File: users_guide.rst

package info (click to toggle)
python-boolean.py 4.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 300 kB
  • sloc: python: 2,024; makefile: 74; sh: 4
file content (264 lines) | stat: -rw-r--r-- 6,924 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
.. testsetup:: boolean

    from boolean import *

===========
User Guide
===========

This document provides an introduction on **boolean.py** usage. It
requires that you are already familiar with Python and know a little bit
about boolean algebra. All definitions and laws are stated in :doc:`concepts`.

.. contents::
    :depth: 2
    :backlinks: top

Introduction
------------

**boolean.py** implements a boolean algebra. It
defines two base elements, *TRUE* and *FALSE*, and a class :class:`Symbol` for variables.
Expressions are built by composing symbols and elements with AND, OR and NOT.
Other compositions like XOR and NAND are not implemented.


Installation
------------

.. code-block:: sh

   pip install boolean.py

Creating boolean expressions
----------------------------

There are three ways to create a boolean expression. They all start by creating
an algebra, then use algebra attributes and methods to build expressions.


You can build an expression from a string:

.. doctest:: boolean

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> algebra.parse('x & y')
    AND(Symbol('x'), Symbol('y'))

    >>> parse('(apple or banana and (orange or pineapple and (lemon or cherry)))')
    OR(Symbol('apple'), AND(Symbol('banana'), OR(Symbol('orange'), AND(Symbol('pineapple'), OR(Symbol('lemon'), Symbol('cherry'))))))


You can build an expression from a Python expression:

.. doctest:: boolean

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> x, y = algebra.symbols('x', 'y')
    >>> x & y
    AND(Symbol('x'), Symbol('y'))

You can build an expression by using the algebra functions:

.. doctest:: boolean

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> x, y = algebra.symbols('x', 'y')
    >>> TRUE, FALSE, NOT, AND, OR, symbol = algebra.definition()
    >>> expr = AND(x, y, NOT(OR(symbol('a'), symbol('b'))))
    >>> expr
    AND(Symbol('x'), Symbol('y'))
    >>> print(expr.pretty())

    >>> print(expr)


Evaluation of expressions
-------------------------

By default, an expression is not evaluated. You need to call the :meth:`simplify`
method explicitly an expression to perform some minimal
simplification to evaluate an expression:

.. doctest:: boolean

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> x, y = algebra.symbols('x', 'y')
    >>> print(x&~x)
    0
    >>> print(x|~x)
    1
    >>> print(x|x)
    x
    >>> print(x&x)
    x
    >>> print(x&(x|y))
    x
    >>> print((x&y) | (x&~y))
    x

When simplify() is called, the following boolean logic laws are used recursively on every sub-term of the expression:

* :ref:`associativity`
* :ref:`annihilator`
* :ref:`idempotence`
* :ref:`identity`
* :ref:`complementation`
* :ref:`elimination`
* :ref:`absorption`
* :ref:`negative-absorption`
* :ref:`commutativity` (for sorting)

Also double negations are canceled out (:ref:`double-negation`).

A simplified expression is return and may not be fully evaluated nor minimal:

.. doctest:: boolean

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> x, y, z = algebra.symbols('x', 'y', 'z')
    >>> print((((x|y)&z)|x&y).simplify())
    (x&y)|(z&(x|y))


Equality of expressions
-----------------------

The expressions equality is tested by the :meth:`__eq__` method and therefore 
the output of :math:`expr_1 == expr_2` is not the same as mathematical equality. 

Two expressions are equal if their structure and symbols are equal.


Equality of Symbols
^^^^^^^^^^^^^^^^^^^

Symbols are equal if they are the same or their associated objects are equal.

.. doctest:: boolean

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> x, y, z = algebra.symbols('x', 'y', 'z')
    >>> x == y
    False
    >>> x1, x2 = algebra.symbols("x", "x")
    >>> x1 == x2
    True
    >>> x1, x2 = algebra.symbols(10, 10)
    >>> x1 == x2
    True

Equality of structure
^^^^^^^^^^^^^^^^^^^^^

Here are some examples of equal and unequal structures:

.. doctest:: boolean

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> expr1 = algebra.parse("x|y")
    >>> expr2 = algebra.parse("y|x")
    >>> expr1 == expr2
    True
    >>> expr = algebra.parse("x|~x")
    >>> expr == TRUE
    False
    >>> expr1 = algebra.parse("x&(~x|y)")
    >>> expr2 = algebra.parse("x&y")
    >>> expr1 == expr2
    False


Analyzing a boolean expression
------------------------------

Getting sub-terms
^^^^^^^^^^^^^^^^^

All expressions have a property :attr:`args` which is a tuple of its terms.
For symbols and base elements this tuple is empty, for boolean functions it 
contains one or more symbols, elements or sub-expressions.
::

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> algebra.parse("x|y|z").args
    (Symbol('x'), Symbol('y'), Symbol('z'))

Getting all symbols
^^^^^^^^^^^^^^^^^^^

To get a set() of all unique symbols in an expression, use its :attr:`symbols` attribute ::

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> algebra.parse("x|y&(x|z)").symbols
    {Symbol('y'), Symbol('x'), Symbol('z')}

To get a list of all symbols in an expression, use its :attr:`get_symbols` method ::

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> algebra.parse("x|y&(x|z)").get_symbols()
    [Symbol('x'), Symbol('y'), Symbol('x'), Symbol('z')]


Literals
^^^^^^^^

Symbols and negations of symbols are called literals. You can test if an expression is a literal::

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> x, y, z = algebra.symbols('x', 'y', 'z')
    >>> x.isliteral
    True
    >>> (~x).isliteral
    True
    >>> (x|y).isliteral
    False

Or get a set() or list of all literals contained in an expression::

    >>> import boolean
    >>> algebra = boolean.BooleanAlgebra()
    >>> x, y, z = algebra.symbols('x', 'y', 'z')
    >>> x.literals
    {Symbol('x')}
    >>> (~(x|~y)).get_literals()
    [Symbol('x'), NOT(Symbol('y'))]

To remove negations except in literals use :meth:`literalize`::

    >>> (~(x|~y)).literalize()
    ~x&y


Substitutions
^^^^^^^^^^^^^

To substitute parts of an expression, use the :meth:`subs` method::

    >>> e = x|y&z
    >>> e.subs({y&z:y})
    x|y


Using boolean.py to define your own boolean algebra
---------------------------------------------------

You can customize about everything in boolean.py to create your own custom algebra:
1. You can subclass :class:`BooleanAlgebra` and override or extend the
:meth:`tokenize` and :meth:`parse` methods to parse custom expressions creating
your own mini expression language. See the tests for examples.

2. You can subclass the Symbol, NOT, AND and OR functions to add additional 
methods or for custom representations.
When doing so, you configure  :class:`BooleanAlgebra` instances by passing the custom sub-classes as agruments.