File: __init__.py

package info (click to toggle)
python-bitmath 1.3.3.1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 736 kB
  • sloc: python: 2,056; makefile: 324; sh: 20
file content (1654 lines) | stat: -rw-r--r-- 51,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
# -*- coding: utf-8 -*-
# The MIT License (MIT)
#
# Copyright © 2014-2016 Tim Bielawa <timbielawa@gmail.com>
# See GitHub Contributors Graph for more information
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sub-license, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# pylint: disable=bad-continuation,missing-docstring,invalid-name,line-too-long

"""Reference material:
The bitmath homepage is located at:
* http://bitmath.readthedocs.io/en/latest/

Prefixes for binary multiples:
http://physics.nist.gov/cuu/Units/binary.html

decimal and binary prefixes:
man 7 units (from the Linux Documentation Project 'man-pages' package)


BEFORE YOU GET HASTY WITH EXCLUDING CODE FROM COVERAGE: If you
absolutely need to skip code coverage because of a strange Python 2.x
vs 3.x thing, use the fancy environment substitution stuff from the
.coverage RC file. In review:

* If you *NEED* to skip a statement because of Python 2.x issues add the following::

      # pragma: PY2X no cover

* If you *NEED* to skip a statement because of Python 3.x issues add the following::

      # pragma: PY3X no cover

In this configuration, statements which are skipped in 2.x are still
covered in 3.x, and the reverse holds true for tests skipped in 3.x.
"""

from __future__ import print_function

import argparse
import contextlib
import fnmatch
import math
import numbers
import os
import os.path
import platform
import sys

# For device capacity reading in query_device_capacity(). Only supported
# on posix systems for now. Will be addressed in issue #52 on GitHub.
if os.name == 'posix':
    import stat
    import fcntl
    import struct


__all__ = ['Bit', 'Byte', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB',
           'kB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB', 'Kib',
           'Mib', 'Gib', 'Tib', 'Pib', 'Eib', 'kb', 'Mb', 'Gb', 'Tb',
           'Pb', 'Eb', 'Zb', 'Yb', 'getsize', 'listdir', 'format',
           'format_string', 'format_plural', 'parse_string', 'parse_string_unsafe',
           'ALL_UNIT_TYPES', 'NIST', 'NIST_PREFIXES', 'NIST_STEPS',
           'SI', 'SI_PREFIXES', 'SI_STEPS']

# Python 3.x compat
if sys.version > '3':
    long = int  # pragma: PY2X no cover
    unicode = str  # pragma: PY2X no cover

#: A list of all the valid prefix unit types. Mostly for reference,
#: also used by the CLI tool as valid types
ALL_UNIT_TYPES = ['Bit', 'Byte', 'kb', 'kB', 'Mb', 'MB', 'Gb', 'GB', 'Tb',
                  'TB', 'Pb', 'PB', 'Eb', 'EB', 'Zb', 'ZB', 'Yb',
                  'YB', 'Kib', 'KiB', 'Mib', 'MiB', 'Gib', 'GiB',
                  'Tib', 'TiB', 'Pib', 'PiB', 'Eib', 'EiB']

# #####################################################################
# Set up our module variables/constants

###################################
# Internal:

# Console repr(), ex: MiB(13.37), or kB(42.0)
_FORMAT_REPR = '{unit_singular}({value})'

# ##################################
# Exposed:

#: Constants for referring to NIST prefix system
NIST = int(2)

#: Constants for referring to SI prefix system
SI = int(10)

# ##################################

#: All of the SI prefixes
SI_PREFIXES = ['k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']

#: Byte values represented by each SI prefix unit
SI_STEPS = {
    'Bit': 1 / 8.0,
    'Byte': 1,
    'k': 1000,
    'M': 1000000,
    'G': 1000000000,
    'T': 1000000000000,
    'P': 1000000000000000,
    'E': 1000000000000000000,
    'Z': 1000000000000000000000,
    'Y': 1000000000000000000000000
}


#: All of the NIST prefixes
NIST_PREFIXES = ['Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei']

#: Byte values represented by each NIST prefix unit
NIST_STEPS = {
    'Bit': 1 / 8.0,
    'Byte': 1,
    'Ki': 1024,
    'Mi': 1048576,
    'Gi': 1073741824,
    'Ti': 1099511627776,
    'Pi': 1125899906842624,
    'Ei': 1152921504606846976
}

#: String representation, ex: ``13.37 MiB``, or ``42.0 kB``
format_string = "{value} {unit}"

#: Pluralization behavior
format_plural = False


def os_name():
    # makes unittesting platform specific code easier
    return os.name


def capitalize_first(s):
    """Capitalize ONLY the first letter of the input `s`

* returns a copy of input `s` with the first letter capitalized
    """
    pfx = s[0].upper()
    _s = s[1:]
    return pfx + _s


######################################################################
# Base class for everything else
class Bitmath(object):
    """The base class for all the other prefix classes"""

    # All the allowed input types
    valid_types = (int, float, long)

    def __init__(self, value=0, bytes=None, bits=None):
        """Instantiate with `value` by the unit, in plain bytes, or
bits. Don't supply more than one keyword.

default behavior: initialize with value of 0
only setting value: assert bytes is None and bits is None
only setting bytes: assert value == 0 and bits is None
only setting bits: assert value == 0 and bytes is None
        """
        _raise = False
        if (value == 0) and (bytes is None) and (bits is None):
            pass
        # Setting by bytes
        elif bytes is not None:
            if (value == 0) and (bits is None):
                pass
            else:
                _raise = True
        # setting by bits
        elif bits is not None:
            if (value == 0) and (bytes is None):
                pass
            else:
                _raise = True

        if _raise:
            raise ValueError("Only one parameter of: value, bytes, or bits is allowed")

        self._do_setup()
        if bytes:
            # We were provided with the fundamental base unit, no need
            # to normalize
            self._byte_value = bytes
            self._bit_value = bytes * 8.0
        elif bits:
            # We were *ALMOST* given the fundamental base
            # unit. Translate it into the fundamental unit then
            # normalize.
            self._byte_value = bits / 8.0
            self._bit_value = bits
        else:
            # We were given a value representative of this *prefix
            # unit*. We need to normalize it into the number of bytes
            # it represents.
            self._norm(value)

        # We have the fundamental unit figured out. Set the 'pretty' unit
        self._set_prefix_value()

    def _set_prefix_value(self):
        self.prefix_value = self._to_prefix_value(self._byte_value)

    def _to_prefix_value(self, value):
        """Return the number of bits/bytes as they would look like if we
converted *to* this unit"""
        return value / float(self._unit_value)

    def _setup(self):
        raise NotImplementedError("The base 'bitmath.Bitmath' class can not be used directly")

    def _do_setup(self):
        """Setup basic parameters for this class.

`base` is the numeric base which when raised to `power` is equivalent
to 1 unit of the corresponding prefix. I.e., base=2, power=10
represents 2^10, which is the NIST Binary Prefix for 1 Kibibyte.

Likewise, for the SI prefix classes `base` will be 10, and the `power`
for the Kilobyte is 3.
"""
        (self._base, self._power, self._name_singular, self._name_plural) = self._setup()
        self._unit_value = self._base ** self._power

    def _norm(self, value):
        """Normalize the input value into the fundamental unit for this prefix
type.

   :param number value: The input value to be normalized
   :raises ValueError: if the input value is not a type of real number
"""
        if isinstance(value, self.valid_types):
            self._byte_value = value * self._unit_value
            self._bit_value = self._byte_value * 8.0
        else:
            raise ValueError("Initialization value '%s' is of an invalid type: %s. "
                             "Must be one of %s" % (
                                 value,
                                 type(value),
                                 ", ".join(str(x) for x in self.valid_types)))

    ##################################################################
    # Properties

    #: The mathematical base of an instance
    base = property(lambda s: s._base)

    binary = property(lambda s: bin(int(s.bits)))
    """The binary representation of an instance in binary 1s and 0s. Note
that for very large numbers this will mean a lot of 1s and 0s. For
example, GiB(100) would be represented as::

    0b1100100000000000000000000000000000000000

That leading ``0b`` is normal. That's how Python represents binary.

    """

    #: Alias for :attr:`binary`
    bin = property(lambda s: s.binary)

    #: The number of bits in an instance
    bits = property(lambda s: s._bit_value)

    #: The number of bytes in an instance
    bytes = property(lambda s: s._byte_value)

    #: The mathematical power of an instance
    power = property(lambda s: s._power)

    @property
    def system(self):
        """The system of units used to measure an instance"""
        if self._base == 2:
            return "NIST"
        elif self._base == 10:
            return "SI"
        else:
            # I don't expect to ever encounter this logic branch, but
            # hey, it's better to have extra test coverage than
            # insufficient test coverage.
            raise ValueError("Instances mathematical base is an unsupported value: %s" % (
                str(self._base)))

    @property
    def unit(self):
        """The string that is this instances prefix unit name in agreement
with this instance value (singular or plural). Following the
convention that only 1 is singular. This will always be the singular
form when :attr:`bitmath.format_plural` is ``False`` (default value).

For example:

   >>> KiB(1).unit == 'KiB'
   >>> Byte(0).unit == 'Bytes'
   >>> Byte(1).unit == 'Byte'
   >>> Byte(1.1).unit == 'Bytes'
   >>> Gb(2).unit == 'Gbs'

        """
        global format_plural

        if self.prefix_value == 1:
            # If it's a '1', return it singular, no matter what
            return self._name_singular
        elif format_plural:
            # Pluralization requested
            return self._name_plural
        else:
            # Pluralization NOT requested, and the value is not 1
            return self._name_singular

    @property
    def unit_plural(self):
        """The string that is an instances prefix unit name in the plural
form.

For example:

   >>> KiB(1).unit_plural == 'KiB'
   >>> Byte(1024).unit_plural == 'Bytes'
   >>> Gb(1).unit_plural == 'Gb'

        """
        return self._name_plural

    @property
    def unit_singular(self):
        """The string that is an instances prefix unit name in the singular
form.

For example:

   >>> KiB(1).unit_singular == 'KiB'
   >>> Byte(1024).unit == 'B'
   >>> Gb(1).unit_singular == 'Gb'
        """
        return self._name_singular

    #: The "prefix" value of an instance
    value = property(lambda s: s.prefix_value)

    @classmethod
    def from_other(cls, item):
        """Factory function to return instances of `item` converted into a new
instance of ``cls``. Because this is a class method, it may be called
from any bitmath class object without the need to explicitly
instantiate the class ahead of time.

*Implicit Parameter:*

* ``cls`` A bitmath class, implicitly set to the class of the
  instance object it is called on

*User Supplied Parameter:*

* ``item`` A :class:`bitmath.Bitmath` subclass instance

*Example:*

   >>> import bitmath
   >>> kib = bitmath.KiB.from_other(bitmath.MiB(1))
   >>> print kib
   KiB(1024.0)

        """
        if isinstance(item, Bitmath):
            return cls(bits=item.bits)
        else:
            raise ValueError("The provided items must be a valid bitmath class: %s" %
                             str(item.__class__))

    ######################################################################
    # The following implement the Python datamodel customization methods
    #
    # Reference: http://docs.python.org/2.7/reference/datamodel.html#basic-customization

    def __repr__(self):
        """Representation of this object as you would expect to see in an
interpreter"""
        global _FORMAT_REPR
        return self.format(_FORMAT_REPR)

    def __str__(self):
        """String representation of this object"""
        global format_string
        return self.format(format_string)

    def format(self, fmt):
        """Return a representation of this instance formatted with user
supplied syntax"""
        _fmt_params = {
            'base': self.base,
            'bin': self.bin,
            'binary': self.binary,
            'bits': self.bits,
            'bytes': self.bytes,
            'power': self.power,
            'system': self.system,
            'unit': self.unit,
            'unit_plural': self.unit_plural,
            'unit_singular': self.unit_singular,
            'value': self.value
        }

        return fmt.format(**_fmt_params)

    ##################################################################
    # Guess the best human-readable prefix unit for representation
    ##################################################################

    def best_prefix(self, system=None):
        """Optional parameter, `system`, allows you to prefer NIST or SI in
the results. By default, the current system is used (Bit/Byte default
to NIST).

Logic discussion/notes:

Base-case, does it need converting?

If the instance is less than one Byte, return the instance as a Bit
instance.

Else, begin by recording the unit system the instance is defined
by. This determines which steps (NIST_STEPS/SI_STEPS) we iterate over.

If the instance is not already a ``Byte`` instance, convert it to one.

NIST units step up by powers of 1024, SI units step up by powers of
1000.

Take integer value of the log(base=STEP_POWER) of the instance's byte
value. E.g.:

    >>> int(math.log(Gb(100).bytes, 1000))
    3

This will return a value >= 0. The following determines the 'best
prefix unit' for representation:

* result == 0, best represented as a Byte
* result >= len(SYSTEM_STEPS), best represented as an Exbi/Exabyte
* 0 < result < len(SYSTEM_STEPS), best represented as SYSTEM_PREFIXES[result-1]

        """

        # Use absolute value so we don't return Bit's for *everything*
        # less than Byte(1). From github issue #55
        if abs(self) < Byte(1):
            return Bit.from_other(self)
        else:
            if type(self) is Byte:  # pylint: disable=unidiomatic-typecheck
                _inst = self
            else:
                _inst = Byte.from_other(self)

        # Which table to consult? Was a preferred system provided?
        if system is None:
            # No preference. Use existing system
            if self.system == 'NIST':
                _STEPS = NIST_PREFIXES
                _BASE = 1024
            elif self.system == 'SI':
                _STEPS = SI_PREFIXES
                _BASE = 1000
            # Anything else would have raised by now
        else:
            # Preferred system provided.
            if system == NIST:
                _STEPS = NIST_PREFIXES
                _BASE = 1024
            elif system == SI:
                _STEPS = SI_PREFIXES
                _BASE = 1000
            else:
                raise ValueError("Invalid value given for 'system' parameter."
                                 " Must be one of NIST or SI")

        # Index of the string of the best prefix in the STEPS list
        _index = int(math.log(abs(_inst.bytes), _BASE))

        # Recall that the log() function returns >= 0. This doesn't
        # map to the STEPS list 1:1. That is to say, 0 is handled with
        # special care. So if the _index is 1, we actually want item 0
        # in the list.

        if _index == 0:
            # Already a Byte() type, so return it.
            return _inst
        elif _index >= len(_STEPS):
            # This is a really big number. Use the biggest prefix we've got
            _best_prefix = _STEPS[-1]
        elif 0 < _index < len(_STEPS):
            # There is an appropriate prefix unit to represent this
            _best_prefix = _STEPS[_index - 1]

        _conversion_method = getattr(
            self,
            'to_%sB' % _best_prefix)

        return _conversion_method()

    ##################################################################

    def to_Bit(self):
        return Bit(self._bit_value)

    def to_Byte(self):
        return Byte(self._byte_value / float(NIST_STEPS['Byte']))

    # Properties
    Bit = property(lambda s: s.to_Bit())
    Byte = property(lambda s: s.to_Byte())

    ##################################################################

    def to_KiB(self):
        return KiB(bits=self._bit_value)

    def to_Kib(self):
        return Kib(bits=self._bit_value)

    def to_kB(self):
        return kB(bits=self._bit_value)

    def to_kb(self):
        return kb(bits=self._bit_value)

    # Properties
    KiB = property(lambda s: s.to_KiB())
    Kib = property(lambda s: s.to_Kib())
    kB = property(lambda s: s.to_kB())
    kb = property(lambda s: s.to_kb())

    ##################################################################

    def to_MiB(self):
        return MiB(bits=self._bit_value)

    def to_Mib(self):
        return Mib(bits=self._bit_value)

    def to_MB(self):
        return MB(bits=self._bit_value)

    def to_Mb(self):
        return Mb(bits=self._bit_value)

    # Properties
    MiB = property(lambda s: s.to_MiB())
    Mib = property(lambda s: s.to_Mib())
    MB = property(lambda s: s.to_MB())
    Mb = property(lambda s: s.to_Mb())

    ##################################################################

    def to_GiB(self):
        return GiB(bits=self._bit_value)

    def to_Gib(self):
        return Gib(bits=self._bit_value)

    def to_GB(self):
        return GB(bits=self._bit_value)

    def to_Gb(self):
        return Gb(bits=self._bit_value)

    # Properties
    GiB = property(lambda s: s.to_GiB())
    Gib = property(lambda s: s.to_Gib())
    GB = property(lambda s: s.to_GB())
    Gb = property(lambda s: s.to_Gb())

    ##################################################################

    def to_TiB(self):
        return TiB(bits=self._bit_value)

    def to_Tib(self):
        return Tib(bits=self._bit_value)

    def to_TB(self):
        return TB(bits=self._bit_value)

    def to_Tb(self):
        return Tb(bits=self._bit_value)

    # Properties
    TiB = property(lambda s: s.to_TiB())
    Tib = property(lambda s: s.to_Tib())
    TB = property(lambda s: s.to_TB())
    Tb = property(lambda s: s.to_Tb())

    ##################################################################

    def to_PiB(self):
        return PiB(bits=self._bit_value)

    def to_Pib(self):
        return Pib(bits=self._bit_value)

    def to_PB(self):
        return PB(bits=self._bit_value)

    def to_Pb(self):
        return Pb(bits=self._bit_value)

    # Properties
    PiB = property(lambda s: s.to_PiB())
    Pib = property(lambda s: s.to_Pib())
    PB = property(lambda s: s.to_PB())
    Pb = property(lambda s: s.to_Pb())

    ##################################################################

    def to_EiB(self):
        return EiB(bits=self._bit_value)

    def to_Eib(self):
        return Eib(bits=self._bit_value)

    def to_EB(self):
        return EB(bits=self._bit_value)

    def to_Eb(self):
        return Eb(bits=self._bit_value)

    # Properties
    EiB = property(lambda s: s.to_EiB())
    Eib = property(lambda s: s.to_Eib())
    EB = property(lambda s: s.to_EB())
    Eb = property(lambda s: s.to_Eb())

    ##################################################################
    # The SI units go beyond the NIST units. They also have the Zetta
    # and Yotta prefixes.

    def to_ZB(self):
        return ZB(bits=self._bit_value)

    def to_Zb(self):
        return Zb(bits=self._bit_value)

    # Properties
    ZB = property(lambda s: s.to_ZB())
    Zb = property(lambda s: s.to_Zb())

    ##################################################################

    def to_YB(self):
        return YB(bits=self._bit_value)

    def to_Yb(self):
        return Yb(bits=self._bit_value)

    #: A new object representing this instance as a Yottabyte
    YB = property(lambda s: s.to_YB())
    Yb = property(lambda s: s.to_Yb())

    ##################################################################
    # Rich comparison operations
    ##################################################################

    def __lt__(self, other):
        if isinstance(other, numbers.Number):
            return self.prefix_value < other
        else:
            return self._byte_value < other.bytes

    def __le__(self, other):
        if isinstance(other, numbers.Number):
            return self.prefix_value <= other
        else:
            return self._byte_value <= other.bytes

    def __eq__(self, other):
        if isinstance(other, numbers.Number):
            return self.prefix_value == other
        else:
            return self._byte_value == other.bytes

    def __ne__(self, other):
        if isinstance(other, numbers.Number):
            return self.prefix_value != other
        else:
            return self._byte_value != other.bytes

    def __gt__(self, other):
        if isinstance(other, numbers.Number):
            return self.prefix_value > other
        else:
            return self._byte_value > other.bytes

    def __ge__(self, other):
        if isinstance(other, numbers.Number):
            return self.prefix_value >= other
        else:
            return self._byte_value >= other.bytes

    ##################################################################
    # Basic math operations
    ##################################################################

    # Reference: http://docs.python.org/2.7/reference/datamodel.html#emulating-numeric-types

    """These methods are called to implement the binary arithmetic
operations (+, -, *, //, %, divmod(), pow(), **, <<, >>, &, ^, |). For
instance, to evaluate the expression x + y, where x is an instance of
a class that has an __add__() method, x.__add__(y) is called. The
__divmod__() method should be the equivalent to using __floordiv__()
and __mod__(); it should not be related to __truediv__() (described
below). Note that __pow__() should be defined to accept an optional
third argument if the ternary version of the built-in pow() function
is to be supported.object.__complex__(self)
"""

    def __add__(self, other):
        """Supported operations with result types:

- bm + bm = bm
- bm + num = num
- num + bm = num (see radd)
"""
        if isinstance(other, numbers.Number):
            # bm + num
            return other + self.value
        else:
            # bm + bm
            total_bytes = self._byte_value + other.bytes
            return (type(self))(bytes=total_bytes)

    def __sub__(self, other):
        """Subtraction: Supported operations with result types:

- bm - bm = bm
- bm - num = num
- num - bm = num (see rsub)
"""
        if isinstance(other, numbers.Number):
            # bm - num
            return self.value - other
        else:
            # bm - bm
            total_bytes = self._byte_value - other.bytes
            return (type(self))(bytes=total_bytes)

    def __mul__(self, other):
        """Multiplication: Supported operations with result types:

- bm1 * bm2 = bm1
- bm * num = bm
- num * bm = num (see rmul)
"""
        if isinstance(other, numbers.Number):
            # bm * num
            result = self._byte_value * other
            return (type(self))(bytes=result)
        else:
            # bm1 * bm2
            _other = other.value * other.base ** other.power
            _self = self.prefix_value * self._base ** self._power
            return (type(self))(bytes=_other * _self)

    """The division operator (/) is implemented by these methods. The
__truediv__() method is used when __future__.division is in effect,
otherwise __div__() is used. If only one of these two methods is
defined, the object will not support division in the alternate
context; TypeError will be raised instead."""

    def __div__(self, other):
        """Division: Supported operations with result types:

- bm1 / bm2 = num
- bm / num = bm
- num / bm = num (see rdiv)
"""
        if isinstance(other, numbers.Number):
            # bm / num
            result = self._byte_value / other
            return (type(self))(bytes=result)
        else:
            # bm1 / bm2
            return self._byte_value / float(other.bytes)

    def __truediv__(self, other):
        # num / bm
        return self.__div__(other)

    # def __floordiv__(self, other):
    #     return NotImplemented

    # def __mod__(self, other):
    #     return NotImplemented

    # def __divmod__(self, other):
    #     return NotImplemented

    # def __pow__(self, other, modulo=None):
    #     return NotImplemented

    ##################################################################

    """These methods are called to implement the binary arithmetic
operations (+, -, *, /, %, divmod(), pow(), **, <<, >>, &, ^, |) with
reflected (swapped) operands. These functions are only called if the
left operand does not support the corresponding operation and the
operands are of different types. [2] For instance, to evaluate the
expression x - y, where y is an instance of a class that has an
__rsub__() method, y.__rsub__(x) is called if x.__sub__(y) returns
NotImplemented.

These are the add/sub/mul/div methods for syntax where a number type
is given for the LTYPE and a bitmath object is given for the
RTYPE. E.g., 3 * MiB(3), or 10 / GB(42)
"""

    def __radd__(self, other):
        # num + bm = num
        return other + self.value

    def __rsub__(self, other):
        # num - bm = num
        return other - self.value

    def __rmul__(self, other):
        # num * bm = bm
        return self * other

    def __rdiv__(self, other):
        # num / bm = num
        return other / float(self.value)

    def __rtruediv__(self, other):
        # num / bm = num
        return other / float(self.value)

    """Called to implement the built-in functions complex(), int(),
long(), and float(). Should return a value of the appropriate type.

If one of those methods does not support the operation with the
supplied arguments, it should return NotImplemented.

For bitmath purposes, these methods return the int/long/float
equivalent of the this instances prefix Unix value. That is to say:

    - int(KiB(3.336)) would return 3
    - long(KiB(3.336)) would return 3L
    - float(KiB(3.336)) would return 3.336
"""

    def __int__(self):
        """Return this instances prefix unit as an integer"""
        return int(self.prefix_value)

    def __long__(self):
        """Return this instances prefix unit as a long integer"""
        return long(self.prefix_value)  # pragma: PY3X no cover

    def __float__(self):
        """Return this instances prefix unit as a floating point number"""
        return float(self.prefix_value)

    ##################################################################
    # Bitwise operations
    ##################################################################

    def __lshift__(self, other):
        """Left shift, ex: 100 << 2

A left shift by n bits is equivalent to multiplication by pow(2,
n). A long integer is returned if the result exceeds the range of
plain integers."""
        shifted = int(self.bits) << other
        return type(self)(bits=shifted)

    def __rshift__(self, other):
        """Right shift, ex: 100 >> 2

A right shift by n bits is equivalent to division by pow(2, n)."""
        shifted = int(self.bits) >> other
        return type(self)(bits=shifted)

    def __and__(self, other):
        """"Bitwise and, ex: 100 & 2

bitwise and". Each bit of the output is 1 if the corresponding bit
of x AND of y is 1, otherwise it's 0."""
        andd = int(self.bits) & other
        return type(self)(bits=andd)

    def __xor__(self, other):
        """Bitwise xor, ex: 100 ^ 2

Does a "bitwise exclusive or". Each bit of the output is the same
as the corresponding bit in x if that bit in y is 0, and it's the
complement of the bit in x if that bit in y is 1."""
        xord = int(self.bits) ^ other
        return type(self)(bits=xord)

    def __or__(self, other):
        """Bitwise or, ex: 100 | 2

Does a "bitwise or". Each bit of the output is 0 if the corresponding
bit of x AND of y is 0, otherwise it's 1."""
        ord = int(self.bits) | other
        return type(self)(bits=ord)

    ##################################################################

    def __neg__(self):
        """The negative version of this instance"""
        return (type(self))(-abs(self.prefix_value))

    def __pos__(self):
        return (type(self))(abs(self.prefix_value))

    def __abs__(self):
        return (type(self))(abs(self.prefix_value))

    # def __invert__(self):
    #     """Called to implement the unary arithmetic operations (-, +, abs()
    #     and ~)."""
    #     return NotImplemented


######################################################################
# First, the bytes...

class Byte(Bitmath):
    """Byte based types fundamentally operate on self._bit_value"""
    def _setup(self):
        return (2, 0, 'Byte', 'Bytes')

######################################################################
# NIST Prefixes for Byte based types


class KiB(Byte):
    def _setup(self):
        return (2, 10, 'KiB', 'KiBs')


Kio = KiB


class MiB(Byte):
    def _setup(self):
        return (2, 20, 'MiB', 'MiBs')


Mio = MiB


class GiB(Byte):
    def _setup(self):
        return (2, 30, 'GiB', 'GiBs')


Gio = GiB


class TiB(Byte):
    def _setup(self):
        return (2, 40, 'TiB', 'TiBs')


Tio = TiB


class PiB(Byte):
    def _setup(self):
        return (2, 50, 'PiB', 'PiBs')


Pio = PiB


class EiB(Byte):
    def _setup(self):
        return (2, 60, 'EiB', 'EiBs')


Eio = EiB


######################################################################
# SI Prefixes for Byte based types
class kB(Byte):
    def _setup(self):
        return (10, 3, 'kB', 'kBs')


ko = kB


class MB(Byte):
    def _setup(self):
        return (10, 6, 'MB', 'MBs')


Mo = MB


class GB(Byte):
    def _setup(self):
        return (10, 9, 'GB', 'GBs')


Go = GB


class TB(Byte):
    def _setup(self):
        return (10, 12, 'TB', 'TBs')


To = TB


class PB(Byte):
    def _setup(self):
        return (10, 15, 'PB', 'PBs')


Po = PB


class EB(Byte):
    def _setup(self):
        return (10, 18, 'EB', 'EBs')


Eo = EB


class ZB(Byte):
    def _setup(self):
        return (10, 21, 'ZB', 'ZBs')


Zo = ZB


class YB(Byte):
    def _setup(self):
        return (10, 24, 'YB', 'YBs')


Yo = YB


######################################################################
# And now the bit types
class Bit(Bitmath):
    """Bit based types fundamentally operate on self._bit_value"""

    def _set_prefix_value(self):
        self.prefix_value = self._to_prefix_value(self._bit_value)

    def _setup(self):
        return (2, 0, 'Bit', 'Bits')

    def _norm(self, value):
        """Normalize the input value into the fundamental unit for this prefix
type"""
        self._bit_value = value * self._unit_value
        self._byte_value = self._bit_value / 8.0


######################################################################
# NIST Prefixes for Bit based types
class Kib(Bit):
    def _setup(self):
        return (2, 10, 'Kib', 'Kibs')


class Mib(Bit):
    def _setup(self):
        return (2, 20, 'Mib', 'Mibs')


class Gib(Bit):
    def _setup(self):
        return (2, 30, 'Gib', 'Gibs')


class Tib(Bit):
    def _setup(self):
        return (2, 40, 'Tib', 'Tibs')


class Pib(Bit):
    def _setup(self):
        return (2, 50, 'Pib', 'Pibs')


class Eib(Bit):
    def _setup(self):
        return (2, 60, 'Eib', 'Eibs')


######################################################################
# SI Prefixes for Bit based types
class kb(Bit):
    def _setup(self):
        return (10, 3, 'kb', 'kbs')


class Mb(Bit):
    def _setup(self):
        return (10, 6, 'Mb', 'Mbs')


class Gb(Bit):
    def _setup(self):
        return (10, 9, 'Gb', 'Gbs')


class Tb(Bit):
    def _setup(self):
        return (10, 12, 'Tb', 'Tbs')


class Pb(Bit):
    def _setup(self):
        return (10, 15, 'Pb', 'Pbs')


class Eb(Bit):
    def _setup(self):
        return (10, 18, 'Eb', 'Ebs')


class Zb(Bit):
    def _setup(self):
        return (10, 21, 'Zb', 'Zbs')


class Yb(Bit):
    def _setup(self):
        return (10, 24, 'Yb', 'Ybs')


######################################################################
# Utility functions
def best_prefix(bytes, system=NIST):
    """Return a bitmath instance representing the best human-readable
representation of the number of bytes given by ``bytes``. In addition
to a numeric type, the ``bytes`` parameter may also be a bitmath type.

Optionally select a preferred unit system by specifying the ``system``
keyword. Choices for ``system`` are ``bitmath.NIST`` (default) and
``bitmath.SI``.

Basically a shortcut for:

   >>> import bitmath
   >>> b = bitmath.Byte(12345)
   >>> best = b.best_prefix()

Or:

   >>> import bitmath
   >>> best = (bitmath.KiB(12345) * 4201).best_prefix()
    """
    if isinstance(bytes, Bitmath):
        value = bytes.bytes
    else:
        value = bytes
    return Byte(value).best_prefix(system=system)


def query_device_capacity(device_fd):
    """Create bitmath instances of the capacity of a system block device

Make one or more ioctl request to query the capacity of a block
device. Perform any processing required to compute the final capacity
value. Return the device capacity in bytes as a :class:`bitmath.Byte`
instance.

Thanks to the following resources for help figuring this out Linux/Mac
ioctl's for querying block device sizes:

* http://stackoverflow.com/a/12925285/263969
* http://stackoverflow.com/a/9764508/263969

   :param file device_fd: A ``file`` object of the device to query the
   capacity of (as in ``get_device_capacity(open("/dev/sda"))``).

   :return: a bitmath :class:`bitmath.Byte` instance equivalent to the
   capacity of the target device in bytes.
"""
    if os_name() != 'posix':
        raise NotImplementedError("'bitmath.query_device_capacity' is not supported on this platform: %s" % os_name())

    s = os.stat(device_fd.name).st_mode
    if not stat.S_ISBLK(s):
        raise ValueError("The file descriptor provided is not of a device type")

    # The keys of the ``ioctl_map`` dictionary correlate to possible
    # values from the ``platform.system`` function.
    ioctl_map = {
        # ioctls for the "Linux" platform
        "Linux": {
            "request_params": [
                # A list of parameters to calculate the block size.
                #
                # ( PARAM_NAME , FORMAT_CHAR , REQUEST_CODE )
                ("BLKGETSIZE64", "L", 0x80081272)
                # Per <linux/fs.h>, the BLKGETSIZE64 request returns a
                # 'u64' sized value. This is an unsigned 64 bit
                # integer C type. This means to correctly "buffer" the
                # result we need 64 bits, or 8 bytes, of memory.
                #
                # The struct module documentation include a reference
                # chart relating formatting characters to native C
                # Types. In this case, using the "native size", the
                # table tells us:
                #
                # * Character 'L' - Unsigned Long C Type (u64) - Loads into a Python int type
                #
                # Confirm this character is right by running (on Linux):
                #
                #    >>> import struct
                #    >>> print 8 == struct.calcsize('L')
                #
                # The result should be true as long as your kernel
                # headers define BLKGETSIZE64 as a u64 type (please
                # file a bug report at
                # https://github.com/tbielawa/bitmath/issues/new if
                # this does *not* work for you)
            ],
            # func is how the final result is decided. Because the
            # Linux BLKGETSIZE64 call returns the block device
            # capacity in bytes as an integer value, no extra
            # calculations are required. Simply return the value of
            # BLKGETSIZE64.
            "func": lambda x: x["BLKGETSIZE64"]
        },
        # ioctls for the "Darwin" (Mac OS X) platform
        "Darwin": {
            "request_params": [
                # A list of parameters to calculate the block size.
                #
                # ( PARAM_NAME , FORMAT_CHAR , REQUEST_CODE )
                ("DKIOCGETBLOCKCOUNT", "L", 0x40086419),
                # Per <sys/disk.h>: get media's block count - uint64_t
                #
                # As in the BLKGETSIZE64 example, an unsigned 64 bit
                # integer will use the 'L' formatting character
                ("DKIOCGETBLOCKSIZE", "I", 0x40046418)
                # Per <sys/disk.h>: get media's block size - uint32_t
                #
                # This request returns an unsigned 32 bit integer, or
                # in other words: just a normal integer (or 'int' c
                # type). That should require 4 bytes of space for
                # buffering. According to the struct modules
                # 'Formatting Characters' chart:
                #
                # * Character 'I' - Unsigned Int C Type (uint32_t) - Loads into a Python int type
            ],
            # OS X doesn't have a direct equivalent to the Linux
            # BLKGETSIZE64 request. Instead, we must request how many
            # blocks (or "sectors") are on the disk, and the size (in
            # bytes) of each block. Finally, multiply the two together
            # to obtain capacity:
            #
            #                      n Block * y Byte
            # capacity (bytes)  =            -------
            #                                1 Block
            "func": lambda x: x["DKIOCGETBLOCKCOUNT"] * x["DKIOCGETBLOCKSIZE"]
            # This expression simply accepts a dictionary ``x`` as a
            # parameter, and then returns the result of multiplying
            # the two named dictionary items together. In this case,
            # that means multiplying ``DKIOCGETBLOCKCOUNT``, the total
            # number of blocks, by ``DKIOCGETBLOCKSIZE``, the size of
            # each block in bytes.
        }
    }

    platform_params = ioctl_map[platform.system()]
    results = {}

    for req_name, fmt, request_code in platform_params['request_params']:
        # Read the systems native size (in bytes) of this format type.
        buffer_size = struct.calcsize(fmt)
        # Construct a buffer to store the ioctl result in
        buffer = ' ' * buffer_size

        # This code has been ran on only a few test systems. If it's
        # appropriate, maybe in the future we'll add try/except
        # conditions for some possible errors. Really only for cases
        # where it would add value to override the default exception
        # message string.
        buffer = fcntl.ioctl(device_fd.fileno(), request_code, buffer)

        # Unpack the raw result from the ioctl call into a familiar
        # python data type according to the ``fmt`` rules.
        result = struct.unpack(fmt, buffer)[0]
        # Add the new result to our collection
        results[req_name] = result

    return Byte(platform_params['func'](results))


def getsize(path, bestprefix=True, system=NIST):
    """Return a bitmath instance in the best human-readable representation
of the file size at `path`. Optionally, provide a preferred unit
system by setting `system` to either `bitmath.NIST` (default) or
`bitmath.SI`.

Optionally, set ``bestprefix`` to ``False`` to get ``bitmath.Byte``
instances back.
    """
    _path = os.path.realpath(path)
    size_bytes = os.path.getsize(_path)
    if bestprefix:
        return Byte(size_bytes).best_prefix(system=system)
    else:
        return Byte(size_bytes)


def listdir(search_base, followlinks=False, filter='*',
            relpath=False, bestprefix=False, system=NIST):
    """This is a generator which recurses the directory tree
`search_base`, yielding 2-tuples of:

* The absolute/relative path to a discovered file
* A bitmath instance representing the "apparent size" of the file.

    - `search_base` - The directory to begin walking down.
    - `followlinks` - Whether or not to follow symbolic links to directories
    - `filter` - A glob (see :py:mod:`fnmatch`) to filter results with
      (default: ``*``, everything)
    - `relpath` - ``True`` to return the relative path from `pwd` or
      ``False`` (default) to return the fully qualified path
    - ``bestprefix`` - set to ``False`` to get ``bitmath.Byte``
      instances back instead.
    - `system` - Provide a preferred unit system by setting `system`
      to either ``bitmath.NIST`` (default) or ``bitmath.SI``.

.. note:: This function does NOT return tuples for directory entities.

.. note:: Symlinks to **files** are followed automatically

    """
    for root, dirs, files in os.walk(search_base, followlinks=followlinks):
        for name in fnmatch.filter(files, filter):
            _path = os.path.join(root, name)
            if relpath:
                # RELATIVE path
                _return_path = os.path.relpath(_path, '.')
            else:
                # REAL path
                _return_path = os.path.realpath(_path)

            if followlinks:
                yield (_return_path, getsize(_path, bestprefix=bestprefix, system=system))
            else:
                if os.path.isdir(_path) or os.path.islink(_path):
                    pass
                else:
                    yield (_return_path, getsize(_path, bestprefix=bestprefix, system=system))


def parse_string(s):
    """Parse a string with units and try to make a bitmath object out of
it.

String inputs may include whitespace characters between the value and
the unit.
    """
    # Strings only please
    if not isinstance(s, (str, unicode)):
        raise ValueError("parse_string only accepts string inputs but a %s was given" %
                         type(s))

    # get the index of the first alphabetic character
    try:
        index = list([i.isalpha() for i in s]).index(True)
    except ValueError:
        # If there's no alphabetic characters we won't be able to .index(True)
        raise ValueError("No unit detected, can not parse string '%s' into a bitmath object" % s)

    # split the string into the value and the unit
    val, unit = s[:index], s[index:]

    # see if the unit exists as a type in our namespace

    if unit == "b":
        unit_class = Bit
    elif unit == "B":
        unit_class = Byte
    else:
        if not (hasattr(sys.modules[__name__], unit) and isinstance(getattr(sys.modules[__name__], unit), type)):
            raise ValueError("The unit %s is not a valid bitmath unit" % unit)
        unit_class = globals()[unit]

    try:
        val = float(val)
    except ValueError:
        raise
    try:
        return unit_class(val)
    except:  # pragma: no cover
        raise ValueError("Can't parse string %s into a bitmath object" % s)


def parse_string_unsafe(s, system=SI):
    """Attempt to parse a string with ambiguous units and try to make a
bitmath object out of it.

This may produce inaccurate results if parsing shell output. For
example `ls` may say a 2730 Byte file is '2.7K'. 2730 Bytes == 2.73 kB
~= 2.666 KiB. See the documentation for all of the important details.

Note the following caveats:

* All inputs are assumed to be byte-based (as opposed to bit based)

* Numerical inputs (those without any units) are assumed to be a
  number of bytes

* Inputs with single letter units (k, M, G, etc) are assumed to be SI
  units (base-10). Set the `system` parameter to `bitmath.NIST` to
  change this behavior.

* Inputs with an `i` character following the leading letter (Ki, Mi,
  Gi) are assumed to be NIST units (base 2)

* Capitalization does not matter

    """
    if not isinstance(s, (str, unicode)) and \
       not isinstance(s, numbers.Number):
        raise ValueError("parse_string_unsafe only accepts string/number inputs but a %s was given" %
                         type(s))

    ######################################################################
    # Is the input simple to parse? Just a number, or a number
    # masquerading as a string perhaps?

    # Test case: raw number input (easy!)
    if isinstance(s, numbers.Number):
        # It's just a number. Assume bytes
        return Byte(s)

    # Test case: a number pretending to be a string
    if isinstance(s, (str, unicode)):
        try:
            # Can we turn it directly into a number?
            return Byte(float(s))
        except ValueError:
            # Nope, this is not a plain number
            pass

    ######################################################################
    # At this point:
    # - the input is also not just a number wrapped in a string
    # - nor is is just a plain number type
    #
    # We need to do some more digging around now to figure out exactly
    # what we were given and possibly normalize the input into a
    # format we can recognize.

    # First we'll separate the number and the unit.
    #
    # Get the index of the first alphabetic character
    try:
        index = list([i.isalpha() for i in s]).index(True)
    except ValueError:  # pragma: no cover
        # If there's no alphabetic characters we won't be able to .index(True)
        raise ValueError("No unit detected, can not parse string '%s' into a bitmath object" % s)

    # Split the string into the value and the unit
    val, unit = s[:index], s[index:]

    # Don't trust anything. We'll make sure the correct 'b' is in place.
    unit = unit.rstrip('Bb')
    unit += 'B'

    # At this point we can expect `unit` to be either:
    #
    # - 2 Characters (for SI, ex: kB or GB)
    # - 3 Caracters (so NIST, ex: KiB, or GiB)
    #
    # A unit with any other number of chars is not a valid unit

    # SI
    if len(unit) == 2:
        # Has NIST parsing been requested?
        if system == NIST:
            # NIST units requested. Ensure the unit begins with a
            # capital letter and is followed by an 'i' character.
            unit = capitalize_first(unit)
            # Insert an 'i' char after the first letter
            _unit = list(unit)
            _unit.insert(1, 'i')
            # Collapse the list back into a 3 letter string
            unit = ''.join(_unit)
            unit_class = globals()[unit]
        else:
            # Default parsing (SI format)
            #
            # Edge-case checking: SI 'thousand' is a lower-case K
            if unit.startswith('K'):
                unit = unit.replace('K', 'k')
            elif not unit.startswith('k'):
                # Otherwise, ensure the first char is capitalized
                unit = capitalize_first(unit)

            # This is an SI-type unit
            if unit[0] in SI_PREFIXES:
                unit_class = globals()[unit]
    # NIST
    elif len(unit) == 3:
        unit = capitalize_first(unit)

        # This is a NIST-type unit
        if unit[:2] in NIST_PREFIXES:
            unit_class = globals()[unit]
    else:
        # This is not a unit we recognize
        raise ValueError("The unit %s is not a valid bitmath unit" % unit)

    try:
        unit_class
    except UnboundLocalError:
        raise ValueError("The unit %s is not a valid bitmath unit" % unit)

    return unit_class(float(val))


######################################################################
# Contxt Managers
@contextlib.contextmanager
def format(fmt_str=None, plural=False, bestprefix=False):
    """Context manager for printing bitmath instances.

``fmt_str`` - a formatting mini-language compat formatting string. See
the @properties (above) for a list of available items.

``plural`` - True enables printing instances with 's's if they're
plural. False (default) prints them as singular (no trailing 's').

``bestprefix`` - True enables printing instances in their best
human-readable representation. False, the default, prints instances
using their current prefix unit.
    """
    if 'bitmath' not in globals():
        import bitmath

    if plural:
        orig_fmt_plural = bitmath.format_plural
        bitmath.format_plural = True

    if fmt_str:
        orig_fmt_str = bitmath.format_string
        bitmath.format_string = fmt_str

    yield

    if plural:
        bitmath.format_plural = orig_fmt_plural

    if fmt_str:
        bitmath.format_string = orig_fmt_str


def cli_script_main(cli_args):
    """
    A command line interface to basic bitmath operations.
    """
    choices = ALL_UNIT_TYPES

    parser = argparse.ArgumentParser(
        description='Converts from one type of size to another.')
    parser.add_argument('--from-stdin', default=False, action='store_true',
                        help='Reads number from stdin rather than the cli')
    parser.add_argument(
        '-f', '--from', choices=choices, nargs=1,
        type=str, dest='fromunit', default=['Byte'],
        help='Input type you are converting from. Defaultes to Byte.')
    parser.add_argument(
        '-t', '--to', choices=choices, required=False, nargs=1, type=str,
        help=('Input type you are converting to. '
              'Attempts to detect best result if omitted.'), dest='tounit')
    parser.add_argument(
        'size', nargs='*', type=float,
        help='The number to convert.')

    args = parser.parse_args(cli_args)

    # Not sure how to cover this with tests, or if the functionality
    # will remain in this form long enough for it to make writing a
    # test worth the effort.
    if args.from_stdin:  # pragma: no cover
        args.size = [float(sys.stdin.readline()[:-1])]

    results = []

    for size in args.size:
        instance = getattr(__import__(
            'bitmath', fromlist=['True']), args.fromunit[0])(size)

        # If we have a unit provided then use it
        if args.tounit:
            result = getattr(instance, args.tounit[0])
        # Otherwise use the best_prefix call
        else:
            result = instance.best_prefix()

        results.append(result)

    return results


def cli_script():  # pragma: no cover
    # Wrapper around cli_script_main so we can unittest the command
    # line functionality
    for result in cli_script_main(sys.argv[1:]):
        print(result)


if __name__ == '__main__':
    cli_script()