1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
Getting Started
###############
In this section we will take a high-level look at the basic things you
can do with bitmath. We'll include the following topics:
.. contents::
:depth: 3
:local:
.. _simple_examples_supported_operations:
Tables of Supported Operations
******************************
The following legend describes the two operands used in the tables below.
======= =======================================
Operand Description
======= =======================================
``bm`` A bitmath object is required
``num`` An integer or decimal value is required
======= =======================================
.. _getting_started_arithmetic:
Arithmetic
==========
Math works mostly like you expect it to, except for a few edge-cases:
* Mixing bitmath types with Number types (the result varies
per-operation)
* Operations where two bitmath types would cancel out (such as
dividing two bitmath types)
* Multiplying two bitmath instances together is supported, but the
results may not make much sense.
.. seealso::
:ref:`Appendix: Rules for Math <appendix_math>`
For a discussion of the behavior of bitmath and number types.
.. _simple_examples_arithmetic_table:
+----------------+-------------------+---------------------+---------------------------------------+
| Operation | Parameters | Result Type | Example |
+================+===================+=====================+=======================================+
| Addition | ``bm1`` + ``bm2`` | ``type(bm1)`` | ``KiB(1) + MiB(2)`` = ``2049.0KiB`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Addition | ``bm`` + ``num`` | ``type(num)`` | ``KiB(1) + 1`` = ``2.0`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Addition | ``num`` + ``bm`` | ``type(num)`` | ``1 + KiB(1)`` = ``2.0`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Subtraction | ``bm1`` - ``bm2`` | ``type(bm1)`` | ``KiB(1) - Byte(2048)`` = ``-1.0KiB`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Subtraction | ``bm`` - ``num`` | ``type(num)`` | ``KiB(4) - 1`` = ``3.0`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Subtraction | ``num`` - ``bm`` | ``type(num)`` | ``10 - KiB(1)`` = ``9.0`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Multiplication | ``bm1`` * ``bm2`` | ``type(bm1)`` | ``KiB(1) * KiB(2)`` = ``2048.0KiB`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Multiplication | ``bm`` * ``num`` | ``type(bm)`` | ``KiB(2) * 3`` = ``6.0KiB`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Multiplication | ``num`` * ``bm`` | ``type(bm)`` | ``2 * KiB(3)`` = ``6.0KiB`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Division | ``bm1`` / ``bm2`` | ``type(num)`` | ``KiB(1) / KiB(2)`` = ``0.5`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Division | ``bm`` / ``num`` | ``type(bm)`` | ``KiB(1) / 3`` = ``0.3330078125KiB`` |
+----------------+-------------------+---------------------+---------------------------------------+
| Division | ``num`` / ``bm`` | ``type(num)`` | ``3 / KiB(2)`` = ``1.5`` |
+----------------+-------------------+---------------------+---------------------------------------+
Bitwise Operations
==================
.. seealso::
`Bitwise Calculator <http://www.miniwebtool.com/bitwise-calculator/>`_
A free online calculator for checking your math
Bitwise operations are also supported. Bitwise operations work
directly on the ``bits`` attribute of a bitmath instance, not the
number you see in an instances printed representation (``value``), to
maintain accuracy.
+----------------+-----------------------+--------------+---------------------------------------------------------+
| Operation | Parameters | Result Type | Example\ :sup:`1` |
+================+=======================+==============+=========================================================+
| Left Shift | ``bm`` << ``num`` | ``type(bm)`` | ``MiB(1)`` << ``2`` = ``MiB(4.0)`` |
+----------------+-----------------------+--------------+---------------------------------------------------------+
| Right Shift | ``bm`` >> ``num`` | ``type(bm)`` | ``MiB(1)`` >> ``2`` = ``MiB(0.25)`` |
+----------------+-----------------------+--------------+---------------------------------------------------------+
| AND | ``bm`` & ``num`` | ``type(bm)`` | ``MiB(13.37)`` & ``1337`` = ``MiB(0.000126...)`` |
+----------------+-----------------------+--------------+---------------------------------------------------------+
| OR | ``bm`` \| ``num`` | ``type(bm)`` | ``MiB(13.37)`` \| ``1337`` = ``MiB(13.3700...)`` |
+----------------+-----------------------+--------------+---------------------------------------------------------+
| XOR | ``bm`` ^ ``num`` | ``type(bm)`` | ``MiB(13.37)`` ^ ``1337`` = ``MiB(13.369...)`` |
+----------------+-----------------------+--------------+---------------------------------------------------------+
1. *Give me a break here, it's not easy coming up with compelling examples for bitwise operations...*
Basic Math
**********
bitmath supports all arithmetic operations
.. code-block:: python
:linenos:
>>> eighty_four_mib = fourty_two_mib + fourty_two_mib_in_kib
>>> eighty_four_mib
MiB(84.0)
>>> eighty_four_mib == fourty_two_mib * 2
True
Unit Conversion
***************
.. code-block:: python
:linenos:
>>> from bitmath import *
>>> fourty_two_mib = MiB(42)
>>> fourty_two_mib_in_kib = fourty_two_mib.to_KiB()
>>> fourty_two_mib_in_kib
KiB(43008.0)
>>> fourty_two_mib
MiB(42.0)
>>> fourty_two_mib.KiB
KiB(43008.0)
Rich Comparison
***************
Rich Comparison (as per the `Python Basic Customization
<https://docs.python.org/2.7/reference/datamodel.html#basic-customization>`_
magic methods) ``<``, ``<=``, ``==``, ``!=``, ``>``, ``>=`` is fully
supported:
.. code-block:: python
:linenos:
>>> GB(1) < GiB(1)
True
>>> GB(1.073741824) == GiB(1)
True
>>> GB(1.073741824) <= GiB(1)
True
>>> Bit(1) == TiB(bits=1)
True
>>> kB(100) > EiB(bytes=1024)
True
>>> kB(100) >= EiB.from_other(kB(100))
True
>>> kB(100) >= EiB.from_other(kB(99))
True
>>> kB(100) >= EiB.from_other(kB(9999))
False
>>> KiB(100) != Byte(1)
True
Sorting
*******
bitmath natively supports sorting.
Let's make a list of the size (in bytes) of all the files in the
present working directory (lines **4** and **5**) and then print them
out sorted by increasing magnitude (lines **10** and **11**, and
**13** → **15**):
.. code-block:: python
:linenos:
:emphasize-lines: 4,5,10,11,13,14,15
>>> from bitmath import *
>>> import os
>>> sizes = []
>>> for f in os.listdir('./tests/'):
... sizes.append(KiB(os.path.getsize('./tests/' + f)))
>>> print sizes
[KiB(7337.0), KiB(1441.0), KiB(2126.0), KiB(2178.0), KiB(2326.0), KiB(4003.0), KiB(48.0), KiB(1770.0), KiB(7892.0), KiB(4190.0)]
>>> print sorted(sizes)
[KiB(48.0), KiB(1441.0), KiB(1770.0), KiB(2126.0), KiB(2178.0), KiB(2326.0), KiB(4003.0), KiB(4190.0), KiB(7337.0), KiB(7892.0)]
>>> human_sizes = [s.best_prefix() for s in sizes]
>>> print sorted(human_sizes)
[KiB(48.0), MiB(1.4072265625), MiB(1.728515625), MiB(2.076171875), MiB(2.126953125), MiB(2.271484375), MiB(3.9091796875), MiB(4.091796875), MiB(7.1650390625), MiB(7.70703125)]
Now print them out in descending magnitude
.. code-block:: python
>>> print sorted(human_sizes, reverse=True)
[KiB(7892.0), KiB(7337.0), KiB(4190.0), KiB(4003.0), KiB(2326.0), KiB(2178.0), KiB(2126.0), KiB(1770.0), KiB(1441.0), KiB(48.0)]
|