1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
/*
* Python SWIG interface file for Box2D (www.box2d.org)
*
* Copyright (c) 2008 kne / sirkne at gmail dot com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
%feature("docstring") collideCircleParticle "For liquid simulation. Checks if a particle
would collide with the specified circle.
";
%feature("docstring") b2CollidePolyParticle "For liquid simulation. Checks if a particle
would collide with the specified polygon.
";
%inline %{
PyObject* collideCircleParticle(b2CircleShape* circle, const b2Vec2& ppos) {
//out bCollides, b2Vec2 penetration, b2Vec2 penetrationNormal
//Ported to C from Blaze (D)
PyObject* ret=PyTuple_New(3);
PyTuple_SetItem(ret, 0, SWIG_From_bool(false));
PyTuple_SetItem(ret, 1, SWIG_From_bool(false));
PyTuple_SetItem(ret, 2, SWIG_From_bool(false));
b2XForm xf1 = circle->GetBody()->GetXForm();
b2Vec2 p1 = b2Mul(xf1, circle->GetLocalPosition());
b2Vec2 p2 = ppos;
b2Vec2 d = p2 - p1;
float32 distSqr = b2Dot(d, d);
float32 r1 = circle->GetRadius();
float32 r2 = 0.0f;
float32 radiusSum = r1 + r2;
if (distSqr > radiusSum * radiusSum) {
return ret; // false
}
b2Vec2* normal=new b2Vec2();
float32 separation;
if (distSqr < B2_FLT_EPSILON) {
separation = -radiusSum;
normal->Set(0.0f, 1.0f);
} else {
float32 dist = sqrt(distSqr);
separation = dist - radiusSum;
float32 a = 1.0f / dist;
normal->x = a * d.x;
normal->y = a * d.y;
}
b2Vec2* penetration=new b2Vec2();
penetration->x = normal->x * separation;
penetration->y = normal->y * separation;
PyTuple_SetItem(ret, 0, SWIG_From_bool(true));
PyTuple_SetItem(ret, 1, SWIG_NewPointerObj(SWIG_as_voidptr(penetration), SWIGTYPE_p_b2Vec2, 0) );
PyTuple_SetItem(ret, 2, SWIG_NewPointerObj(SWIG_as_voidptr(normal), SWIGTYPE_p_b2Vec2, 0) );
return ret;
}
PyObject* b2CollidePolyParticle(b2PolygonShape* polygon, const b2Vec2& ppos, float32 pradius) {
//out bCollides, b2Vec2 penetration, b2Vec2 penetrationNormal
//Ported to C from Blaze (D)
PyObject* ret=PyTuple_New(3);
PyTuple_SetItem(ret, 0, SWIG_From_bool(false));
PyTuple_SetItem(ret, 1, SWIG_From_bool(false));
PyTuple_SetItem(ret, 2, SWIG_From_bool(false));
const b2XForm xf1 = polygon->GetBody()->GetXForm();
b2XForm xf2;
xf2.position = ppos;
// Compute circle position in the frame of the polygon.
b2Vec2 c = b2Mul(xf2, b2Vec2_zero);
b2Vec2 cLocal = b2MulT(xf1, c);
// Find the min separating edge.
int normalIndex = 0;
float32 separation = -B2_FLT_MAX;
float32 radius = pradius;
b2Vec2* penetration=new b2Vec2();
int vertexCount = polygon->GetVertexCount();
const b2Vec2* vertices = polygon->GetVertices();
const b2Vec2* normals = polygon->GetNormals();
for (int i = 0; i < vertexCount; ++i) {
float32 s = b2Dot(normals[i], cLocal - vertices[i]);
if (s > radius) {
// Early out.
return ret; // false
}
if (s > separation) {
separation = s;
normalIndex = i;
}
}
// If the center is inside the polygon ...
if (separation < B2_FLT_MAX) {
b2Vec2 temp = b2Mul(xf1.R, normals[normalIndex]);
b2Vec2* penetrationNormal=new b2Vec2(temp);
separation = separation - radius;
penetration->x = separation * penetrationNormal->x;
penetration->y = separation * penetrationNormal->y;
PyTuple_SetItem(ret, 0, SWIG_From_bool(true));
PyTuple_SetItem(ret, 1, SWIG_NewPointerObj(SWIG_as_voidptr(penetration), SWIGTYPE_p_b2Vec2, 0) );
PyTuple_SetItem(ret, 2, SWIG_NewPointerObj(SWIG_as_voidptr(penetrationNormal), SWIGTYPE_p_b2Vec2, 0) );
return ret;
}
// Project the circle center onto the edge segment.
int vertIndex1 = normalIndex;
int vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
b2Vec2 e = vertices[vertIndex2] - vertices[vertIndex1];
float32 length = e.Normalize();
//assert(length > float.epsilon);
// Project the center onto the edge.
float32 u = b2Dot(cLocal - vertices[vertIndex1], e);
b2Vec2 p;
if (u <= 0.0f) {
p = vertices[vertIndex1];
} else if (u >= length) {
p = vertices[vertIndex2];
} else {
p = vertices[vertIndex1] + u * e;
}
b2Vec2 d = cLocal - p;
float32 dist = d.Normalize();
if (dist > radius) {
return ret; //false
}
b2Vec2 temp = b2Mul(xf1.R, d);
b2Vec2* penetrationNormal=new b2Vec2(temp);
separation = dist - radius;
penetration->x = separation * penetrationNormal->x;
penetration->y = separation * penetrationNormal->y;
PyTuple_SetItem(ret, 0, SWIG_From_bool(true));
PyTuple_SetItem(ret, 1, SWIG_NewPointerObj(SWIG_as_voidptr(penetration), SWIGTYPE_p_b2Vec2, 0) );
PyTuple_SetItem(ret, 2, SWIG_NewPointerObj(SWIG_as_voidptr(penetrationNormal), SWIGTYPE_p_b2Vec2, 0) );
return ret;
}
%}
%pythoncode %{
def b2PythonCheckPolygonDef(pd):
"""
Checks the Polygon definition to see if upon creation it will cause an assertion.
Raises ValueError if an assertion would be raised.
Ported from the Box2D C++ code for CreateShape(). The C++ version is now
included as it's more accurate, please use b2CheckPolygonDef instead.
"""
if pd.vertexCount < 3 or pd.vertexCount >= b2_maxPolygonVertices:
raise ValueError("Invalid vertexCount")
threshold = FLT_EPSILON * FLT_EPSILON
verts = pd.getVertices_b2Vec2()
normals = []
v0 = verts[0]
for i in range(pd.vertexCount):
if i == pd.vertexCount-1:
v1 = verts[0]
else: v1 = verts[i+1]
edge=v1 - v0
if edge.LengthSquared() < threshold:
raise ValueError("edge.LengthSquared < FLT_EPSILON**2" )
normals.append( b2Cross(edge, 1.0) )
normals[-1].Normalize()
v0=v1
centroid = b2PythonComputeCentroid(pd)
d=b2Vec2()
for i in range(pd.vertexCount):
i1 = i - 1
if i1 < 0: i1 = pd.vertexCount - 1
i2 = i
n1 = normals[i1]
n2 = normals[i2]
v = verts[i] - centroid
d.x = b2Dot(n1, v) - b2_toiSlop
d.y = b2Dot(n2, v) - b2_toiSlop
# Shifting the edge inward by b2_toiSlop should
# not cause the plane to pass the centroid.
# Your shape has a radius/extent less than b2_toiSlop.
if d.x < 0.0 or d.y <= 0.0:
raise ValueError("Your shape has a radius/extent less than b2_toiSlop.")
A = b2Mat22()
A.col1.x = n1.x; A.col2.x = n1.y
A.col1.y = n2.x; A.col2.y = n2.y
#coreVertices[i] = A.Solve(d) + m_centroid
return True
%}
|