1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
========================
Concepts and Definitions
========================
In this document the basic definitions and important laws of Boolean algebra
are stated.
.. contents::
:depth: 2
:backlinks: top
Basic Definitions
-----------------
Boolean Algebra
^^^^^^^^^^^^^^^
This is the main entry point. An algebra is defined by the actual classes used
for its domain, functions and variables.
Boolean Domain
^^^^^^^^^^^^^^
S := {1, 0}
*These base elements are algebra-level singletons classes (only one instance of each per algebra instance),
called* :class:`TRUE` *and* :class:`FALSE`.
Boolean Variable
^^^^^^^^^^^^^^^^
A variable holds an object and its implicit value is TRUE.
*Implemented as class or subclasses of class* :class:`Symbol`.
Boolean Function
^^^^^^^^^^^^^^^^
A function :math:`f: S^n \rightarrow S` (where n is called the order).
*Implemented as class* :class:`Function`.
Boolean Expression
^^^^^^^^^^^^^^^^^^
Either a base element, a boolean variable or a boolean function.
*Implemented as class* :class:`Expression` *- this is the base class
for* :class:`BaseElement`, :class:`Symbol` *and* :class:`Function`.
NOT
^^^
A boolean function of order 1 with following truth table:
+---+--------+
| x | NOT(x) |
+===+========+
| 0 | 1 |
+---+--------+
| 1 | 0 |
+---+--------+
Instead of :math:`NOT(x)` one can write :math:`\sim x`.
*Implemented as class* :class:`NOT`.
AND
^^^
A boolean function of order 2 or more with the truth table for two
elements
+---+---+----------+
| x | y | AND(x,y) |
+===+===+==========+
| 0 | 0 | 0 |
+---+---+----------+
| 0 | 1 | 0 |
+---+---+----------+
| 1 | 0 | 0 |
+---+---+----------+
| 1 | 1 | 1 |
+---+---+----------+
and the property :math:`AND(x, y, z) = AND(x, AND(y, z))` where
:math:`x, y, z` are boolean variables.
Instead of :math:`AND(x, y, z)` one can write :math:`x \& y \& z`.
*Implemented as class* :class:`AND`.
OR
^^
A boolean function of order 2 or more with the truth table for two
elements
+---+---+---------+
| x | y | OR(x,y) |
+===+===+=========+
| 0 | 0 | 0 |
+---+---+---------+
| 0 | 1 | 1 |
+---+---+---------+
| 1 | 0 | 1 |
+---+---+---------+
| 1 | 1 | 1 |
+---+---+---------+
and the property :math:`OR(x, y, z) = OR(x, OR(y, z))` where
:math:`x, y, z` are boolean expressions.
Instead of :math:`OR(x, y, z)` one can write :math:`x|y|z`.
*Implemented as class* :class:`OR`.
Literal
^^^^^^^
A boolean variable, base element or its negation with NOT.
*Implemented indirectly as* :attr:`Expression.isliteral`,
:attr:`Expression.literals` *and* :meth:`Expression.literalize`.
Disjunctive normal form (DNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A disjunction of conjunctions of literals where the conjunctions don't
contain a boolean variable *and* it's negation. An example would be
:math:`x\&y | x\&z`.
*Implemented as* :attr:`BooleanAlgebra.dnf`.
Full disjunctive normal form (FDNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A DNF where all conjunctions have the same count of literals as the
whole DNF has boolean variables. An example would be
:math:`x\&y\&z | x\&y\&(\sim z) | x\&(\sim y)\&z`.
Conjunctive normal form (CNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A conjunction of disjunctions of literals where the disjunctions don't
contain a boolean variable *and* it's negation. An example would be
:math:`(x|y) \& (x|z)`.
*Implemented as* :attr:`BooleanAlgebra.cnf`.
Full conjunctive normal form (FCNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A CNF where all disjunctions have the same count of literals as the
whole CNF has boolean variables. An example would be:
:math:`(x|y|z) \& (x|y|(\sim z)) \& (x|(\sim y)|z)`.
Laws
----
In this section different laws are listed that are directly derived from the
definitions stated above.
In the following :math:`x, y, z` are boolean expressions.
.. _associativity:
Associativity
^^^^^^^^^^^^^
* :math:`x\&(y\&z) = (x\&y)\&z`
* :math:`x|(y|z) = (x|y)|z`
.. _commutativity:
Commutativity
^^^^^^^^^^^^^
* :math:`x\&y = y\&x`
* :math:`x|y = y|x`
.. _distributivity:
Distributivity
^^^^^^^^^^^^^^
* :math:`x\&(y|z) = x\&y | x\&z`
* :math:`x|y\&z = (x|y)\&(x|z)`
.. _identity:
Identity
^^^^^^^^
* :math:`x\&1 = x`
* :math:`x|0 = x`
.. _annihilator:
Annihilator
^^^^^^^^^^^
* :math:`x\&0 = 0`
* :math:`x|1 = 1`
.. _idempotence:
Idempotence
^^^^^^^^^^^
* :math:`x\&x = x`
* :math:`x|x = x`
.. _absorption:
Absorption
^^^^^^^^^^
* :math:`x\&(x|y) = x`
* :math:`x|(x\&y) = x`
.. _negative-absorption:
Negative absorption
^^^^^^^^^^^^^^^^^^^
* :math:`x\&((\sim x)|y) = x\&y`
* :math:`x|(\sim x)\&y = x|y`
.. _complementation:
Complementation
^^^^^^^^^^^^^^^
* :math:`x\&(\sim x) = 0`
* :math:`x|(\sim x) = 1`
.. _double-negation:
Double negation
^^^^^^^^^^^^^^^
* :math:`\sim (\sim x) = x`
.. _de-morgan:
De Morgan
^^^^^^^^^
* :math:`\sim (x\&y) = (\sim x) | (\sim y)`
* :math:`\sim (x|y) = (\sim x) \& (\sim y)`
.. _elimination:
Elimination
^^^^^^^^^^^
* :math:`x\&y | x\&(\sim y) = x`
* :math:`(x|y) \& (x|(\sim y)) = x`
|