1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
.. _dynamodb_guide:
Amazon DynamoDB
================
By following this guide, you will learn how to use the
:py:class:`DynamoDB.ServiceResource` and :py:class:`DynamoDB.Table`
resources in order to create tables, write items to tables, modify existing
items, retrieve items, and query/filter the items in the table.
Creating a new table
--------------------
In order to create a new table, use the
:py:meth:`DynamoDB.ServiceResource.create_table` method::
import boto3
# Get the service resource.
dynamodb = boto3.resource('dynamodb')
# Create the DynamoDB table.
table = dynamodb.create_table(
TableName='users',
KeySchema=[
{
'AttributeName': 'username',
'KeyType': 'HASH'
},
{
'AttributeName': 'last_name',
'KeyType': 'RANGE'
}
],
AttributeDefinitions=[
{
'AttributeName': 'username',
'AttributeType': 'S'
},
{
'AttributeName': 'last_name',
'AttributeType': 'S'
},
],
ProvisionedThroughput={
'ReadCapacityUnits': 5,
'WriteCapacityUnits': 5
}
)
# Wait until the table exists.
table.wait_until_exists()
# Print out some data about the table.
print(table.item_count)
Expected output::
0
This creates a table named ``users`` that respectively has the hash and
range primary keys ``username`` and ``last_name``.
This method will return a :py:class:`DynamoDB.Table` resource to call
additional methods on the created table.
Using an existing table
-----------------------
It is also possible to create a :py:class:`DynamoDB.Table` resource from
an existing table::
import boto3
# Get the service resource.
dynamodb = boto3.resource('dynamodb')
# Instantiate a table resource object without actually
# creating a DynamoDB table. Note that the attributes of this table
# are lazy-loaded: a request is not made nor are the attribute
# values populated until the attributes
# on the table resource are accessed or its load() method is called.
table = dynamodb.Table('users')
# Print out some data about the table.
# This will cause a request to be made to DynamoDB and its attribute
# values will be set based on the response.
print(table.creation_date_time)
Expected output (Please note that the actual times will probably not match up)::
2015-06-26 12:42:45.149000-07:00
Creating a new item
-------------------
Once you have a :py:class:`DynamoDB.Table` resource you can add new items
to the table using :py:meth:`DynamoDB.Table.put_item`::
table.put_item(
Item={
'username': 'janedoe',
'first_name': 'Jane',
'last_name': 'Doe',
'age': 25,
'account_type': 'standard_user',
}
)
For all of the valid types that can be used for an item, refer to
:ref:`ref_valid_dynamodb_types`.
Getting an item
---------------
You can then retrieve the object using :py:meth:`DynamoDB.Table.get_item`::
response = table.get_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
}
)
item = response['Item']
print(item)
Expected output::
{u'username': u'janedoe',
u'first_name': u'Jane',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25')}
Updating an item
----------------
You can then update attributes of the item in the table::
table.update_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
},
UpdateExpression='SET age = :val1',
ExpressionAttributeValues={
':val1': 26
}
)
Then if you retrieve the item again, it will be updated appropriately::
response = table.get_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
}
)
item = response['Item']
print(item)
Expected output::
{u'username': u'janedoe',
u'first_name': u'Jane',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('26')}
Deleting an item
----------------
You can also delete the item using :py:meth:`DynamoDB.Table.delete_item`::
table.delete_item(
Key={
'username': 'janedoe',
'last_name': 'Doe'
}
)
Batch writing
-------------
If you are loading a lot of data at a time, you can make use of
:py:meth:`DynamoDB.Table.batch_writer` so you can both speed up the process and
reduce the number of write requests made to the service.
This method returns a handle to a batch writer object that will automatically
handle buffering and sending items in batches. In addition, the
batch writer will also automatically handle any unprocessed items and
resend them as needed. All you need to do is call ``put_item`` for any
items you want to add, and ``delete_item`` for any items you want to delete::
with table.batch_writer() as batch:
batch.put_item(
Item={
'account_type': 'standard_user',
'username': 'johndoe',
'first_name': 'John',
'last_name': 'Doe',
'age': 25,
'address': {
'road': '1 Jefferson Street',
'city': 'Los Angeles',
'state': 'CA',
'zipcode': 90001
}
}
)
batch.put_item(
Item={
'account_type': 'super_user',
'username': 'janedoering',
'first_name': 'Jane',
'last_name': 'Doering',
'age': 40,
'address': {
'road': '2 Washington Avenue',
'city': 'Seattle',
'state': 'WA',
'zipcode': 98109
}
}
)
batch.put_item(
Item={
'account_type': 'standard_user',
'username': 'bobsmith',
'first_name': 'Bob',
'last_name': 'Smith',
'age': 18,
'address': {
'road': '3 Madison Lane',
'city': 'Louisville',
'state': 'KY',
'zipcode': 40213
}
}
)
batch.put_item(
Item={
'account_type': 'super_user',
'username': 'alicedoe',
'first_name': 'Alice',
'last_name': 'Doe',
'age': 27,
'address': {
'road': '1 Jefferson Street',
'city': 'Los Angeles',
'state': 'CA',
'zipcode': 90001
}
}
)
The batch writer is even able to handle a very large amount of writes to the
table.
::
with table.batch_writer() as batch:
for i in range(50):
batch.put_item(
Item={
'account_type': 'anonymous',
'username': 'user' + str(i),
'first_name': 'unknown',
'last_name': 'unknown'
}
)
The batch writer can help to de-duplicate request by specifying ``overwrite_by_pkeys=['partition_key', 'sort_key']``
if you want to bypass no duplication limitation of single batch write request as
``botocore.exceptions.ClientError: An error occurred (ValidationException) when calling the BatchWriteItem operation: Provided list of item keys contains duplicates``.
It will drop request items in the buffer if their primary keys(composite) values are
the same as newly added one, as eventually consistent with streams of individual
put/delete operations on the same item.
::
with table.batch_writer(overwrite_by_pkeys=['partition_key', 'sort_key']) as batch:
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's1',
'other': '111',
}
)
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's1',
'other': '222',
}
)
batch.delete_item(
Key={
'partition_key': 'p1',
'sort_key': 's2'
}
)
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's2',
'other': '444',
}
)
after de-duplicate:
::
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's1',
'other': '222',
}
)
batch.put_item(
Item={
'partition_key': 'p1',
'sort_key': 's2',
'other': '444',
}
)
Querying and scanning
---------------------
With the table full of items, you can then query or scan the items in the table
using the :py:meth:`DynamoDB.Table.query` or :py:meth:`DynamoDB.Table.scan`
methods respectively. To add conditions to scanning and querying the table,
you will need to import the :py:class:`boto3.dynamodb.conditions.Key` and
:py:class:`boto3.dynamodb.conditions.Attr` classes. The
:py:class:`boto3.dynamodb.conditions.Key` should be used when the
condition is related to the key of the item.
The :py:class:`boto3.dynamodb.conditions.Attr` should be used when the
condition is related to an attribute of the item::
from boto3.dynamodb.conditions import Key, Attr
This queries for all of the users whose ``username`` key equals ``johndoe``::
response = table.query(
KeyConditionExpression=Key('username').eq('johndoe')
)
items = response['Items']
print(items)
Expected output::
[{u'username': u'johndoe',
u'first_name': u'John',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}}]
Similarly you can scan the table based on attributes of the items. For
example, this scans for all the users whose ``age`` is less than ``27``::
response = table.scan(
FilterExpression=Attr('age').lt(27)
)
items = response['Items']
print(items)
Expected output::
[{u'username': u'johndoe',
u'first_name': u'John',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}},
{u'username': u'bobsmith',
u'first_name': u'Bob',
u'last_name': u'Smith',
u'account_type': u'standard_user',
u'age': Decimal('18'),
u'address': {u'city': u'Louisville',
u'state': u'KY',
u'zipcode': Decimal('40213'),
u'road': u'3 Madison Lane'}}]
You are also able to chain conditions together using the logical operators:
``&`` (and), ``|`` (or), and ``~`` (not). For example, this scans for all
users whose ``first_name`` starts with ``J`` and whose ``account_type`` is
``super_user``::
response = table.scan(
FilterExpression=Attr('first_name').begins_with('J') & Attr('account_type').eq('super_user')
)
items = response['Items']
print(items)
Expected output::
[{u'username': u'janedoering',
u'first_name': u'Jane',
u'last_name': u'Doering',
u'account_type': u'super_user',
u'age': Decimal('40'),
u'address': {u'city': u'Seattle',
u'state': u'WA',
u'zipcode': Decimal('98109'),
u'road': u'2 Washington Avenue'}}]
You can even scan based on conditions of a nested attribute. For example this
scans for all users whose ``state`` in their ``address`` is ``CA``::
response = table.scan(
FilterExpression=Attr('address.state').eq('CA')
)
items = response['Items']
print(items)
Expected output::
[{u'username': u'johndoe',
u'first_name': u'John',
u'last_name': u'Doe',
u'account_type': u'standard_user',
u'age': Decimal('25'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}},
{u'username': u'alicedoe',
u'first_name': u'Alice',
u'last_name': u'Doe',
u'account_type': u'super_user',
u'age': Decimal('27'),
u'address': {u'city': u'Los Angeles',
u'state': u'CA',
u'zipcode': Decimal('90001'),
u'road': u'1 Jefferson Street'}}]
For more information on the various conditions you can use for queries and
scans, refer to :ref:`ref_dynamodb_conditions`.
Deleting a table
----------------
Finally, if you want to delete your table call
:py:meth:`DynamoDB.Table.delete`::
table.delete()
|