File: _puff.c

package info (click to toggle)
python-bitarray 3.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,288 kB
  • sloc: python: 11,456; ansic: 7,657; makefile: 73; sh: 6
file content (658 lines) | stat: -rw-r--r-- 22,033 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
/*
  Much of the code below is copied and/or derived from Mark Adler's Puff:

      https://github.com/madler/zlib/blob/master/contrib/puff

  This is Marks's copyright notice:

  Copyright (C) 2002-2013 Mark Adler, all rights reserved
  version 2.3, 21 Jan 2013

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the author be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.
*/
#define PY_SSIZE_T_CLEAN
#include "Python.h"
#include "pythoncapi_compat.h"
#include "bitarray.h"


#define MAXBITS    15           /* maximum bits in a code */
#define MAXLCODES 286           /* maximum number of literal/length codes */
#define MAXDCODES  30           /* maximum number of distance codes */
#define MAXCODES (MAXLCODES+MAXDCODES)  /* maximum codes lengths to read */
#define FIXLCODES 288           /* number of fixed literal/length codes */


/* input and output state */
typedef struct {
    PyObject_HEAD
    /* input */
    bitarrayobject *in;         /* bitarray we're decoding */
    Py_ssize_t incnt;           /* current index in bitarray */
    /* output */
    PyObject *out;              /* bytearray output buffer */
    Py_ssize_t outcnt;          /* bytes written to out so far */
} state_obj;

static PyTypeObject state_type;


static int
read_uint(state_obj *s, int numbits)
{
    long res = 0;
    int i;

    if (s->incnt + numbits > s->in->nbits)
        Py_FatalError("not enough bits in buffer");

    for (i = 0; i < numbits; i++)
        res |= (long) getbit(s->in, s->incnt++) << i;

    return (int) res;
}

struct huffman {
    short *count;               /* number of symbols of each length */
    short *symbol;              /* canonically ordered symbols */
};

static int
decode(state_obj *s, const struct huffman *h)
{
    Py_ssize_t nbits = s->in->nbits;
    int len;            /* current number of bits in code */
    int code;           /* len bits being decoded */
    int first;          /* first code of length len */
    int count;          /* number of codes of length len */
    int index;          /* index of first code of length len in symbol table */

    if (s->incnt >= nbits) {
        PyErr_SetString(PyExc_ValueError, "no more bits to decode");
        return -1;
    }

    code = first = index = 0;
    for (len = 1; len <= MAXBITS; len++) {
        code |= getbit(s->in, s->incnt++);  /* get next bit */
        count = h->count[len];
        if (code - count < first)           /* if length len, return symbol */
            return h->symbol[index + (code - first)];
        index += count;                     /* else update for next length */
        first += count;
        first <<= 1;
        code <<= 1;

        if (s->incnt >= nbits && len != MAXBITS) {
            PyErr_SetString(PyExc_ValueError, "reached end of bitarray");
            return -1;
        }
    }
    PyErr_SetString(PyExc_ValueError, "ran out of codes");
    return -1;
}

/* add a byte to s->out */
static int
append_byte(state_obj *s, int byte)
{
    char *cp;

    if (byte >> 8) {
        PyErr_Format(PyExc_ValueError, "invalid byte: %d", byte);
        return -1;
    }
    if (PyByteArray_Resize(s->out, s->outcnt + 1) < 0) {
        PyErr_NoMemory();
        return -1;
    }
    cp = PyByteArray_AS_STRING(s->out) + s->outcnt;
    *cp = (char) byte;

    s->outcnt++;
    return 0;
}

/* copy 'len' bytes starting at 'dist' bytes ago in s->out */
static int
dist_len_copy(state_obj *s, int dist, int len)
{
    char *str;

    if (len < 0) {
        PyErr_SetString(PyExc_ValueError, "length cannot be negative");
        return -1;
    }
    if (dist <= 0) {
        PyErr_SetString(PyExc_ValueError, "distance cannot be negative or 0");
        return -1;
    }
    if (dist > s->outcnt) {
        PyErr_SetString(PyExc_ValueError, "distance too far back");
        return -1;
    }
    if (PyByteArray_Resize(s->out, s->outcnt + len) < 0) {
        PyErr_NoMemory();
        return -1;
    }

    str = PyByteArray_AS_STRING(s->out);
    while (len--) {
        str[s->outcnt] = str[s->outcnt - dist];
        s->outcnt++;
    }

    return 0;
}

/* Given the list of code lengths length[0..n-1] representing a canonical
   Huffman code for n symbols, construct the tables required to decode those
   codes. */
static int
construct(struct huffman *h, const short *length, int n)
{
    int symbol;         /* current symbol when stepping through length[] */
    int len;            /* current length when stepping through h->count[] */
    int left;           /* number of possible codes left of current length */
    short offs[MAXBITS+1];      /* offsets in symbol table for each length */

    /* count number of codes of each length */
    for (len = 0; len <= MAXBITS; len++)
        h->count[len] = 0;
    for (symbol = 0; symbol < n; symbol++)
        (h->count[length[symbol]])++;   /* assumes lengths are within bounds */
    if (h->count[0] == n)               /* no codes! */
        return 0;                       /* complete, but decode() will fail */

    /* check for an over-subscribed or incomplete set of lengths */
    left = 1;                           /* one possible code of zero length */
    for (len = 1; len <= MAXBITS; len++) {
        left <<= 1;                     /* one more bit, double codes left */
        left -= h->count[len];          /* deduct count from possible codes */
        if (left < 0)
            return left;                /* over-subscribed--return negative */
    }                                   /* left > 0 means incomplete */

    /* generate offsets into symbol table for each length for sorting */
    offs[1] = 0;
    for (len = 1; len < MAXBITS; len++)
        offs[len + 1] = offs[len] + h->count[len];

    /* put symbols in table sorted by length, by symbol order within each
       length */
    for (symbol = 0; symbol < n; symbol++)
        if (length[symbol] != 0)
            h->symbol[offs[length[symbol]]++] = symbol;

    /* return zero for complete set, positive for incomplete set */
    return left;
}

/* decode literal/length and distance codes until an end-of-block code */
static int
codes(state_obj *s, const struct huffman *lencode,
                    const struct huffman *distcode)
{
    int symbol;         /* decoded symbol */
    static const short lens[29] = { /* size base for length codes 257..285 */
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258};
    static const short lext[29] = { /* extra bits for length codes 257..285 */
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
    static const short dists[30] = { /* offset base for distance codes 0..29 */
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        8193, 12289, 16385, 24577};
    static const short dext[30] = { /* extra bits for distance codes 0..29 */
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};

    /* decode literals and length/distance pairs */
    do {
        symbol = decode(s, lencode);
        if (symbol < 0)         /* error in decode() */
            return -1;

        if (symbol < 256) {             /* literal: symbol is the byte */
            /* write out the literal */
            if (append_byte(s, symbol) < 0)
                return -1;
        }
        else if (symbol > 256) {
            int len;                    /* length for copy */
            unsigned dist;              /* distance for copy */

            /* get and compute length */
            symbol -= 257;
            if (symbol >= 29) {
                PyErr_Format(PyExc_ValueError,
                             "invalid fixed code: %d", symbol);
                return -1;
            }
            len = lens[symbol] + read_uint(s, lext[symbol]);

            /* get and check distance */
            symbol = decode(s, distcode);
            if (symbol < 0)     /* error in decode() */
                return -1;
            dist = dists[symbol] + read_uint(s, dext[symbol]);

            /* copy length bytes from distance bytes back */
            if (dist_len_copy(s, dist, len) < 0)
                return -1;
        }
    } while (symbol != 256);            /* end of block symbol */

    /* done with a valid fixed or dynamic block */
    return 0;
}

/* ------------------------ State Python interface ------------------ */

/* set during module init */
static PyTypeObject *bitarray_type;

/* create a new initialized canonical Huffman decode iterator object */
static PyObject *
state_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
    PyObject *in, *out;
    state_obj *self;

    if (!PyArg_ParseTuple(args, "OO:State", &in, &out))
        return NULL;

    if (!PyObject_TypeCheck(in, bitarray_type)) {
        PyErr_SetString(PyExc_TypeError, "bitarray expected");
        return NULL;
    }
    if (!PyByteArray_Check(out)) {
        PyErr_SetString(PyExc_TypeError, "bytearary expected");
        return NULL;
    }

    self = (state_obj *) type->tp_alloc(type, 0);
    if (self == NULL)
        return NULL;

    Py_INCREF(in);
    self->in = (bitarrayobject *) in;
    self->incnt = 0;

    Py_INCREF(out);
    self->out = out;
    self->outcnt = PyByteArray_Size(out);

    return (PyObject *) self;
}

/* append one byte to self->out */
static PyObject *
state_append_byte(state_obj *self, PyObject *obj)
{
    Py_ssize_t byte;

    byte = PyNumber_AsSsize_t(obj, NULL);
    if (byte == -1 && PyErr_Occurred())
        return NULL;

    if (append_byte(self, (int) byte) < 0)
        return NULL;

    Py_RETURN_NONE;
}

/* extend self->out with n bytes from self->in */
static PyObject *
state_extend_block(state_obj *self, PyObject *value)
{
    Py_ssize_t nbytes;

    nbytes = PyNumber_AsSsize_t(value, NULL);
    if (nbytes == -1 && PyErr_Occurred())
        return NULL;
    if (nbytes >> 16)
        return PyErr_Format(PyExc_ValueError, "invalid block size: %zd",
                            nbytes);
    if (self->incnt % 8 != 0) {
        PyErr_SetString(PyExc_ValueError, "bits not aligned");
        return NULL;
    }
    if (self->incnt + 8 * nbytes > self->in->nbits) {
        PyErr_SetString(PyExc_ValueError, "not enough input");
        return NULL;
    }
    if (PyByteArray_Resize(self->out, self->outcnt + nbytes) < 0)
        return PyErr_NoMemory();

    memcpy(PyByteArray_AS_STRING(self->out) + self->outcnt,
           self->in->ob_item + self->incnt / 8,
           (size_t) nbytes);

    self->incnt += 8 * nbytes;
    self->outcnt += nbytes;

    Py_RETURN_NONE;
}

/* set array[0..n-1] from the n items of the Python sequence */
static int
set_lengths(PyObject *sequence, Py_ssize_t n, short *array)
{
    Py_ssize_t i, len;

    if (!PySequence_Check(sequence)) {
        PyErr_SetString(PyExc_TypeError, "sequence expected");
        return -1;
    }
    if (PySequence_Size(sequence) != n) {
        PyErr_Format(PyExc_ValueError, "sequence of size %zd expected", n);
        return -1;
    }

    for (i = 0; i < n; i++) {
        PyObject *item = PySequence_GetItem(sequence, i);

        if (item == NULL)
            return -1;
        len = PyNumber_AsSsize_t(item, PyExc_OverflowError);
        Py_DECREF(item);
        if (len == -1 && PyErr_Occurred())
            return -1;
        if (len < 0 || len > MAXBITS) {
            PyErr_Format(PyExc_ValueError, "length cannot be negative or "
                         "larger than %d, got %zd", MAXBITS, len);
            return -1;
        }
        array[i] = (short) len;
    }

    return 0;
}

#define CHECK_MAX(n, maxcodes)                                         \
    if (n < 0)                                                         \
        return PyErr_Format(PyExc_ValueError,                          \
              "size of length list cannot be negative: %zd", n);       \
    if (n > maxcodes)                                                  \
        return PyErr_Format(PyExc_ValueError,                          \
              "size of length list too large: %zd > %d", n, maxcodes)

/* given the liter/lengths and distance lengths as one big list,
   decode literal/length and distance codes until an end-of-block code */
static PyObject *
state_decode_block(state_obj *self, PyObject *args)
{
    PyObject *sequence;
    int nlen, ndist;
    struct huffman lencode, distcode;   /* length and distance codes */
    short lengths[FIXLCODES + MAXDCODES];    /* descriptor code lengths */
    short lencnt[MAXBITS+1], lensym[FIXLCODES];     /* lencode memory */
    short distcnt[MAXBITS+1], distsym[MAXDCODES];   /* distcode memory */
    int err;                            /* construct() return value */

    if (!PyArg_ParseTuple(args, "Oii:decode_block", &sequence, &nlen, &ndist))
        return NULL;

    /* check arguments and set values in lengths[0..nlen+ndist-1] */
    CHECK_MAX(nlen, FIXLCODES);
    CHECK_MAX(ndist, MAXDCODES);
    if (set_lengths(sequence, nlen + ndist, lengths) < 0)
        return NULL;

    /* build huffman table for literal/length codes */
    lencode.count = lencnt;
    lencode.symbol = lensym;
    err = construct(&lencode, lengths, nlen);
    if (err && (err < 0 || nlen != lencode.count[0] + lencode.count[1])) {
        PyErr_SetString(PyExc_ValueError, "incomplete literal/lengths code");
        return NULL;
    }

    /* build huffman table for distance codes */
    distcode.count = distcnt;
    distcode.symbol = distsym;
    err = construct(&distcode, lengths + nlen, ndist);
    /* Fixed distance codes also have two invalid symbols that should result
       in an error if received.  This can be implemented as an incomplete code,
       which is why the error is ignored for fixed codes. */
    if (nlen != FIXLCODES &&
        err && (err < 0 || ndist != distcode.count[0] + distcode.count[1])) {
        PyErr_SetString(PyExc_ValueError, "incomplete distance code");
        return NULL;
    }

    /* decode data until end-of-block code */
    if (codes(self, &lencode, &distcode) < 0)
        return NULL;

    Py_RETURN_NONE;
}

/* create a Python list from array[0..n-1] with n elements */
static PyObject *
list_from_shorts(const short *array, Py_ssize_t n)
{
    PyObject *list, *item;
    Py_ssize_t i;

    list = PyList_New(n);
    if (list == NULL)
        return NULL;

    for (i = 0; i < n; i++) {
        item = PyLong_FromLong((long) array[i]);
        if (item == NULL) {
            Py_DECREF(list);
            return NULL;
        }
        PyList_SET_ITEM(list, i, item);
    }
    return list;
}

/* given the code length code lengths (always 19 of them),
   decode the liter/lengths and distance lengths into one big list */
static PyObject *
state_decode_lengths(state_obj *self, PyObject *args)
{
    PyObject *sequence;
    int ncode;     /* number of lengths in descriptor (nlen + ndist) */
    int index;                          /* index of lengths[] */
    int err;                            /* construct() return value */
    short lengths[MAXCODES];            /* descriptor code lengths */
    short cnt[MAXBITS+1], sym[19];      /* codelencode memory */
    struct huffman codelencode;     /* length and distance code length code */

    if (!PyArg_ParseTuple(args, "Oi:decode_lengths", &sequence, &ncode))
        return NULL;

    /* check arguments and set lengths[0..18] */
    if (set_lengths(sequence, 19, lengths) < 0)
        return NULL;
    CHECK_MAX(ncode, MAXCODES);

    /* build huffman table for code lengths codes (codelencode) */
    codelencode.count = cnt;
    codelencode.symbol = sym;
    err = construct(&codelencode, lengths, 19);
    if (err != 0) {
        PyErr_SetString(PyExc_ValueError, "require complete code");
        return NULL;
    }
    /* as the coding information from lengths[] is now in codelencode,
       we can now use lengths[] to write the decoded codelencode into */

    /* read length/literal and distance code length tables */
    index = 0;
    while (index < ncode) {
        int symbol;             /* decoded value */

        symbol = decode(self, &codelencode);
        if (symbol < 0) {
            PyErr_SetString(PyExc_ValueError, "invalid symbol");
            return NULL;
        }
        if (symbol < 16)                /* length in 0..15 */
            lengths[index++] = symbol;
        else {                          /* repeat instruction */
            int len = 0;  /* last length to repeat, assume repeating zeros */
            int n;                      /* time to repeat last length */

            if (symbol == 16) {         /* repeat last length 3..6 times */
                if (index == 0) {
                    PyErr_SetString(PyExc_ValueError, "no last length!");
                    return NULL;
                }
                len = lengths[index - 1];       /* last length */
                n = 3 + read_uint(self, 2);
            }
            else if (symbol == 17)      /* repeat zero 3..10 times */
                n = 3 + read_uint(self, 3);
            else                        /* == 18, repeat zero 11..138 times */
                n = 11 + read_uint(self, 7);

            if (index + n > ncode) {
                PyErr_SetString(PyExc_ValueError, "too many lengths!");
                return NULL;
            }
            while (n--)            /* repeat last or zero n times */
                lengths[index++] = len;
        }
    }

    /* check for end-of-block code -- there better be one! */
    if (lengths[256] == 0) {
        PyErr_SetString(PyExc_ValueError, "no end-of-block code!");
        return NULL;
    }

    return list_from_shorts(lengths, ncode);
}

/* copy 'len' bytes starting at 'dist' bytes ago in self->out,
   if the count 'len' exceeds the distance 'dist, then some of the output
   data will be a copy of data that was copied earlier in the process */
static PyObject *
state_copy(state_obj *self, PyObject *args)
{
    int dist, len;

    if (!PyArg_ParseTuple(args, "ii:copy", &dist, &len))
        return NULL;

    if (dist_len_copy(self, dist, len) < 0)
        return NULL;

    Py_RETURN_NONE;
}

/* return the value of the bit input counter */
static PyObject *
state_get_incnt(state_obj *self)
{
    return PyLong_FromSsize_t(self->incnt);
}

/* read numbits from the bit input and return them as an integer */
static PyObject *
state_read_uint(state_obj *self, PyObject *obj)
{
    Py_ssize_t numbits, res = 0;
    int i;

    numbits = PyNumber_AsSsize_t(obj, NULL);
    if (numbits == -1 && PyErr_Occurred())
        return NULL;

    if (numbits < 0) {
        PyErr_SetString(PyExc_ValueError, "number of bits cannot be negative");
        return NULL;
    }
    if (self->incnt + numbits > self->in->nbits) {
        PyErr_SetString(PyExc_ValueError, "not enough bits in buffer");
        return NULL;
    }
    for (i = 0; i < numbits; i++)
        res |= (Py_ssize_t) getbit(self->in, self->incnt++) << i;

    return PyLong_FromSsize_t(res);
}

static PyMethodDef state_methods[] = {
    {"append_byte",    (PyCFunction) state_append_byte,    METH_O,       0},
    {"extend_block",   (PyCFunction) state_extend_block,   METH_O,       0},
    {"decode_block",   (PyCFunction) state_decode_block,   METH_VARARGS, 0},
    {"decode_lengths", (PyCFunction) state_decode_lengths, METH_VARARGS, 0},
    {"copy",           (PyCFunction) state_copy,           METH_VARARGS, 0},
    {"get_incnt",      (PyCFunction) state_get_incnt,      METH_NOARGS,  0},
    {"read_uint",      (PyCFunction) state_read_uint,      METH_O,       0},
    {NULL,             NULL}  /* sentinel */
};

static void
state_dealloc(state_obj *self)
{
    Py_TYPE(self)->tp_free((PyObject *) self);
}

static PyTypeObject state_type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "State",
    .tp_basicsize = sizeof(state_obj),
    .tp_dealloc = (destructor) state_dealloc,
    .tp_hash = PyObject_HashNotImplemented,
    .tp_getattro = PyObject_GenericGetAttr,
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
    .tp_methods = state_methods,
    .tp_alloc = PyType_GenericAlloc,
    .tp_new = state_new,
    .tp_free = PyObject_Del,
};

/* --------------------------------------------------------------------- */

static PyModuleDef moduledef = {
    PyModuleDef_HEAD_INIT, "_puff", 0, -1,
};

PyMODINIT_FUNC PyInit__puff(void)
{
    PyObject *m, *bitarray_module;

    if ((bitarray_module = PyImport_ImportModule("bitarray")) == NULL)
        return NULL;
    bitarray_type = (PyTypeObject *) PyObject_GetAttrString(bitarray_module,
                                                            "bitarray");
    Py_DECREF(bitarray_module);
    if (bitarray_type == NULL)
        return NULL;

    if ((m = PyModule_Create(&moduledef)) == NULL)
        return NULL;

    Py_SET_TYPE(&state_type, &PyType_Type);
    Py_INCREF((PyObject *) &state_type);
    PyModule_AddObject(m, "State", (PyObject *) &state_type);

    PyModule_AddObject(m, "MAXLCODES", PyLong_FromSsize_t(MAXLCODES));
    PyModule_AddObject(m, "MAXDCODES", PyLong_FromSsize_t(MAXDCODES));
    PyModule_AddObject(m, "FIXLCODES", PyLong_FromSsize_t(FIXLCODES));

    return m;
}