1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
.. currentmodule:: bitstring
Array
=====
.. class:: Array(dtype: str | Dtype, initializer: Iterable | int | Array | array.array | Bits | bytes | bytearray | memoryview | BinaryIO | None = None, trailing_bits: BitsType | None = None)
Create a new ``Array`` whose elements are set by the `dtype` (data-type) string or :class:`Dtype`.
This can be any format which has a fixed length.
See :ref:`format_tokens` and :ref:`compact_format` for details on allowed dtype strings, noting that only formats with well defined bit lengths are allowed.
The `inititalizer` will typically be an iterable such as a list, but can also be many other things including an open binary file, a bytes or bytearray object, another ``bitstring.Array`` or an ``array.array``.
It can also be an integer, in which case the ``Array`` will be zero-initialised with that many items. ::
>>> bitstring.Array('i4', 8)
Array('int4', [0, 0, 0, 0, 0, 0, 0, 0])
The `trailing_bits` typically isn't used in construction, and specifies bits left over after interpreting the stored binary data according to the data type `dtype`.
The ``Array`` class is a way to efficiently store data that has a single type with a set length.
The ``bitstring.Array`` type is meant as a more flexible version of the standard ``array.array``, and can be used the same way. ::
import array
import bitstring
x = array.array('f', [1.0, 2.0, 3.14])
y = bitstring.Array('=f', [1.0, 2.0, 3.14])
assert x.tobytes() == y.tobytes()
This example packs three 32-bit floats into objects using both libraries.
The only difference is the explicit native endianness for the format string of the bitstring version.
The bitstring Array's advantage lies in the way that any fixed-length bitstring format can be used instead of just the dozen or so typecodes supported by the ``array`` module.
For example ``'uint4'``, ``'bfloat'`` or ``'hex12'`` can be used, and the endianness of multi-byte dtypes can be properly specified.
Each element in the ``Array`` must then be something that makes sense for the ``dtype``.
Some examples will help illustrate::
from bitstring import Array
# Each unsigned int is stored in 4 bits
a = Array('uint4', [0, 5, 5, 3, 2])
# Convert and store floats in 8 bits each
b = Array('p3binary', [-56.0, 0.123, 99.6])
# Each element is a 7 bit signed integer
c = Array('int7', [-3, 0, 120])
You can then access and modify the ``Array`` with the usual notation::
a[1:4] # Array('uint4', [5, 5, 3])
b[0] # -56.0
c[-1] # 120
a[0] = 2
b.extend([0.0, -1.5])
Conversion between ``Array`` types can be done using the :meth:`astype` method.
If elements of the old array don't fit or don't make sense in the new array then the relevant exceptions will be raised. ::
>>> x = Array('float64', [89.3, 1e34, -0.00000001, 34])
>>> y = x.astype('float16')
>>> y
Array('float16', [89.3125, inf, -0.0, 34.0])
>>> y = y.astype('p4binary')
>>> y
Array('p4binary', [88.0, 240.0, 0.0, 32.0])
>>> y.astype('uint8')
Array('uint8', [88, 240, 0, 32])
>>> y.astype('uint7')
bitstring.CreationError: 240 is too large an unsigned integer for a bitstring of length 7. The allowed range is [0, 127].
You can also reinterpret the data by changing the :attr:`dtype` property directly.
This will not copy any data but will cause the current data to be shown differently. ::
>>> x = Array('int16', [-5, 100, -4])
>>> x
Array('int16', [-5, 100, -4])
>>> x.dtype = 'int8'
>>> x
Array('int8', [-1, -5, 0, 100, -1, -4])
The data for the array is stored internally as a :class:`BitArray` object.
It can be directly accessed using the :attr:`data` property.
You can freely manipulate the internal data using all of the methods available for the :class:`BitArray` class.
The :class:`Array` object also has a :attr:`trailing_bits` read-only data member, which consists of the end bits of the :attr:`data` that are left over when the :class:`Array` is interpreted using the :attr:`dtype`.
Typically :attr:`trailing_bits` will be an empty :class:`BitArray` but if you change the length of the :attr:`data` or change the :attr:`dtype` specification there may be some bits left over.
Some methods, such as :meth:`~Array.append` and :meth:`~Array.extend` will raise an exception if used when :attr:`trailing_bits` is not empty, as it not clear how these should behave in this case.
You can however still use :meth:`~Array.insert` which will always leave the :attr:`trailing_bits` unchanged.
The :attr:`dtype` string can be a type code such as ``'>H'`` or ``'=d'`` but it can also be a string defining any format which has a fixed-length in bits, for example ``'int12'``, ``'bfloat'``, ``'bytes5'`` or ``'bool'``.
Note that the typecodes must include an endianness character to give the byte ordering.
This is more like the ``struct`` module typecodes, and is different to the ``array.array`` typecodes which are always native-endian.
The correspondence between the big-endian type codes and bitstring dtype strings is given in the table below.
========= ===================
Type code bitstring dtype
========= ===================
``'>b'`` ``'int8'``
``'>B'`` ``'uint8'``
``'>h'`` ``'int16'``
``'>H'`` ``'uint16'``
``'>l'`` ``'int32'``
``'>L'`` ``'uint32'``
``'>q'`` ``'int64'``
``'>Q'`` ``'uint64'``
``'>e'`` ``'float16'``
``'>f'`` ``'float32'``
``'>d'`` ``'float64'``
========= ===================
The endianness character can be ``'>'`` for big-endian, ``'<'`` for little-endian or ``'='`` for native-endian (``'@'`` can also be used for native-endian).
In the bitstring dtypes the default is big-endian, but you can specify little or native endian using ``'le'`` or ``'ne'`` modifiers, for example:
============ =============================
Type code bitstring dtype
============ =============================
``'>H'`` ``'uint16'`` / ``'uintbe16'``
``'=H'`` ``'uintne16'``
``'<H'`` ``'uintle16'``
============ =============================
Note that:
* The ``array`` module's native endianness means that different packed binary data will be created on different types of machines.
Users may find that behaviour unexpected which is why endianness must be explicitly given as in the rest of the bitstring module.
* The ``'u'`` type code from the ``array`` module isn't supported as its length is platform dependent.
* The ``'e'`` type code isn't one of the ``array`` supported types, but it is used in the ``struct`` module and we support it here.
* The ``'b'`` and ``'B'`` type codes need to be preceded by an endianness character even though it makes no difference which one you use as they are only 1 byte long.
----
Methods
-------
.. method:: Array.append(x: float | int | str | bytes) -> None
Add a new element with value `x` to the end of the Array.
The type of `x` should be appropriate for the type of the Array.
Raises a ``ValueError`` if the Array's bit length is not a multiple of its dtype length (see :attr:`~Array.trailing_bits`).
.. method:: Array.astype(dtype: Dtype | str) -> Array
Cast the ``Array`` to the new `dtype` and return the result. ::
>>> a = Array('float64', [-990, 34, 1, 0.25])
>>> a.data
BitArray('0xc08ef0000000000040410000000000003ff00000000000003fd0000000000000')
>>> b = a.astype('float16')
>>> b.data
BitArray('0xe3bc50403c003400')
>>> a == b
Array('bool', [True, True, True, True])
.. method:: Array.byteswap() -> None
Change the byte endianness of each element.
Raises a ``ValueError`` if the format is not an integer number of bytes long. ::
>>> a = Array('uint32', [100, 1, 999])
>>> a.byteswap()
>>> a
Array('uint32', [1677721600, 16777216, 3875733504])
>>> a.dtype = 'uintle32'
>>> a
Array('uintle32', [100, 1, 999])
.. method:: Array.count(value: float | int | str | bytes) -> int
Returns the number of elements set to *value*. ::
>>> a = Array('hex4')
>>> a.data += '0xdeadbeef'
>>> a
Array('hex4', ['d', 'e', 'a', 'd', 'b', 'e', 'e', 'f'])
>>> a.count('e')
3
For floating point types, using a `value` of ``float('nan')`` will count the number of elements for which ``math.isnan()`` returns ``True``.
.. method:: Array.equals(other: Any) -> bool
Equality test - `other` can be either another bitstring Array or an ``array``.
Returns ``True`` if the dtypes are equivalent and the underlying bit data is the same, otherwise returns ``False``. ::
>>> a = Array('u8', [1, 2, 3, 2, 1])
>>> a[0:3].equals(a[-1:-4:-1])
True
>>> b = Array('i8', [1, 2, 3, 2, 1])
>>> a.equals(b)
False
To compare only the values contained in the Array, extract them using :meth:`~Array.tolist` first::
>>> a.tolist() == b.tolist()
True
Note that the ``==`` operator will perform an element-wise equality check and return a new ``Array`` of dtype ``'bool'`` (or raise an exception).
>>> a == b
Array('bool', [True, True, True, True, True])
.. method:: Array.extend(iterable: Iterable | Array) -> None
Extend the Array by constructing new elements from the values in a list or other iterable.
The `iterable` can be another ``Array`` or an ``array.array``, but only if the dtype is the same. ::
>>> a = Array('int5', [-5, 0, 10])
>>> a.extend([3, 2, 1])
>>> a.extend(a[0:3] // 5)
>>> a
Array('int5', [-5, 0, 10, 3, 2, 1, -1, 0, 2])
.. method:: Array.fromfile(f: BinaryIO, n: int | None = None) -> None
Append items read from a file object.
.. method:: Array.insert(i: int, x: float | int | str | bytes) -> None
Insert an item at a given position. ::
>>> a = Array('p3binary', [-10, -5, -0.5, 5, 10])
>>> a.insert(3, 0.5)
>>> a
Array('p3binary', [-10.0, -5.0, -0.5, 0.5, 5.0, 10.0])
.. method:: Array.pop(i: int | None = None) -> float | int | str | bytes
Remove and return the item at position i.
If a position isn't specified the final item is returned and removed. ::
>>> Array('bytes3', [b'ABC', b'DEF', b'ZZZ'])
>>> a.pop(0)
b'ABC'
>>> a.pop()
b'ZZZ'
>>> a.pop()
b'DEF'
.. method:: Array.pp(fmt: str | None = None, width: int = 120, show_offset: bool = True, stream: TextIO = sys.stdout) -> None
Pretty print the Array.
The format string `fmt` defaults to the Array's current :attr:`dtype`, but any other valid Array format string can be used.
If a `fmt` doesn't have an explicit length, the Array's :attr:`itemsize` will be used.
A pair of comma-separated format strings can also be used - if both formats specify a length they must be the same. For example ``'float, hex16'`` or ``'u4, b4'``.
The output will try to stay within `width` characters per line, but will always output at least one element value.
Setting `show_offset` to ``False`` will hide the element index on each line of the output.
An output `stream` can be specified. This should be an object with a ``write`` method and the default is ``sys.stdout``.
>>> a = Array('u20', bytearray(range(100)))
>>> a.pp(width=70, show_offset=False)
<Array fmt='u20', length=40, itemsize=20 bits, total data size=100 bytes> [
16 131844 20576 460809 41136 789774 61697 70163
82257 399128 102817 728093 123378 8482 143938 337447
164498 666412 185058 995377 205619 275766 226179 604731
246739 933696 267300 214085 287860 543050 308420 872015
328981 152404 349541 481369 370101 810334 390662 90723
]
>>> a.pp('hex32', width=70)
<Array fmt='hex32', length=25, itemsize=32 bits, total data size=100 bytes> [
0: 00010203 04050607 08090a0b 0c0d0e0f 10111213 14151617 18191a1b
7: 1c1d1e1f 20212223 24252627 28292a2b 2c2d2e2f 30313233 34353637
14: 38393a3b 3c3d3e3f 40414243 44454647 48494a4b 4c4d4e4f 50515253
21: 54555657 58595a5b 5c5d5e5f 60616263
]
>>> a.pp('i12, hex', show_offset=False, width=70)
<Array fmt='i12, hex', length=66, itemsize=12 bits, total data size=100 bytes> [
0 258 48 1029 96 1800 : 000 102 030 405 060 708
144 -1525 192 -754 241 17 : 090 a0b 0c0 d0e 0f1 011
289 788 337 1559 385 -1766 : 121 314 151 617 181 91a
433 -995 481 -224 530 547 : 1b1 c1d 1e1 f20 212 223
578 1318 626 -2007 674 -1236 : 242 526 272 829 2a2 b2c
722 -465 771 306 819 1077 : 2d2 e2f 303 132 333 435
867 1848 915 -1477 963 -706 : 363 738 393 a3b 3c3 d3e
1012 65 1060 836 1108 1607 : 3f4 041 424 344 454 647
1156 -1718 1204 -947 1252 -176 : 484 94a 4b4 c4d 4e4 f50
1301 595 1349 1366 1397 -1959 : 515 253 545 556 575 859
1445 -1188 1493 -417 1542 354 : 5a5 b5c 5d5 e5f 606 162
] + trailing_bits = 0x63
By default the output will have colours added in the terminal. This can be disabled - see :data:`bitstring.options.no_color` for more information.
.. method:: Array.reverse() -> None
Reverse the order of all items in the Array. ::
>>> a = Array('>L', [100, 200, 300])
>>> a.reverse()
>>> a
Array('>L', [300, 200, 100])
.. method:: Array.tobytes() -> bytes
Return Array data as bytes object, padding with zero bits at the end if needed. ::
>>> a = Array('i4', [3, -6, 2, -3, 2, -7])
>>> a.tobytes()
b':-)'
.. method:: Array.tofile(f: BinaryIO) -> None
Writes the Array data to the file object *f*, which should have been opened in binary write mode.
The data written will be padded at the end with between zero and seven ``0`` bits to make it byte aligned.
The file object remains open so the user must call `.close()` on it once they are finished.::
.. method:: Array.tolist() -> List[float | int | str | bytes]
Return Array items as a list.
Each packed element of the Array is converted to an ordinary Python object such as a ``float`` or an ``int`` depending on the Array's format, and returned in a Python list.
----
Special Methods
---------------
Type promotion
""""""""""""""
Many operations can be performed between two ``Array`` objects.
For these to be valid the dtypes of the ``Array`` objects must be numerical, that is they must represent an integer or floating point value.
Some operations have tighter restrictions, such as the shift operators ``<<`` and ``>>`` requiring integers only.
The dtype of the resulting ``Array`` is calculated by applying these rules:
**Rule 0**: For comparison operators (``<``, ``>=``, ``==``, ``!=`` etc.) the result is always an ``Array`` of dtype ``'bool'``.
For other operators, one of the two input ``Array`` dtypes is used as the output dtype by applying the remaining rules in order until a winner is found:
* **Rule 1**: Floating point types always win against integer types.
* **Rule 2**: Signed integer types always win against unsigned integer types.
* **Rule 3**: Longer types win against shorter types.
* **Rule 4**: In a tie the first type wins.
Some examples should help illustrate:
=========== ================ ============ ================ === ==================
**Rule 0** ``'uint8'`` ``<=`` ``'float64'`` → ``'bool'``
**Rule 1** ``'int32'`` ``+`` ``'float16'`` → ``'float16'``
**Rule 2** ``'uint20'`` ``//`` ``'int10'`` → ``'int10'``
**Rule 3** ``'int8'`` ``*`` ``'int16'`` → ``'int16'``
**Rule 4** ``'float16'`` ``-=`` ``'bfloat'`` → ``'float16'``
=========== ================ ============ ================ === ==================
Comparison operators
""""""""""""""""""""
Comparison operators can operate between two ``Array`` objects, or between an ``Array`` and a scalar quantity (usually a number).
Note that they always produce an ``Array`` of :attr:`~Array.dtype` ``'bool'``, including the equality and inequality operators.
To test the boolean equality of two Arrays use the :meth:`~Array.equals` method instead.
.. method:: Array.__eq__(self, other: int | float | str | BitsType | Array) -> Array
``a1 == a2``
.. method:: Array.__ne__(self, other: int | float | str | BitsType | Array) -> Array
``a1 != a2``
.. method:: Array.__lt__(self, other: int | float | Array) -> Array
``a1 < a2``
.. method:: Array.__le__(self, other: int | float | Array) -> Array
``a1 <= a2``
.. method:: Array.__gt__(self, other: int | float | Array) -> Array
``a1 > a2``
.. method:: Array.__ge__(self, other: int | float | Array) -> Array
``a1 >= a2``
Numerical operators
"""""""""""""""""""
.. method:: Array.__add__(other: int | float | Array) -> Array
``a + x``
.. method:: Array.__sub__(self, other: int | float | Array) -> Array
``a - x``
.. method:: Array.__mul__(self, other: int | float | Array) -> Array
``a * x``
.. method:: Array.__truediv__(self, other: int | float | Array) -> Array
``a / x``
.. method:: Array.__floordiv__(self, other: int | float | Array) -> Array
``a // x``
.. method:: Array.__rshift__(self, other: int | Array) -> Array
``a >> i``
.. method:: Array.__lshift__(self, other: int | Array) -> Array
``a << i``
.. method:: Array.__mod__(self, other: int | Array) -> Array
``a % i``
.. method:: Array.__neg__(self) -> Array
``-a``
.. method:: Array.__abs__(self) -> Array
``abs(a)``
Bitwise operators
"""""""""""""""""
.. method:: Array.__and__(self, other: Bits) -> Array
``a & bs``
>>> a &= '0b1110'
.. method:: Array.__or__(self, other: Bits) -> Array
``a | bs``
>>> a |= '0x7fff'
.. method:: Array.__xor__(self, other: Bits) -> Array
``a ^ bs``
>>> a ^= bytearray([56, 23])
Python language operators
"""""""""""""""""""""""""
.. method:: Array.__len__(self) -> int
``len(a)``
Return the number of elements in the Array. ::
>>> a = Array('uint20', [1, 2, 3])
>>> len(a)
3
>>> a.dtype = 'uint1'
>>> len(a)
60
.. method:: Array.__getitem__(self, key: int | slice) -> float | int | str | bytes | Array
``a[i]``
``a[start:end:step]``
.. method:: Array.__setitem__(self, key: int | slice, value) -> None
``a[i] = x``
``a[start:end:step] = x``
.. method:: Array.__delitem__(self, key: int | slice) -> None
``del a[i]``
``del[start:end:step]``
----
Properties
----------
.. attribute:: Array.data
:type: BitArray
The bit data of the ``Array``, as a ``BitArray``. Read and write, and can be freely manipulated with all ``BitArray`` methods.
Note that some ``Array`` methods such as :meth:`~Array.append` and :meth:`~Array.extend` require the :attr:`~Array.data` to have a length that is a multiple of the ``Array``'s :attr:`~Array.itemsize`.
.. attribute:: Array.dtype
:type: Dtype
The data type used to initialise the ``Array`` type. Read and write.
Changing the ``dtype`` for an already formed ``Array`` will cause all of the bit data to be reinterpreted and can change the length of the ``Array``.
However, changing the ``dtype`` won't change the underlying bit data in any way.
Note that some ``Array`` methods such as :meth:`~Array.append` and :meth:`~Array.extend` require the bit data to have a length that is a multiple of the ``Array``'s :attr:`~Array.itemsize`.
.. attribute:: Array.itemsize
:type: int
The size *in bits* of each item in the ``Array``. Read-only.
Note that this gives a value in bits, unlike the equivalent in the ``array`` module which gives a value in bytes. ::
>>> a = Array('>h')
>>> b = Array('bool')
>>> a.itemsize
16
>>> b.itemsize
1
.. attribute:: Array.trailing_bits
:type: BitArray
A ``BitArray`` object equal to the end of the ``data`` that is not a multiple of the ``itemsize``. Read only.
This will typically be an empty ``BitArray``, but if the ``dtype`` or the ``data`` of an ``Array`` object has been altered after its creation then there may be left-over bits at the end of the data.
Note that any methods that append items to the ``Array`` will fail with a ``ValueError`` if there are any trailing bits.
|