1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
#!/usr/bin/env python
"""
Example application for the 'blessed' Terminal library for python.
It is also an experiment in functional programming.
"""
# std imports
from random import randrange
from collections import namedtuple
# local
from blessed import Terminal
def echo(text):
"""Display ``text`` and flush output."""
print(text, end='', flush=True)
# a worm is a list of (y, x) segments Locations
Location = namedtuple('Point', ('y', 'x',))
# a nibble is a (x,y) Location and value
Nibble = namedtuple('Nibble', ('location', 'value'))
# A direction is a bearing, fe.
# y=0, x=-1 = move right
# y=1, x=0 = move down
Direction = namedtuple('Direction', ('y', 'x',))
# these functions return a new Location instance, given
# the direction indicated by their name.
LEFT = (0, -1)
RIGHT = (0, 1)
UP = (-1, 0)
DOWN = (1, 0)
def left_of(segment, term):
"""Return Location left-of given segment."""
# pylint: disable=unused-argument
# Unused argument 'term'
return Location(y=segment.y,
x=max(0, segment.x - 1))
def right_of(segment, term):
"""Return Location right-of given segment."""
return Location(y=segment.y,
x=min(term.width - 1, segment.x + 1))
def above(segment, term):
"""Return Location above given segment."""
# pylint: disable=unused-argument
# Unused argument 'term'
return Location(
y=max(0, segment.y - 1),
x=segment.x)
def below(segment, term):
"""Return Location below given segment."""
return Location(
y=min(term.height - 1, segment.y + 1),
x=segment.x)
def next_bearing(term, inp_code, bearing):
"""
Return direction function for new bearing by inp_code.
If no inp_code matches a bearing direction, return a function for the current bearing.
"""
return {
term.KEY_LEFT: left_of,
term.KEY_RIGHT: right_of,
term.KEY_UP: above,
term.KEY_DOWN: below,
}.get(inp_code,
# direction function given the current bearing
{LEFT: left_of,
RIGHT: right_of,
UP: above,
DOWN: below}[(bearing.y, bearing.x)])
def change_bearing(f_mov, segment, term):
"""Return new bearing given the movement f(x)."""
return Direction(
f_mov(segment, term).y - segment.y,
f_mov(segment, term).x - segment.x)
def bearing_flipped(dir1, dir2):
"""
Direction-flipped check.
Return true if dir2 travels in opposite direction of dir1.
"""
return (0, 0) == (dir1.y + dir2.y, dir1.x + dir2.x)
def hit_any(loc, segments):
"""Return True if `loc' matches any (y, x) coordinates within segments."""
# `segments' -- a list composing a worm.
return loc in segments
def hit_vany(locations, segments):
"""Return True if any locations are found within any segments."""
return any(hit_any(loc, segments)
for loc in locations)
def hit(src, dst):
"""Return True if segments are same position (hit detection)."""
return src.x == dst.x and src.y == dst.y
def next_wormlength(nibble, head, worm_length):
"""Return new worm_length if current nibble is hit."""
if hit(head, nibble.location):
return worm_length + nibble.value
return worm_length
def next_speed(nibble, head, speed, modifier):
"""Return new speed if current nibble is hit."""
return speed * modifier if hit(head, nibble.location) else speed
def head_glyph(direction):
"""Return character for worm head depending on horiz/vert orientation."""
return ':' if direction in (left_of, right_of) else '"'
def next_nibble(term, nibble, head, worm):
"""
Provide the next nibble.
continuously generate a random new nibble so long as the current nibble hits any location of the
worm. Otherwise, return a nibble of the same location and value as provided.
"""
loc, val = nibble.location, nibble.value
while hit_vany([head] + worm, nibble_locations(loc, val)):
loc = Location(x=randrange(1, term.width - 1),
y=randrange(1, term.height - 1))
val = nibble.value + 1
return Nibble(loc, val)
def nibble_locations(nibble_location, nibble_value):
"""Return array of locations for the current "nibble"."""
# generate an array of locations for the current nibble's location
# -- a digit such as '123' may be hit at 3 different (y, x) coordinates.
return [
Location(x=nibble_location.x + offset, y=nibble_location.y)
for offset in range(1 + len(f'{nibble_value}') - 1)
]
def main():
"""Program entry point."""
# pylint: disable=too-many-locals
# Too many local variables (20/15)
term = Terminal()
worm = [Location(x=term.width // 2, y=term.height // 2)]
worm_length = 2
bearing = Direction(*LEFT)
direction = left_of
nibble = Nibble(location=worm[0], value=0)
color_nibble = term.black_on_green
color_worm = term.yellow_reverse
color_head = term.red_reverse
color_bg = term.on_blue
echo(term.move_yx(1, 1))
echo(color_bg(term.clear))
# speed is actually a measure of time; the shorter, the faster.
speed = 0.1
modifier = 0.93
inp = None
echo(term.move_yx(term.height, 0))
with term.hidden_cursor(), term.cbreak(), term.location():
while inp not in ('q', 'Q'):
# delete the tail of the worm at worm_length
if len(worm) > worm_length:
echo(term.move_yx(*worm.pop(0)))
echo(color_bg(' '))
# compute head location
head = worm.pop()
# check for hit against self; hitting a wall results in the (y, x)
# location being clipped, -- and death by hitting self (not wall).
if hit_any(head, worm):
break
# get the next nibble, which may be equal to ours unless this
# nibble has been struck by any portion of our worm body.
n_nibble = next_nibble(term, nibble, head, worm)
# get the next worm_length and speed, unless unchanged.
worm_length = next_wormlength(nibble, head, worm_length)
speed = next_speed(nibble, head, speed, modifier)
if n_nibble != nibble:
# erase the old one, careful to redraw the nibble contents
# with a worm color for those portions that overlay.
for (yloc, xloc) in nibble_locations(*nibble):
echo(''.join((
term.move_yx(yloc, xloc),
(color_worm if (yloc, xloc) == head
else color_bg)(' '),
term.normal)))
# and draw the new,
echo(term.move_yx(*n_nibble.location) + (
color_nibble(f'{n_nibble.value}')))
# display new worm head
echo(term.move_yx(*head) + color_head(head_glyph(direction)))
# and its old head (now, a body piece)
if worm:
echo(term.move_yx(*(worm[-1])))
echo(color_worm(' '))
echo(term.move_yx(*head))
# wait for keyboard input, which may indicate
# a new direction (up/down/left/right)
inp = term.inkey(timeout=speed)
# discover new direction, given keyboard input and/or bearing.
nxt_direction = next_bearing(term, inp.code, bearing)
# discover new bearing, given new direction compared to prev
nxt_bearing = change_bearing(nxt_direction, head, term)
# disallow new bearing/direction when flipped: running into
# oneself, for example traveling left while traveling right.
if not bearing_flipped(bearing, nxt_bearing):
direction = nxt_direction
bearing = nxt_bearing
# append the prior `head' onto the worm, then
# a new `head' for the given direction.
worm.extend([head, direction(head, term)])
# re-assign new nibble,
nibble = n_nibble
echo(term.normal)
score = (worm_length - 1) * 100
echo(''.join((term.move_yx(term.height - 1, 1), term.normal)))
echo(''.join(('\r\n', f'score: {score}', '\r\n')))
if __name__ == '__main__':
main()
|