File: threadpool.py

package info (click to toggle)
python-blosc 1.9.2%2Bds1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 440 kB
  • sloc: python: 827; ansic: 464; makefile: 227; sh: 3
file content (150 lines) | stat: -rw-r--r-- 5,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-
"""
threadpool.py
Created on Sun Oct 23 12:03:46 2016
@author: Robert A. Mcleod - robbmcleod@gmail.com

Compares running blosc with and without GIL release, and compares various
combinations of ThreadPool threads and blosc-threads for operating on large
chunks.  The target is an image stack [50,1024,1024], where each frame can
be compressed as a chunk.
"""

from __future__ import print_function
import numpy as np
import time
import blosc
from multiprocessing.pool import ThreadPool

nRuns = 5
dtype='int64'
m = 48
N = 2048
MegaBytes = m * N * N * np.dtype(dtype).itemsize / 2**20
maxThreads = blosc.nthreads

BLOCKSIZE = 2**18
CLEVEL = 4
SHUFFLE = blosc.SHUFFLE
COMPRESSOR = 'zstd'

def compressSlice( args ):
    """
    args = (numpy array address, array_size, item_size, bytesList, bytesIndex)
    """
    args[3][args[4]] = blosc.compress_ptr( args[0],  args[1], args[2], \
                       clevel=CLEVEL, shuffle=SHUFFLE, cname=COMPRESSOR )

def decompressSlice( J, list_bytes ):

    pass

def compressStack( imageStack, blosc_threads = 1, pool_threads=maxThreads ):
    """
    Does frame compression using a ThreadPool to distribute the load.
    """
    blosc.set_nthreads( blosc_threads )
    tPool = ThreadPool( pool_threads )

    num_slices = imageStack.shape[0]
    # Build parameters list for the threaded processeses, consisting of index
    tArgs = [None] * num_slices
    itemSize = imageStack.dtype.itemsize
    bytesList = [None] * num_slices
    for J in np.arange(num_slices):
        tArgs[J] = (imageStack[J,:,:].__array_interface__['data'][0], \
                    N*N, itemSize, bytesList, J)

    # All operations are done 'in-place'
    tPool.map( compressSlice, tArgs )
    tPool.close()
    tPool.join()

def decompressStack( imageShape, imageDtype, blosc_threads = 1, pool_threads=maxThreads ):
    blosc.set_nthreads( blosc_threads )
    tPool = ThreadPool( pool_threads )

    num_slices = imageShape[0]
    imageStack = np.full(imageShape, fill_value=0)


blosc.print_versions()
blosc.set_blocksize( BLOCKSIZE )
print("Creating NumPy stack with %d float32 elements:" %(m*N*N) )

stack = np.zeros( [m,N,N], dtype=dtype )
xmesh, ymesh = np.meshgrid( np.arange(-N/2,N/2), np.arange(-N/2,N/2) )
compress_mesh = (np.cos( xmesh ) + np.exp( -ymesh**2 / N )).astype(dtype)
for J in np.arange(m):
    stack[J,:,:] = compress_mesh


### Determine arrangement of pool threads and blosc threads
testCases = int( np.floor( np.log2( maxThreads )) + 1 )
powProduct = 2**np.arange(0,testCases)
poolThreads = np.hstack( [1, powProduct] )
bloscThreads = np.hstack( [1, powProduct[::-1]] )
# Let's try instead just pool threads...
#poolThreads = np.arange( 1, maxThreads+1 )
#bloscThreads = np.ones_like( poolThreads )

solo_times = np.zeros_like( poolThreads, dtype='float64' )
solo_unlocked_times = np.zeros_like( poolThreads, dtype='float64' )
locked_times = np.zeros_like( poolThreads, dtype='float64' )
unlocked_times = np.zeros_like( poolThreads, dtype='float64' )

for J in np.arange(nRuns):
    print( "Run  %d of %d" % (J+1, nRuns) )
    blosc.set_releasegil(False)
    for I in np.arange( len(poolThreads) ):
        t1 = time.time()
        blosc.set_nthreads( bloscThreads[I] )
        blosc.compress_ptr( stack.__array_interface__['data'][0], stack.size, stack.dtype.itemsize, \
                       clevel=CLEVEL, shuffle=SHUFFLE, cname=COMPRESSOR )
        solo_times[I] += time.time() - t1

    blosc.set_releasegil(True)
    for I in np.arange( len(poolThreads) ):
        t2 = time.time()
        blosc.set_nthreads( bloscThreads[I] )
        blosc.compress_ptr( stack.__array_interface__['data'][0], stack.size, stack.dtype.itemsize, \
                       clevel=CLEVEL, shuffle=SHUFFLE, cname=COMPRESSOR )
        solo_unlocked_times[I] += time.time() - t2

    blosc.set_releasegil(True)
    for I in np.arange( len(poolThreads) ):
        t3 = time.time()
        compressStack( stack, blosc_threads=bloscThreads[I], pool_threads=poolThreads[I] )
        unlocked_times[I] += time.time() - t3


    blosc.set_releasegil(False)
    for I in np.arange( len(poolThreads) ):
        t4 = time.time()
        compressStack( stack, blosc_threads=bloscThreads[I], pool_threads=poolThreads[I] )
        locked_times[I] += time.time() - t4

solo_times /= nRuns
solo_unlocked_times /= nRuns
locked_times /= nRuns
unlocked_times /=nRuns
print( "##### NO PYTHON THREADPOOL -- GIL LOCKED #####" )
print( " -- Baseline normal blosc operation --" )
for I in np.arange( len(poolThreads) ):
    print( "    Compressed %.2f MB with %d pool threads, %d blosc threads in: %f s" \
      % ( MegaBytes, 0, bloscThreads[I], solo_times[I]) )
print( "##### NO PYTHON THREADPOOL -- GIL RELEASED #####" )
print( " -- Shows penalty for releasing GIL in normal blosc operation --" )
for I in np.arange( len(poolThreads) ):
    print( "    Compressed %.2f MB with %d pool threads, %d blosc threads in: %f s" \
      % ( MegaBytes, 0, bloscThreads[I], solo_unlocked_times[I]) )
print( "##### GIL LOCKED w/ PYTHON THREADPOOL #####" )
print( " -- Shows that GIL stops ThreadPool from working --" )
for I in np.arange( len(poolThreads) ):
    print( "    Compressed %.2f MB with %d pool threads, %d blosc threads in: %f s" \
      % ( MegaBytes, poolThreads[I], bloscThreads[I], locked_times[I]) )
print( "##### GIL RELEASED w/ PYTHON THREADPOOL #####" )
print( " -- Shows scaling between Python multiprocessing.threadPool and blosc threads --" )
for I in np.arange( len(poolThreads) ):
    print( "    Compressed %.2f MB with %d pool threads, %d blosc threads in: %f s" \
      % ( MegaBytes, poolThreads[I], bloscThreads[I], unlocked_times[I]) )