1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
|
# Copyright (c) 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish, dis-
# tribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the fol-
# lowing conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
# ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
# SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
import boto
from boto.compat import json, urlsplit
from boto.connection import AWSQueryConnection
from boto.regioninfo import RegionInfo
from boto.exception import JSONResponseError
from boto.machinelearning import exceptions
class MachineLearningConnection(AWSQueryConnection):
"""
Definition of the public APIs exposed by Amazon Machine Learning
"""
APIVersion = "2014-12-12"
AuthServiceName = 'machinelearning'
DefaultRegionName = "us-east-1"
DefaultRegionEndpoint = "machinelearning.us-east-1.amazonaws.com"
ServiceName = "MachineLearning"
TargetPrefix = "AmazonML_20141212"
ResponseError = JSONResponseError
_faults = {
"InternalServerException": exceptions.InternalServerException,
"LimitExceededException": exceptions.LimitExceededException,
"ResourceNotFoundException": exceptions.ResourceNotFoundException,
"IdempotentParameterMismatchException": exceptions.IdempotentParameterMismatchException,
"PredictorNotMountedException": exceptions.PredictorNotMountedException,
"InvalidInputException": exceptions.InvalidInputException,
}
def __init__(self, **kwargs):
region = kwargs.pop('region', None)
if not region:
region = RegionInfo(self, self.DefaultRegionName,
self.DefaultRegionEndpoint)
if 'host' not in kwargs or kwargs['host'] is None:
kwargs['host'] = region.endpoint
super(MachineLearningConnection, self).__init__(**kwargs)
self.region = region
self.auth_region_name = self.region.name
def _required_auth_capability(self):
return ['hmac-v4']
def create_batch_prediction(self, batch_prediction_id, ml_model_id,
batch_prediction_data_source_id, output_uri,
batch_prediction_name=None):
"""
Generates predictions for a group of observations. The
observations to process exist in one or more data files
referenced by a `DataSource`. This operation creates a new
`BatchPrediction`, and uses an `MLModel` and the data files
referenced by the `DataSource` as information sources.
`CreateBatchPrediction` is an asynchronous operation. In
response to `CreateBatchPrediction`, Amazon Machine Learning
(Amazon ML) immediately returns and sets the `BatchPrediction`
status to `PENDING`. After the `BatchPrediction` completes,
Amazon ML sets the status to `COMPLETED`.
You can poll for status updates by using the
GetBatchPrediction operation and checking the `Status`
parameter of the result. After the `COMPLETED` status appears,
the results are available in the location specified by the
`OutputUri` parameter.
:type batch_prediction_id: string
:param batch_prediction_id: A user-supplied ID that uniquely identifies
the `BatchPrediction`.
:type batch_prediction_name: string
:param batch_prediction_name: A user-supplied name or description of
the `BatchPrediction`. `BatchPredictionName` can only use the UTF-8
character set.
:type ml_model_id: string
:param ml_model_id: The ID of the `MLModel` that will generate
predictions for the group of observations.
:type batch_prediction_data_source_id: string
:param batch_prediction_data_source_id: The ID of the `DataSource` that
points to the group of observations to predict.
:type output_uri: string
:param output_uri: The location of an Amazon Simple Storage Service
(Amazon S3) bucket or directory to store the batch prediction
results. The following substrings are not allowed in the s3 key
portion of the "outputURI" field: ':', '//', '/./', '/../'.
Amazon ML needs permissions to store and retrieve the logs on your
behalf. For information about how to set permissions, see the
`Amazon Machine Learning Developer Guide`_.
"""
params = {
'BatchPredictionId': batch_prediction_id,
'MLModelId': ml_model_id,
'BatchPredictionDataSourceId': batch_prediction_data_source_id,
'OutputUri': output_uri,
}
if batch_prediction_name is not None:
params['BatchPredictionName'] = batch_prediction_name
return self.make_request(action='CreateBatchPrediction',
body=json.dumps(params))
def create_data_source_from_rds(self, data_source_id, rds_data, role_arn,
data_source_name=None,
compute_statistics=None):
"""
Creates a `DataSource` object from an ` Amazon Relational
Database Service`_ (Amazon RDS). A `DataSource` references
data that can be used to perform CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
`CreateDataSourceFromRDS` is an asynchronous operation. In
response to `CreateDataSourceFromRDS`, Amazon Machine Learning
(Amazon ML) immediately returns and sets the `DataSource`
status to `PENDING`. After the `DataSource` is created and
ready for use, Amazon ML sets the `Status` parameter to
`COMPLETED`. `DataSource` in `COMPLETED` or `PENDING` status
can only be used to perform CreateMLModel, CreateEvaluation,
or CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
`Status` parameter to `FAILED` and includes an error message
in the `Message` attribute of the GetDataSource operation
response.
:type data_source_id: string
:param data_source_id: A user-supplied ID that uniquely identifies the
`DataSource`. Typically, an Amazon Resource Number (ARN) becomes
the ID for a `DataSource`.
:type data_source_name: string
:param data_source_name: A user-supplied name or description of the
`DataSource`.
:type rds_data: dict
:param rds_data:
The data specification of an Amazon RDS `DataSource`:
+ DatabaseInformation -
+ `DatabaseName ` - Name of the Amazon RDS database.
+ ` InstanceIdentifier ` - Unique identifier for the Amazon RDS
database instance.
+ DatabaseCredentials - AWS Identity and Access Management (IAM)
credentials that are used to connect to the Amazon RDS database.
+ ResourceRole - Role (DataPipelineDefaultResourceRole) assumed by an
Amazon Elastic Compute Cloud (EC2) instance to carry out the copy
task from Amazon RDS to Amazon S3. For more information, see `Role
templates`_ for data pipelines.
+ ServiceRole - Role (DataPipelineDefaultRole) assumed by the AWS Data
Pipeline service to monitor the progress of the copy task from
Amazon RDS to Amazon Simple Storage Service (S3). For more
information, see `Role templates`_ for data pipelines.
+ SecurityInfo - Security information to use to access an Amazon RDS
instance. You need to set up appropriate ingress rules for the
security entity IDs provided to allow access to the Amazon RDS
instance. Specify a [ `SubnetId`, `SecurityGroupIds`] pair for a
VPC-based Amazon RDS instance.
+ SelectSqlQuery - Query that is used to retrieve the observation data
for the `Datasource`.
+ S3StagingLocation - Amazon S3 location for staging RDS data. The data
retrieved from Amazon RDS using `SelectSqlQuery` is stored in this
location.
+ DataSchemaUri - Amazon S3 location of the `DataSchema`.
+ DataSchema - A JSON string representing the schema. This is not
required if `DataSchemaUri` is specified.
+ DataRearrangement - A JSON string representing the splitting
requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some-
random-seed\",
\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"`
:type role_arn: string
:param role_arn: The role that Amazon ML assumes on behalf of the user
to create and activate a data pipeline in the users account and
copy data (using the `SelectSqlQuery`) query from Amazon RDS to
Amazon S3.
:type compute_statistics: boolean
:param compute_statistics: The compute statistics for a `DataSource`.
The statistics are generated from the observation data referenced
by a `DataSource`. Amazon ML uses the statistics internally during
an `MLModel` training. This parameter must be set to `True` if the
``DataSource `` needs to be used for `MLModel` training.
"""
params = {
'DataSourceId': data_source_id,
'RDSData': rds_data,
'RoleARN': role_arn,
}
if data_source_name is not None:
params['DataSourceName'] = data_source_name
if compute_statistics is not None:
params['ComputeStatistics'] = compute_statistics
return self.make_request(action='CreateDataSourceFromRDS',
body=json.dumps(params))
def create_data_source_from_redshift(self, data_source_id, data_spec,
role_arn, data_source_name=None,
compute_statistics=None):
"""
Creates a `DataSource` from `Amazon Redshift`_. A `DataSource`
references data that can be used to perform either
CreateMLModel, CreateEvaluation or CreateBatchPrediction
operations.
`CreateDataSourceFromRedshift` is an asynchronous operation.
In response to `CreateDataSourceFromRedshift`, Amazon Machine
Learning (Amazon ML) immediately returns and sets the
`DataSource` status to `PENDING`. After the `DataSource` is
created and ready for use, Amazon ML sets the `Status`
parameter to `COMPLETED`. `DataSource` in `COMPLETED` or
`PENDING` status can only be used to perform CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
`Status` parameter to `FAILED` and includes an error message
in the `Message` attribute of the GetDataSource operation
response.
The observations should exist in the database hosted on an
Amazon Redshift cluster and should be specified by a
`SelectSqlQuery`. Amazon ML executes ` Unload`_ command in
Amazon Redshift to transfer the result set of `SelectSqlQuery`
to `S3StagingLocation.`
After the `DataSource` is created, it's ready for use in
evaluations and batch predictions. If you plan to use the
`DataSource` to train an `MLModel`, the `DataSource` requires
another item -- a recipe. A recipe describes the observation
variables that participate in training an `MLModel`. A recipe
describes how each input variable will be used in training.
Will the variable be included or excluded from training? Will
the variable be manipulated, for example, combined with
another variable or split apart into word combinations? The
recipe provides answers to these questions. For more
information, see the Amazon Machine Learning Developer Guide.
:type data_source_id: string
:param data_source_id: A user-supplied ID that uniquely identifies the
`DataSource`.
:type data_source_name: string
:param data_source_name: A user-supplied name or description of the
`DataSource`.
:type data_spec: dict
:param data_spec:
The data specification of an Amazon Redshift `DataSource`:
+ DatabaseInformation -
+ `DatabaseName ` - Name of the Amazon Redshift database.
+ ` ClusterIdentifier ` - Unique ID for the Amazon Redshift cluster.
+ DatabaseCredentials - AWS Identity abd Access Management (IAM)
credentials that are used to connect to the Amazon Redshift
database.
+ SelectSqlQuery - Query that is used to retrieve the observation data
for the `Datasource`.
+ S3StagingLocation - Amazon Simple Storage Service (Amazon S3)
location for staging Amazon Redshift data. The data retrieved from
Amazon Relational Database Service (Amazon RDS) using
`SelectSqlQuery` is stored in this location.
+ DataSchemaUri - Amazon S3 location of the `DataSchema`.
+ DataSchema - A JSON string representing the schema. This is not
required if `DataSchemaUri` is specified.
+ DataRearrangement - A JSON string representing the splitting
requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some-
random-seed\",
\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"`
:type role_arn: string
:param role_arn: A fully specified role Amazon Resource Name (ARN).
Amazon ML assumes the role on behalf of the user to create the
following:
+ A security group to allow Amazon ML to execute the `SelectSqlQuery`
query on an Amazon Redshift cluster
+ An Amazon S3 bucket policy to grant Amazon ML read/write permissions
on the `S3StagingLocation`
:type compute_statistics: boolean
:param compute_statistics: The compute statistics for a `DataSource`.
The statistics are generated from the observation data referenced
by a `DataSource`. Amazon ML uses the statistics internally during
`MLModel` training. This parameter must be set to `True` if the
``DataSource `` needs to be used for `MLModel` training
"""
params = {
'DataSourceId': data_source_id,
'DataSpec': data_spec,
'RoleARN': role_arn,
}
if data_source_name is not None:
params['DataSourceName'] = data_source_name
if compute_statistics is not None:
params['ComputeStatistics'] = compute_statistics
return self.make_request(action='CreateDataSourceFromRedshift',
body=json.dumps(params))
def create_data_source_from_s3(self, data_source_id, data_spec,
data_source_name=None,
compute_statistics=None):
"""
Creates a `DataSource` object. A `DataSource` references data
that can be used to perform CreateMLModel, CreateEvaluation,
or CreateBatchPrediction operations.
`CreateDataSourceFromS3` is an asynchronous operation. In
response to `CreateDataSourceFromS3`, Amazon Machine Learning
(Amazon ML) immediately returns and sets the `DataSource`
status to `PENDING`. After the `DataSource` is created and
ready for use, Amazon ML sets the `Status` parameter to
`COMPLETED`. `DataSource` in `COMPLETED` or `PENDING` status
can only be used to perform CreateMLModel, CreateEvaluation or
CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
`Status` parameter to `FAILED` and includes an error message
in the `Message` attribute of the GetDataSource operation
response.
The observation data used in a `DataSource` should be ready to
use; that is, it should have a consistent structure, and
missing data values should be kept to a minimum. The
observation data must reside in one or more CSV files in an
Amazon Simple Storage Service (Amazon S3) bucket, along with a
schema that describes the data items by name and type. The
same schema must be used for all of the data files referenced
by the `DataSource`.
After the `DataSource` has been created, it's ready to use in
evaluations and batch predictions. If you plan to use the
`DataSource` to train an `MLModel`, the `DataSource` requires
another item: a recipe. A recipe describes the observation
variables that participate in training an `MLModel`. A recipe
describes how each input variable will be used in training.
Will the variable be included or excluded from training? Will
the variable be manipulated, for example, combined with
another variable, or split apart into word combinations? The
recipe provides answers to these questions. For more
information, see the `Amazon Machine Learning Developer
Guide`_.
:type data_source_id: string
:param data_source_id: A user-supplied identifier that uniquely
identifies the `DataSource`.
:type data_source_name: string
:param data_source_name: A user-supplied name or description of the
`DataSource`.
:type data_spec: dict
:param data_spec:
The data specification of a `DataSource`:
+ DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location
of the observation data.
+ DataSchemaLocationS3 - Amazon S3 location of the `DataSchema`.
+ DataSchema - A JSON string representing the schema. This is not
required if `DataSchemaUri` is specified.
+ DataRearrangement - A JSON string representing the splitting
requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some-
random-seed\",
\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"`
:type compute_statistics: boolean
:param compute_statistics: The compute statistics for a `DataSource`.
The statistics are generated from the observation data referenced
by a `DataSource`. Amazon ML uses the statistics internally during
an `MLModel` training. This parameter must be set to `True` if the
``DataSource `` needs to be used for `MLModel` training
"""
params = {
'DataSourceId': data_source_id,
'DataSpec': data_spec,
}
if data_source_name is not None:
params['DataSourceName'] = data_source_name
if compute_statistics is not None:
params['ComputeStatistics'] = compute_statistics
return self.make_request(action='CreateDataSourceFromS3',
body=json.dumps(params))
def create_evaluation(self, evaluation_id, ml_model_id,
evaluation_data_source_id, evaluation_name=None):
"""
Creates a new `Evaluation` of an `MLModel`. An `MLModel` is
evaluated on a set of observations associated to a
`DataSource`. Like a `DataSource` for an `MLModel`, the
`DataSource` for an `Evaluation` contains values for the
Target Variable. The `Evaluation` compares the predicted
result for each observation to the actual outcome and provides
a summary so that you know how effective the `MLModel`
functions on the test data. Evaluation generates a relevant
performance metric such as BinaryAUC, RegressionRMSE or
MulticlassAvgFScore based on the corresponding `MLModelType`:
`BINARY`, `REGRESSION` or `MULTICLASS`.
`CreateEvaluation` is an asynchronous operation. In response
to `CreateEvaluation`, Amazon Machine Learning (Amazon ML)
immediately returns and sets the evaluation status to
`PENDING`. After the `Evaluation` is created and ready for
use, Amazon ML sets the status to `COMPLETED`.
You can use the GetEvaluation operation to check progress of
the evaluation during the creation operation.
:type evaluation_id: string
:param evaluation_id: A user-supplied ID that uniquely identifies the
`Evaluation`.
:type evaluation_name: string
:param evaluation_name: A user-supplied name or description of the
`Evaluation`.
:type ml_model_id: string
:param ml_model_id: The ID of the `MLModel` to evaluate.
The schema used in creating the `MLModel` must match the schema of the
`DataSource` used in the `Evaluation`.
:type evaluation_data_source_id: string
:param evaluation_data_source_id: The ID of the `DataSource` for the
evaluation. The schema of the `DataSource` must match the schema
used to create the `MLModel`.
"""
params = {
'EvaluationId': evaluation_id,
'MLModelId': ml_model_id,
'EvaluationDataSourceId': evaluation_data_source_id,
}
if evaluation_name is not None:
params['EvaluationName'] = evaluation_name
return self.make_request(action='CreateEvaluation',
body=json.dumps(params))
def create_ml_model(self, ml_model_id, ml_model_type,
training_data_source_id, ml_model_name=None,
parameters=None, recipe=None, recipe_uri=None):
"""
Creates a new `MLModel` using the data files and the recipe as
information sources.
An `MLModel` is nearly immutable. Users can only update the
`MLModelName` and the `ScoreThreshold` in an `MLModel` without
creating a new `MLModel`.
`CreateMLModel` is an asynchronous operation. In response to
`CreateMLModel`, Amazon Machine Learning (Amazon ML)
immediately returns and sets the `MLModel` status to
`PENDING`. After the `MLModel` is created and ready for use,
Amazon ML sets the status to `COMPLETED`.
You can use the GetMLModel operation to check progress of the
`MLModel` during the creation operation.
CreateMLModel requires a `DataSource` with computed
statistics, which can be created by setting
`ComputeStatistics` to `True` in CreateDataSourceFromRDS,
CreateDataSourceFromS3, or CreateDataSourceFromRedshift
operations.
:type ml_model_id: string
:param ml_model_id: A user-supplied ID that uniquely identifies the
`MLModel`.
:type ml_model_name: string
:param ml_model_name: A user-supplied name or description of the
`MLModel`.
:type ml_model_type: string
:param ml_model_type: The category of supervised learning that this
`MLModel` will address. Choose from the following types:
+ Choose `REGRESSION` if the `MLModel` will be used to predict a
numeric value.
+ Choose `BINARY` if the `MLModel` result has two possible values.
+ Choose `MULTICLASS` if the `MLModel` result has a limited number of
values.
For more information, see the `Amazon Machine Learning Developer
Guide`_.
:type parameters: map
:param parameters:
A list of the training parameters in the `MLModel`. The list is
implemented as a map of key/value pairs.
The following is the current set of training parameters:
+ `sgd.l1RegularizationAmount` - Coefficient regularization L1 norm. It
controls overfitting the data by penalizing large coefficients.
This tends to drive coefficients to zero, resulting in sparse
feature set. If you use this parameter, start by specifying a small
value such as 1.0E-08. The value is a double that ranges from 0 to
MAX_DOUBLE. The default is not to use L1 normalization. The
parameter cannot be used when `L2` is specified. Use this parameter
sparingly.
+ `sgd.l2RegularizationAmount` - Coefficient regularization L2 norm. It
controls overfitting the data by penalizing large coefficients.
This tends to drive coefficients to small, nonzero values. If you
use this parameter, start by specifying a small value such as
1.0E-08. The valuseis a double that ranges from 0 to MAX_DOUBLE.
The default is not to use L2 normalization. This cannot be used
when `L1` is specified. Use this parameter sparingly.
+ `sgd.maxPasses` - Number of times that the training process traverses
the observations to build the `MLModel`. The value is an integer
that ranges from 1 to 10000. The default value is 10.
+ `sgd.maxMLModelSizeInBytes` - Maximum allowed size of the model.
Depending on the input data, the size of the model might affect its
performance. The value is an integer that ranges from 100000 to
2147483648. The default value is 33554432.
:type training_data_source_id: string
:param training_data_source_id: The `DataSource` that points to the
training data.
:type recipe: string
:param recipe: The data recipe for creating `MLModel`. You must specify
either the recipe or its URI. If you dont specify a recipe or its
URI, Amazon ML creates a default.
:type recipe_uri: string
:param recipe_uri: The Amazon Simple Storage Service (Amazon S3)
location and file name that contains the `MLModel` recipe. You must
specify either the recipe or its URI. If you dont specify a recipe
or its URI, Amazon ML creates a default.
"""
params = {
'MLModelId': ml_model_id,
'MLModelType': ml_model_type,
'TrainingDataSourceId': training_data_source_id,
}
if ml_model_name is not None:
params['MLModelName'] = ml_model_name
if parameters is not None:
params['Parameters'] = parameters
if recipe is not None:
params['Recipe'] = recipe
if recipe_uri is not None:
params['RecipeUri'] = recipe_uri
return self.make_request(action='CreateMLModel',
body=json.dumps(params))
def create_realtime_endpoint(self, ml_model_id):
"""
Creates a real-time endpoint for the `MLModel`. The endpoint
contains the URI of the `MLModel`; that is, the location to
send real-time prediction requests for the specified
`MLModel`.
:type ml_model_id: string
:param ml_model_id: The ID assigned to the `MLModel` during creation.
"""
params = {'MLModelId': ml_model_id, }
return self.make_request(action='CreateRealtimeEndpoint',
body=json.dumps(params))
def delete_batch_prediction(self, batch_prediction_id):
"""
Assigns the DELETED status to a `BatchPrediction`, rendering
it unusable.
After using the `DeleteBatchPrediction` operation, you can use
the GetBatchPrediction operation to verify that the status of
the `BatchPrediction` changed to DELETED.
The result of the `DeleteBatchPrediction` operation is
irreversible.
:type batch_prediction_id: string
:param batch_prediction_id: A user-supplied ID that uniquely identifies
the `BatchPrediction`.
"""
params = {'BatchPredictionId': batch_prediction_id, }
return self.make_request(action='DeleteBatchPrediction',
body=json.dumps(params))
def delete_data_source(self, data_source_id):
"""
Assigns the DELETED status to a `DataSource`, rendering it
unusable.
After using the `DeleteDataSource` operation, you can use the
GetDataSource operation to verify that the status of the
`DataSource` changed to DELETED.
The results of the `DeleteDataSource` operation are
irreversible.
:type data_source_id: string
:param data_source_id: A user-supplied ID that uniquely identifies the
`DataSource`.
"""
params = {'DataSourceId': data_source_id, }
return self.make_request(action='DeleteDataSource',
body=json.dumps(params))
def delete_evaluation(self, evaluation_id):
"""
Assigns the `DELETED` status to an `Evaluation`, rendering it
unusable.
After invoking the `DeleteEvaluation` operation, you can use
the GetEvaluation operation to verify that the status of the
`Evaluation` changed to `DELETED`.
The results of the `DeleteEvaluation` operation are
irreversible.
:type evaluation_id: string
:param evaluation_id: A user-supplied ID that uniquely identifies the
`Evaluation` to delete.
"""
params = {'EvaluationId': evaluation_id, }
return self.make_request(action='DeleteEvaluation',
body=json.dumps(params))
def delete_ml_model(self, ml_model_id):
"""
Assigns the DELETED status to an `MLModel`, rendering it
unusable.
After using the `DeleteMLModel` operation, you can use the
GetMLModel operation to verify that the status of the
`MLModel` changed to DELETED.
The result of the `DeleteMLModel` operation is irreversible.
:type ml_model_id: string
:param ml_model_id: A user-supplied ID that uniquely identifies the
`MLModel`.
"""
params = {'MLModelId': ml_model_id, }
return self.make_request(action='DeleteMLModel',
body=json.dumps(params))
def delete_realtime_endpoint(self, ml_model_id):
"""
Deletes a real time endpoint of an `MLModel`.
:type ml_model_id: string
:param ml_model_id: The ID assigned to the `MLModel` during creation.
"""
params = {'MLModelId': ml_model_id, }
return self.make_request(action='DeleteRealtimeEndpoint',
body=json.dumps(params))
def describe_batch_predictions(self, filter_variable=None, eq=None,
gt=None, lt=None, ge=None, le=None,
ne=None, prefix=None, sort_order=None,
next_token=None, limit=None):
"""
Returns a list of `BatchPrediction` operations that match the
search criteria in the request.
:type filter_variable: string
:param filter_variable:
Use one of the following variables to filter a list of
`BatchPrediction`:
+ `CreatedAt` - Sets the search criteria to the `BatchPrediction`
creation date.
+ `Status` - Sets the search criteria to the `BatchPrediction` status.
+ `Name` - Sets the search criteria to the contents of the
`BatchPrediction` ** ** `Name`.
+ `IAMUser` - Sets the search criteria to the user account that invoked
the `BatchPrediction` creation.
+ `MLModelId` - Sets the search criteria to the `MLModel` used in the
`BatchPrediction`.
+ `DataSourceId` - Sets the search criteria to the `DataSource` used in
the `BatchPrediction`.
+ `DataURI` - Sets the search criteria to the data file(s) used in the
`BatchPrediction`. The URL can identify either a file or an Amazon
Simple Storage Solution (Amazon S3) bucket or directory.
:type eq: string
:param eq: The equal to operator. The `BatchPrediction` results will
have `FilterVariable` values that exactly match the value specified
with `EQ`.
:type gt: string
:param gt: The greater than operator. The `BatchPrediction` results
will have `FilterVariable` values that are greater than the value
specified with `GT`.
:type lt: string
:param lt: The less than operator. The `BatchPrediction` results will
have `FilterVariable` values that are less than the value specified
with `LT`.
:type ge: string
:param ge: The greater than or equal to operator. The `BatchPrediction`
results will have `FilterVariable` values that are greater than or
equal to the value specified with `GE`.
:type le: string
:param le: The less than or equal to operator. The `BatchPrediction`
results will have `FilterVariable` values that are less than or
equal to the value specified with `LE`.
:type ne: string
:param ne: The not equal to operator. The `BatchPrediction` results
will have `FilterVariable` values not equal to the value specified
with `NE`.
:type prefix: string
:param prefix:
A string that is found at the beginning of a variable, such as `Name`
or `Id`.
For example, a `Batch Prediction` operation could have the `Name`
`2014-09-09-HolidayGiftMailer`. To search for this
`BatchPrediction`, select `Name` for the `FilterVariable` and any
of the following strings for the `Prefix`:
+ 2014-09
+ 2014-09-09
+ 2014-09-09-Holiday
:type sort_order: string
:param sort_order: A two-value parameter that determines the sequence
of the resulting list of `MLModel`s.
+ `asc` - Arranges the list in ascending order (A-Z, 0-9).
+ `dsc` - Arranges the list in descending order (Z-A, 9-0).
Results are sorted by `FilterVariable`.
:type next_token: string
:param next_token: An ID of the page in the paginated results.
:type limit: integer
:param limit: The number of pages of information to include in the
result. The range of acceptable values is 1 through 100. The
default value is 100.
"""
params = {}
if filter_variable is not None:
params['FilterVariable'] = filter_variable
if eq is not None:
params['EQ'] = eq
if gt is not None:
params['GT'] = gt
if lt is not None:
params['LT'] = lt
if ge is not None:
params['GE'] = ge
if le is not None:
params['LE'] = le
if ne is not None:
params['NE'] = ne
if prefix is not None:
params['Prefix'] = prefix
if sort_order is not None:
params['SortOrder'] = sort_order
if next_token is not None:
params['NextToken'] = next_token
if limit is not None:
params['Limit'] = limit
return self.make_request(action='DescribeBatchPredictions',
body=json.dumps(params))
def describe_data_sources(self, filter_variable=None, eq=None, gt=None,
lt=None, ge=None, le=None, ne=None,
prefix=None, sort_order=None, next_token=None,
limit=None):
"""
Returns a list of `DataSource` that match the search criteria
in the request.
:type filter_variable: string
:param filter_variable:
Use one of the following variables to filter a list of `DataSource`:
+ `CreatedAt` - Sets the search criteria to `DataSource` creation
dates.
+ `Status` - Sets the search criteria to `DataSource` statuses.
+ `Name` - Sets the search criteria to the contents of `DataSource` **
** `Name`.
+ `DataUri` - Sets the search criteria to the URI of data files used to
create the `DataSource`. The URI can identify either a file or an
Amazon Simple Storage Service (Amazon S3) bucket or directory.
+ `IAMUser` - Sets the search criteria to the user account that invoked
the `DataSource` creation.
:type eq: string
:param eq: The equal to operator. The `DataSource` results will have
`FilterVariable` values that exactly match the value specified with
`EQ`.
:type gt: string
:param gt: The greater than operator. The `DataSource` results will
have `FilterVariable` values that are greater than the value
specified with `GT`.
:type lt: string
:param lt: The less than operator. The `DataSource` results will have
`FilterVariable` values that are less than the value specified with
`LT`.
:type ge: string
:param ge: The greater than or equal to operator. The `DataSource`
results will have `FilterVariable` values that are greater than or
equal to the value specified with `GE`.
:type le: string
:param le: The less than or equal to operator. The `DataSource` results
will have `FilterVariable` values that are less than or equal to
the value specified with `LE`.
:type ne: string
:param ne: The not equal to operator. The `DataSource` results will
have `FilterVariable` values not equal to the value specified with
`NE`.
:type prefix: string
:param prefix:
A string that is found at the beginning of a variable, such as `Name`
or `Id`.
For example, a `DataSource` could have the `Name`
`2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
select `Name` for the `FilterVariable` and any of the following
strings for the `Prefix`:
+ 2014-09
+ 2014-09-09
+ 2014-09-09-Holiday
:type sort_order: string
:param sort_order: A two-value parameter that determines the sequence
of the resulting list of `DataSource`.
+ `asc` - Arranges the list in ascending order (A-Z, 0-9).
+ `dsc` - Arranges the list in descending order (Z-A, 9-0).
Results are sorted by `FilterVariable`.
:type next_token: string
:param next_token: The ID of the page in the paginated results.
:type limit: integer
:param limit: The maximum number of `DataSource` to include in the
result.
"""
params = {}
if filter_variable is not None:
params['FilterVariable'] = filter_variable
if eq is not None:
params['EQ'] = eq
if gt is not None:
params['GT'] = gt
if lt is not None:
params['LT'] = lt
if ge is not None:
params['GE'] = ge
if le is not None:
params['LE'] = le
if ne is not None:
params['NE'] = ne
if prefix is not None:
params['Prefix'] = prefix
if sort_order is not None:
params['SortOrder'] = sort_order
if next_token is not None:
params['NextToken'] = next_token
if limit is not None:
params['Limit'] = limit
return self.make_request(action='DescribeDataSources',
body=json.dumps(params))
def describe_evaluations(self, filter_variable=None, eq=None, gt=None,
lt=None, ge=None, le=None, ne=None, prefix=None,
sort_order=None, next_token=None, limit=None):
"""
Returns a list of `DescribeEvaluations` that match the search
criteria in the request.
:type filter_variable: string
:param filter_variable:
Use one of the following variable to filter a list of `Evaluation`
objects:
+ `CreatedAt` - Sets the search criteria to the `Evaluation` creation
date.
+ `Status` - Sets the search criteria to the `Evaluation` status.
+ `Name` - Sets the search criteria to the contents of `Evaluation` **
** `Name`.
+ `IAMUser` - Sets the search criteria to the user account that invoked
an `Evaluation`.
+ `MLModelId` - Sets the search criteria to the `MLModel` that was
evaluated.
+ `DataSourceId` - Sets the search criteria to the `DataSource` used in
`Evaluation`.
+ `DataUri` - Sets the search criteria to the data file(s) used in
`Evaluation`. The URL can identify either a file or an Amazon
Simple Storage Solution (Amazon S3) bucket or directory.
:type eq: string
:param eq: The equal to operator. The `Evaluation` results will have
`FilterVariable` values that exactly match the value specified with
`EQ`.
:type gt: string
:param gt: The greater than operator. The `Evaluation` results will
have `FilterVariable` values that are greater than the value
specified with `GT`.
:type lt: string
:param lt: The less than operator. The `Evaluation` results will have
`FilterVariable` values that are less than the value specified with
`LT`.
:type ge: string
:param ge: The greater than or equal to operator. The `Evaluation`
results will have `FilterVariable` values that are greater than or
equal to the value specified with `GE`.
:type le: string
:param le: The less than or equal to operator. The `Evaluation` results
will have `FilterVariable` values that are less than or equal to
the value specified with `LE`.
:type ne: string
:param ne: The not equal to operator. The `Evaluation` results will
have `FilterVariable` values not equal to the value specified with
`NE`.
:type prefix: string
:param prefix:
A string that is found at the beginning of a variable, such as `Name`
or `Id`.
For example, an `Evaluation` could have the `Name`
`2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
select `Name` for the `FilterVariable` and any of the following
strings for the `Prefix`:
+ 2014-09
+ 2014-09-09
+ 2014-09-09-Holiday
:type sort_order: string
:param sort_order: A two-value parameter that determines the sequence
of the resulting list of `Evaluation`.
+ `asc` - Arranges the list in ascending order (A-Z, 0-9).
+ `dsc` - Arranges the list in descending order (Z-A, 9-0).
Results are sorted by `FilterVariable`.
:type next_token: string
:param next_token: The ID of the page in the paginated results.
:type limit: integer
:param limit: The maximum number of `Evaluation` to include in the
result.
"""
params = {}
if filter_variable is not None:
params['FilterVariable'] = filter_variable
if eq is not None:
params['EQ'] = eq
if gt is not None:
params['GT'] = gt
if lt is not None:
params['LT'] = lt
if ge is not None:
params['GE'] = ge
if le is not None:
params['LE'] = le
if ne is not None:
params['NE'] = ne
if prefix is not None:
params['Prefix'] = prefix
if sort_order is not None:
params['SortOrder'] = sort_order
if next_token is not None:
params['NextToken'] = next_token
if limit is not None:
params['Limit'] = limit
return self.make_request(action='DescribeEvaluations',
body=json.dumps(params))
def describe_ml_models(self, filter_variable=None, eq=None, gt=None,
lt=None, ge=None, le=None, ne=None, prefix=None,
sort_order=None, next_token=None, limit=None):
"""
Returns a list of `MLModel` that match the search criteria in
the request.
:type filter_variable: string
:param filter_variable:
Use one of the following variables to filter a list of `MLModel`:
+ `CreatedAt` - Sets the search criteria to `MLModel` creation date.
+ `Status` - Sets the search criteria to `MLModel` status.
+ `Name` - Sets the search criteria to the contents of `MLModel` ** **
`Name`.
+ `IAMUser` - Sets the search criteria to the user account that invoked
the `MLModel` creation.
+ `TrainingDataSourceId` - Sets the search criteria to the `DataSource`
used to train one or more `MLModel`.
+ `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel`
real-time endpoint status.
+ `MLModelType` - Sets the search criteria to `MLModel` type: binary,
regression, or multi-class.
+ `Algorithm` - Sets the search criteria to the algorithm that the
`MLModel` uses.
+ `TrainingDataURI` - Sets the search criteria to the data file(s) used
in training a `MLModel`. The URL can identify either a file or an
Amazon Simple Storage Service (Amazon S3) bucket or directory.
:type eq: string
:param eq: The equal to operator. The `MLModel` results will have
`FilterVariable` values that exactly match the value specified with
`EQ`.
:type gt: string
:param gt: The greater than operator. The `MLModel` results will have
`FilterVariable` values that are greater than the value specified
with `GT`.
:type lt: string
:param lt: The less than operator. The `MLModel` results will have
`FilterVariable` values that are less than the value specified with
`LT`.
:type ge: string
:param ge: The greater than or equal to operator. The `MLModel` results
will have `FilterVariable` values that are greater than or equal to
the value specified with `GE`.
:type le: string
:param le: The less than or equal to operator. The `MLModel` results
will have `FilterVariable` values that are less than or equal to
the value specified with `LE`.
:type ne: string
:param ne: The not equal to operator. The `MLModel` results will have
`FilterVariable` values not equal to the value specified with `NE`.
:type prefix: string
:param prefix:
A string that is found at the beginning of a variable, such as `Name`
or `Id`.
For example, an `MLModel` could have the `Name`
`2014-09-09-HolidayGiftMailer`. To search for this `MLModel`,
select `Name` for the `FilterVariable` and any of the following
strings for the `Prefix`:
+ 2014-09
+ 2014-09-09
+ 2014-09-09-Holiday
:type sort_order: string
:param sort_order: A two-value parameter that determines the sequence
of the resulting list of `MLModel`.
+ `asc` - Arranges the list in ascending order (A-Z, 0-9).
+ `dsc` - Arranges the list in descending order (Z-A, 9-0).
Results are sorted by `FilterVariable`.
:type next_token: string
:param next_token: The ID of the page in the paginated results.
:type limit: integer
:param limit: The number of pages of information to include in the
result. The range of acceptable values is 1 through 100. The
default value is 100.
"""
params = {}
if filter_variable is not None:
params['FilterVariable'] = filter_variable
if eq is not None:
params['EQ'] = eq
if gt is not None:
params['GT'] = gt
if lt is not None:
params['LT'] = lt
if ge is not None:
params['GE'] = ge
if le is not None:
params['LE'] = le
if ne is not None:
params['NE'] = ne
if prefix is not None:
params['Prefix'] = prefix
if sort_order is not None:
params['SortOrder'] = sort_order
if next_token is not None:
params['NextToken'] = next_token
if limit is not None:
params['Limit'] = limit
return self.make_request(action='DescribeMLModels',
body=json.dumps(params))
def get_batch_prediction(self, batch_prediction_id):
"""
Returns a `BatchPrediction` that includes detailed metadata,
status, and data file information for a `Batch Prediction`
request.
:type batch_prediction_id: string
:param batch_prediction_id: An ID assigned to the `BatchPrediction` at
creation.
"""
params = {'BatchPredictionId': batch_prediction_id, }
return self.make_request(action='GetBatchPrediction',
body=json.dumps(params))
def get_data_source(self, data_source_id, verbose=None):
"""
Returns a `DataSource` that includes metadata and data file
information, as well as the current status of the
`DataSource`.
`GetDataSource` provides results in normal or verbose format.
The verbose format adds the schema description and the list of
files pointed to by the DataSource to the normal format.
:type data_source_id: string
:param data_source_id: The ID assigned to the `DataSource` at creation.
:type verbose: boolean
:param verbose: Specifies whether the `GetDataSource` operation should
return `DataSourceSchema`.
If true, `DataSourceSchema` is returned.
If false, `DataSourceSchema` is not returned.
"""
params = {'DataSourceId': data_source_id, }
if verbose is not None:
params['Verbose'] = verbose
return self.make_request(action='GetDataSource',
body=json.dumps(params))
def get_evaluation(self, evaluation_id):
"""
Returns an `Evaluation` that includes metadata as well as the
current status of the `Evaluation`.
:type evaluation_id: string
:param evaluation_id: The ID of the `Evaluation` to retrieve. The
evaluation of each `MLModel` is recorded and cataloged. The ID
provides the means to access the information.
"""
params = {'EvaluationId': evaluation_id, }
return self.make_request(action='GetEvaluation',
body=json.dumps(params))
def get_ml_model(self, ml_model_id, verbose=None):
"""
Returns an `MLModel` that includes detailed metadata, and data
source information as well as the current status of the
`MLModel`.
`GetMLModel` provides results in normal or verbose format.
:type ml_model_id: string
:param ml_model_id: The ID assigned to the `MLModel` at creation.
:type verbose: boolean
:param verbose: Specifies whether the `GetMLModel` operation should
return `Recipe`.
If true, `Recipe` is returned.
If false, `Recipe` is not returned.
"""
params = {'MLModelId': ml_model_id, }
if verbose is not None:
params['Verbose'] = verbose
return self.make_request(action='GetMLModel',
body=json.dumps(params))
def predict(self, ml_model_id, record, predict_endpoint):
"""
Generates a prediction for the observation using the specified
`MLModel`.
Not all response parameters will be populated because this is
dependent on the type of requested model.
:type ml_model_id: string
:param ml_model_id: A unique identifier of the `MLModel`.
:type record: map
:param record: A map of variable name-value pairs that represent an
observation.
:type predict_endpoint: string
:param predict_endpoint: The endpoint to send the predict request to.
"""
predict_host = urlsplit(predict_endpoint).hostname
if predict_host is None:
predict_host = predict_endpoint
params = {
'MLModelId': ml_model_id,
'Record': record,
'PredictEndpoint': predict_host,
}
return self.make_request(action='Predict',
body=json.dumps(params),
host=predict_host)
def update_batch_prediction(self, batch_prediction_id,
batch_prediction_name):
"""
Updates the `BatchPredictionName` of a `BatchPrediction`.
You can use the GetBatchPrediction operation to view the
contents of the updated data element.
:type batch_prediction_id: string
:param batch_prediction_id: The ID assigned to the `BatchPrediction`
during creation.
:type batch_prediction_name: string
:param batch_prediction_name: A new user-supplied name or description
of the `BatchPrediction`.
"""
params = {
'BatchPredictionId': batch_prediction_id,
'BatchPredictionName': batch_prediction_name,
}
return self.make_request(action='UpdateBatchPrediction',
body=json.dumps(params))
def update_data_source(self, data_source_id, data_source_name):
"""
Updates the `DataSourceName` of a `DataSource`.
You can use the GetDataSource operation to view the contents
of the updated data element.
:type data_source_id: string
:param data_source_id: The ID assigned to the `DataSource` during
creation.
:type data_source_name: string
:param data_source_name: A new user-supplied name or description of the
`DataSource` that will replace the current description.
"""
params = {
'DataSourceId': data_source_id,
'DataSourceName': data_source_name,
}
return self.make_request(action='UpdateDataSource',
body=json.dumps(params))
def update_evaluation(self, evaluation_id, evaluation_name):
"""
Updates the `EvaluationName` of an `Evaluation`.
You can use the GetEvaluation operation to view the contents
of the updated data element.
:type evaluation_id: string
:param evaluation_id: The ID assigned to the `Evaluation` during
creation.
:type evaluation_name: string
:param evaluation_name: A new user-supplied name or description of the
`Evaluation` that will replace the current content.
"""
params = {
'EvaluationId': evaluation_id,
'EvaluationName': evaluation_name,
}
return self.make_request(action='UpdateEvaluation',
body=json.dumps(params))
def update_ml_model(self, ml_model_id, ml_model_name=None,
score_threshold=None):
"""
Updates the `MLModelName` and the `ScoreThreshold` of an
`MLModel`.
You can use the GetMLModel operation to view the contents of
the updated data element.
:type ml_model_id: string
:param ml_model_id: The ID assigned to the `MLModel` during creation.
:type ml_model_name: string
:param ml_model_name: A user-supplied name or description of the
`MLModel`.
:type score_threshold: float
:param score_threshold: The `ScoreThreshold` used in binary
classification `MLModel` that marks the boundary between a positive
prediction and a negative prediction.
Output values greater than or equal to the `ScoreThreshold` receive a
positive result from the `MLModel`, such as `True`. Output values
less than the `ScoreThreshold` receive a negative response from the
`MLModel`, such as `False`.
"""
params = {'MLModelId': ml_model_id, }
if ml_model_name is not None:
params['MLModelName'] = ml_model_name
if score_threshold is not None:
params['ScoreThreshold'] = score_threshold
return self.make_request(action='UpdateMLModel',
body=json.dumps(params))
def make_request(self, action, body, host=None):
headers = {
'X-Amz-Target': '%s.%s' % (self.TargetPrefix, action),
'Host': self.region.endpoint,
'Content-Type': 'application/x-amz-json-1.1',
'Content-Length': str(len(body)),
}
http_request_kwargs = {
'method':'POST', 'path':'/', 'auth_path':'/', 'params':{},
'headers': headers, 'data':body
}
if host is not None:
headers['Host'] = host
http_request_kwargs['host'] = host
http_request = self.build_base_http_request(**http_request_kwargs)
response = self._mexe(http_request, sender=None,
override_num_retries=10)
response_body = response.read().decode('utf-8')
boto.log.debug(response_body)
if response.status == 200:
if response_body:
return json.loads(response_body)
else:
json_body = json.loads(response_body)
fault_name = json_body.get('__type', None)
exception_class = self._faults.get(fault_name, self.ResponseError)
raise exception_class(response.status, response.reason,
body=json_body)
|