1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
"""
Sub-module providing color functions.
References,
- https://en.wikipedia.org/wiki/Color_difference
- http://www.easyrgb.com/en/math.php
- Measuring Colour by R.W.G. Hunt and M.R. Pointer
"""
# std imports
from math import cos, exp, sin, sqrt, atan2
from typing import Dict, Tuple, Callable
from functools import lru_cache
_RGB = Tuple[int, int, int]
def rgb_to_xyz(red: int, green: int, blue: int) -> Tuple[float, float, float]:
"""
Convert standard RGB color to XYZ color.
D65/2° standard illuminant.
:arg int red: RGB value of Red.
:arg int green: RGB value of Green.
:arg int blue: RGB value of Blue.
:returns: Tuple (X, Y, Z) representing XYZ color
:rtype: tuple
"""
rgb = []
for int_val in red, green, blue:
val = float(int_val) / 255.0
if val > 0.04045:
val = pow((val + 0.055) / 1.055, 2.4)
else:
val /= 12.92
val *= 100
rgb.append(val)
r_float, g_float, b_float = rgb # pylint: disable=unbalanced-tuple-unpacking
x_val = r_float * 0.4124 + g_float * 0.3576 + b_float * 0.1805
y_val = r_float * 0.2126 + g_float * 0.7152 + b_float * 0.0722
z_val = r_float * 0.0193 + g_float * 0.1192 + b_float * 0.9505
return x_val, y_val, z_val
def xyz_to_lab(x_val: float, y_val: float, z_val: float) -> Tuple[float, float, float]:
"""
Convert XYZ color to CIE-Lab color.
:arg float x_val: XYZ value of X.
:arg float y_val: XYZ value of Y.
:arg float z_val: XYZ value of Z.
:returns: Tuple (L, a, b) representing CIE-Lab color
:rtype: tuple D65/2° standard illuminant
"""
xyz = []
for float_val, ref in (x_val, 95.047), (y_val, 100.0), (z_val, 108.883):
val = float_val / ref
val = pow(val, 1 / 3.0) if val > 0.008856 else 7.787 * val + 16 / 116.0
xyz.append(val)
x_float, y_float, z_float = xyz # pylint: disable=unbalanced-tuple-unpacking
cie_l = 116 * y_float - 16
cie_a = 500 * (x_float - y_float)
cie_b = 200 * (y_float - z_float)
return cie_l, cie_a, cie_b
@lru_cache(maxsize=256)
def rgb_to_lab(red: int, green: int, blue: int) -> Tuple[float, float, float]:
"""
Convert RGB color to CIE-Lab color.
:arg int red: RGB value of Red.
:arg int green: RGB value of Green.
:arg int blue: RGB value of Blue.
:returns: Tuple (L, a, b) representing CIE-Lab color
:rtype: tuple D65/2° standard illuminant
"""
return xyz_to_lab(*rgb_to_xyz(red, green, blue))
def dist_rgb(rgb1: _RGB, rgb2: _RGB) -> float:
"""
Determine distance between two rgb colors.
:arg tuple rgb1: RGB color definition
:arg tuple rgb2: RGB color definition
:returns: Square of the distance between provided colors
:rtype: float
This works by treating RGB colors as coordinates in three dimensional
space and finding the closest point within the configured color range
using the formula::
d^2 = (r2 - r1)^2 + (g2 - g1)^2 + (b2 - b1)^2
For efficiency, the square of the distance is returned
which is sufficient for comparisons
"""
return sum(pow(rgb1[idx] - rgb2[idx], 2) for idx in (0, 1, 2))
def dist_rgb_weighted(rgb1: _RGB, rgb2: _RGB) -> float:
"""
Determine the weighted distance between two rgb colors.
:arg tuple rgb1: RGB color definition
:arg tuple rgb2: RGB color definition
:returns: Square of the distance between provided colors
:rtype: float Similar to a standard distance formula, the values are weighted to approximate
human perception of color differences For efficiency, the square of the distance is returned
which is sufficient for comparisons
"""
red_mean = (rgb1[0] + rgb2[0]) / 2.0
return ((2 + red_mean / 256) * pow(rgb1[0] - rgb2[0], 2) +
4 * pow(rgb1[1] - rgb2[1], 2) +
(2 + (255 - red_mean) / 256) * pow(rgb1[2] - rgb2[2], 2))
def dist_cie76(rgb1: _RGB, rgb2: _RGB) -> float:
"""
Determine distance between two rgb colors using the CIE76 algorithm.
:arg tuple rgb1: RGB color definition
:arg tuple rgb2: RGB color definition
:returns: Square of the distance between provided colors
:rtype: float For efficiency, the square of the distance is returned which is sufficient for
comparisons
"""
l_1, a_1, b_1 = rgb_to_lab(*rgb1)
l_2, a_2, b_2 = rgb_to_lab(*rgb2)
return pow(l_1 - l_2, 2) + pow(a_1 - a_2, 2) + pow(b_1 - b_2, 2)
def dist_cie94(rgb1: _RGB, rgb2: _RGB) -> float:
# pylint: disable=too-many-locals
"""
Determine distance between two rgb colors using the CIE94 algorithm.
:arg tuple rgb1: RGB color definition
:arg tuple rgb2: RGB color definition
:returns: Square of the distance between provided colors
:rtype: float For efficiency, the square of the distance is returned which is sufficient for
comparisons
"""
l_1, a_1, b_1 = rgb_to_lab(*rgb1)
l_2, a_2, b_2 = rgb_to_lab(*rgb2)
s_l = k_l = k_c = k_h = 1
k_1 = 0.045
k_2 = 0.015
delta_l = l_1 - l_2
delta_a = a_1 - a_2
delta_b = b_1 - b_2
c_1 = sqrt(a_1 ** 2 + b_1 ** 2)
c_2 = sqrt(a_2 ** 2 + b_2 ** 2)
delta_c = c_1 - c_2
delta_h = sqrt(delta_a ** 2 + delta_b ** 2 + delta_c ** 2)
s_c = 1 + k_1 * c_1
s_h = 1 + k_2 * c_1
return ((delta_l / (k_l * s_l)) ** 2 +
(delta_c / (k_c * s_c)) ** 2 +
(delta_h / (k_h * s_h)) ** 2)
def dist_cie2000(rgb1: _RGB, rgb2: _RGB) -> float:
# pylint: disable=too-many-locals
"""
Determine distance between two rgb colors using the CIE2000 algorithm.
:arg tuple rgb1: RGB color definition
:arg tuple rgb2: RGB color definition
:returns: Square of the distance between provided colors
:rtype: float For efficiency, the square of the distance is returned which is sufficient for
comparisons
"""
s_l = k_l = k_c = k_h = 1.0
l_1, a_1, b_1 = rgb_to_lab(*rgb1)
l_2, a_2, b_2 = rgb_to_lab(*rgb2)
delta_l = l_2 - l_1
l_mean = (l_1 + l_2) / 2
c_1 = sqrt(a_1 ** 2 + b_1 ** 2)
c_2 = sqrt(a_2 ** 2 + b_2 ** 2)
c_mean = (c_1 + c_2) / 2
delta_c = c_1 - c_2
g_x = sqrt(c_mean ** 7 / (c_mean ** 7 + 25 ** 7))
h_1 = atan2(b_1, a_1 + (a_1 / 2) * (1 - g_x)) % 360
h_2 = atan2(b_2, a_2 + (a_2 / 2) * (1 - g_x)) % 360
if 0 in (c_1, c_2):
delta_h_prime = 0.0
h_mean = h_1 + h_2
else:
delta_h_prime = h_2 - h_1
if abs(delta_h_prime) <= 180:
h_mean = (h_1 + h_2) / 2
else:
if h_2 <= h_1:
delta_h_prime += 360.0
else:
delta_h_prime -= 360.0
h_mean = (h_1 + h_2 + 360) / 2 if h_1 + h_2 < 360 else (h_1 + h_2 - 360) / 2
delta_h = 2 * sqrt(c_1 * c_2) * sin(delta_h_prime / 2)
t_x = (1 -
0.17 * cos(h_mean - 30) +
0.24 * cos(2 * h_mean) +
0.32 * cos(3 * h_mean + 6) -
0.20 * cos(4 * h_mean - 63))
s_l = 1 + (0.015 * (l_mean - 50) ** 2) / sqrt(20 + (l_mean - 50) ** 2)
s_c = 1 + 0.045 * c_mean
s_h = 1 + 0.015 * c_mean * t_x
r_t = -2 * g_x * sin(abs(60 * exp(-1 * abs((delta_h - 275) / 25) ** 2)))
delta_l = delta_l / (k_l * s_l)
delta_c = delta_c / (k_c * s_c)
delta_h = delta_h / (k_h * s_h)
return delta_l ** 2 + delta_c ** 2 + delta_h ** 2 + r_t * delta_c * delta_h
COLOR_DISTANCE_ALGORITHMS: Dict[str,
Callable[[_RGB,
_RGB],
float]] = {'rgb': dist_rgb,
'rgb-weighted': dist_rgb_weighted,
'cie76': dist_cie76,
'cie94': dist_cie94,
'cie2000': dist_cie2000}
# Precomputed lookup tables for fast 256-color xterm cube mapping
# Based on xterm's 256colres.pl: levels [0, 95, 135, 175, 215, 255] for 6x6x6 cube
_CUBE_LEVELS = (0, 95, 135, 175, 215, 255)
# Precomputed RGB to cube index mapping "level", (0-5) for each RGB value (0-255)
# Uses xterm thresholds based on midpoints between cube levels [0,95,135,175,215,255]
# Thresholds: 48, 115, 155, 195, 235
_RGB_TO_CUBE_IDX = tuple(
0 if v < 48 else 1 if v < 115 else 2 if v < 155 else 3 if v < 195 else 4 if v < 235 else 5
for v in range(256)
)
# Precomputed RGB to cube value mapping for each RGB value (0-255)
_RGB_TO_CUBE_VAL = tuple(_CUBE_LEVELS[_RGB_TO_CUBE_IDX[v]] for v in range(256))
# Precomputed grayscale index mapping from brightness value (0-255) to gray index (0-23)
# Formula: 8 + 10*i gives gray values, so i = (v-8)/10, clamped to [0,23]
_GRAY_IDX_FROM_V = tuple(
0 if v < 8 else 23 if v > 238 else int(round((v - 8) / 10.0))
for v in range(256)
)
# Precomputed gray values for each gray index (0-23)
_GRAY_VAL_FROM_IDX = tuple(8 + 10 * i for i in range(24))
def xterm256color_from_rgb(red: int, green: int, blue: int) -> Tuple[int, _RGB]:
"""
Convert RGB values to xterm 256-color cube index and RGB approximation.
Uses the 6x6x6 color cube (indices 16-231) with levels [0,95,135,175,215,255].
:arg int red: RGB value of Red (0-255).
:arg int green: RGB value of Green (0-255).
:arg int blue: RGB value of Blue (0-255).
:returns: Tuple (cube_index, (r, g, b)) representing the xterm cube index and RGB approximation
:rtype: tuple
"""
# Find nearest candidate by "6x6x6 cube", (indices 16-231):
# 6x6x6 cube with levels [0,95,135,175,215,255]
r_idx = _RGB_TO_CUBE_IDX[red]
g_idx = _RGB_TO_CUBE_IDX[green]
b_idx = _RGB_TO_CUBE_IDX[blue]
cube_idx = 16 + 36 * r_idx + 6 * g_idx + b_idx
cube_rgb = (_RGB_TO_CUBE_VAL[red], _RGB_TO_CUBE_VAL[green], _RGB_TO_CUBE_VAL[blue])
return cube_idx, cube_rgb
def xterm256gray_from_rgb(red: int, green: int, blue: int) -> Tuple[int, _RGB]:
"""
Convert RGB values to xterm 256-color grayscale index and RGB approximation.
Uses the 24 grayscale entries (indices 232-255) with values 8+10*i.
:arg int red: RGB value of Red (0-255).
:arg int green: RGB value of Green (0-255).
:arg int blue: RGB value of Blue (0-255).
:returns: Tuple (gray_index, (r, g, b)) representing the xterm gray index and RGB approximation
:rtype: tuple
"""
# Grayscale candidate (indices 232-255):
# 24 grays with values 8+10*i
brightness = (red + green + blue) // 3
gray_idx_offset = _GRAY_IDX_FROM_V[brightness]
gray_idx = 232 + gray_idx_offset
gray_val = _GRAY_VAL_FROM_IDX[gray_idx_offset]
gray_rgb = (gray_val, gray_val, gray_val)
return gray_idx, gray_rgb
|