File: concepts.rst

package info (click to toggle)
python-boolean.py 5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 308 kB
  • sloc: python: 2,081; makefile: 13; sh: 4
file content (281 lines) | stat: -rw-r--r-- 5,090 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
========================
Concepts and Definitions
========================

In this document the basic definitions and important laws of Boolean algebra
are stated.

.. contents::
    :depth: 2
    :backlinks: top

Basic Definitions
-----------------

Boolean Algebra
^^^^^^^^^^^^^^^

This is the main entry point. An algebra is defined by the actual classes used
for its domain, functions and variables.


Boolean Domain
^^^^^^^^^^^^^^

S := {1, 0}

*These base elements are algebra-level singletons classes (only one instance of each per algebra instance),
called* :class:`TRUE` *and* :class:`FALSE`.


Boolean Variable
^^^^^^^^^^^^^^^^

A variable holds an object and its implicit value is TRUE.

*Implemented as class or subclasses of class* :class:`Symbol`.


Boolean Function
^^^^^^^^^^^^^^^^

A function :math:`f: S^n \rightarrow S` (where n is called the order).

*Implemented as class* :class:`Function`.


Boolean Expression
^^^^^^^^^^^^^^^^^^

Either a base element, a boolean variable or a boolean function.

*Implemented as class* :class:`Expression` *- this is the base class
for* :class:`BaseElement`, :class:`Symbol` *and* :class:`Function`.

NOT
^^^

A boolean function of order 1 with following truth table:

+---+--------+
| x | NOT(x) |
+===+========+
| 0 |   1    |
+---+--------+
| 1 |   0    |
+---+--------+

Instead of :math:`NOT(x)` one can write :math:`\sim x`.

*Implemented as class* :class:`NOT`.


AND
^^^

A boolean function of order 2 or more with the truth table for two
elements

+---+---+----------+
| x | y | AND(x,y) |
+===+===+==========+
| 0 | 0 |    0     |
+---+---+----------+
| 0 | 1 |    0     |
+---+---+----------+
| 1 | 0 |    0     |
+---+---+----------+
| 1 | 1 |    1     |
+---+---+----------+

and the property :math:`AND(x, y, z) = AND(x, AND(y, z))` where
:math:`x, y, z` are boolean variables.

Instead of :math:`AND(x, y, z)` one can write :math:`x \& y \& z`.

*Implemented as class* :class:`AND`.


OR
^^

A boolean function of order 2 or more with the truth table for two
elements

+---+---+---------+
| x | y | OR(x,y) |
+===+===+=========+
| 0 | 0 |    0    |
+---+---+---------+
| 0 | 1 |    1    |
+---+---+---------+
| 1 | 0 |    1    |
+---+---+---------+
| 1 | 1 |    1    |
+---+---+---------+

and the property :math:`OR(x, y, z) = OR(x, OR(y, z))` where
:math:`x, y, z` are boolean expressions.

Instead of :math:`OR(x, y, z)` one can write :math:`x|y|z`.

*Implemented as class* :class:`OR`.


Literal
^^^^^^^

A boolean variable, base element or its negation with NOT.

*Implemented indirectly as* :attr:`Expression.isliteral`,
:attr:`Expression.literals` *and* :meth:`Expression.literalize`.

Disjunctive normal form (DNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A disjunction of conjunctions of literals where the conjunctions don't
contain a boolean variable *and* it's negation. An example would be
:math:`x\&y | x\&z`.

*Implemented as* :attr:`BooleanAlgebra.dnf`.


Full disjunctive normal form (FDNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A DNF where all conjunctions have the same count of literals as the
whole DNF has boolean variables. An example would be
:math:`x\&y\&z | x\&y\&(\sim z) | x\&(\sim y)\&z`.


Conjunctive normal form (CNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A conjunction of disjunctions of literals where the disjunctions don't
contain a boolean variable *and* it's negation. An example would be
:math:`(x|y) \& (x|z)`.

*Implemented as* :attr:`BooleanAlgebra.cnf`.


Full conjunctive normal form (FCNF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A CNF where all disjunctions have the same count of literals as the
whole CNF has boolean variables. An example would be:
:math:`(x|y|z) \& (x|y|(\sim z)) \& (x|(\sim y)|z)`.


Laws
----

In this section different laws are listed that are directly derived from the
definitions stated above.

In the following :math:`x, y, z` are boolean expressions.

.. _associativity:

Associativity
^^^^^^^^^^^^^

* :math:`x\&(y\&z) = (x\&y)\&z`
* :math:`x|(y|z) = (x|y)|z`


.. _commutativity:

Commutativity
^^^^^^^^^^^^^

* :math:`x\&y = y\&x`
* :math:`x|y = y|x`


.. _distributivity:

Distributivity
^^^^^^^^^^^^^^

* :math:`x\&(y|z) = x\&y | x\&z`
* :math:`x|y\&z = (x|y)\&(x|z)`


.. _identity:

Identity
^^^^^^^^

* :math:`x\&1 = x`
* :math:`x|0 = x`


.. _annihilator:

Annihilator
^^^^^^^^^^^

* :math:`x\&0 = 0`
* :math:`x|1 = 1`


.. _idempotence:

Idempotence
^^^^^^^^^^^

* :math:`x\&x = x`
* :math:`x|x = x`


.. _absorption:

Absorption
^^^^^^^^^^

* :math:`x\&(x|y) = x`
* :math:`x|(x\&y) = x`


.. _negative-absorption:

Negative absorption
^^^^^^^^^^^^^^^^^^^

* :math:`x\&((\sim x)|y) = x\&y`
* :math:`x|(\sim x)\&y = x|y`


.. _complementation:

Complementation
^^^^^^^^^^^^^^^

* :math:`x\&(\sim x) = 0`
* :math:`x|(\sim x) = 1`


.. _double-negation:

Double negation
^^^^^^^^^^^^^^^

* :math:`\sim (\sim x) = x`


.. _de-morgan:

De Morgan
^^^^^^^^^

* :math:`\sim (x\&y) = (\sim x) | (\sim y)`
* :math:`\sim (x|y) = (\sim x) \& (\sim y)`


.. _elimination:

Elimination
^^^^^^^^^^^

* :math:`x\&y | x\&(\sim y) = x`
* :math:`(x|y) \& (x|(\sim y)) = x`