.assertEqual((nbits + SEGBITS - 1) // SEGBITS, nseg)
# number of complete segments
cseg = nbits // SEGBITS
self.assertTrue(cseg <= nseg)
# The number of complete segments cannot be calculated in terms
# of bytes, as it isn't possible to tell how many bits are
# actually used within the last byte of each segment.
if (nbits % SEGBITS > SEGBITS - 8):
self.assertNotEqual(nbytes // SEGSIZE, cseg)
else:
self.assertEqual(nbytes // SEGSIZE, cseg)
# remaining bits
rbits = nbits % SEGBITS
self.assertEqual(cseg * SEGBITS + rbits, nbits)
if cseg == nseg:
self.assertEqual(rbits, 0)
self.assertEqual(nbytes % SEGSIZE, 0)
else:
self.assertEqual(nseg, cseg + 1)
self.assertTrue(rbits > 0)
# ------------------------ Variable Length Format ---------------------------
class VLFTests(unittest.TestCase):
def test_padding(self):
LEN_PAD_BITS = 3
for nbits in range(1000):
n = (nbits + LEN_PAD_BITS + 6) // 7 # number of resulting bytes
padding = 7 * n - LEN_PAD_BITS - nbits
self.assertTrue(0 <= padding < 7)
self.assertEqual(divmod(nbits + padding + LEN_PAD_BITS, 7),
(n, 0))
# alternative equation for padding
padding_2 = (7 - (nbits + LEN_PAD_BITS) % 7) % 7
self.assertEqual(padding_2, padding)
if __name__ == '__main__':
unittest.main()
|