File: Box2D_deprecated.i

package info (click to toggle)
python-box2d 2.0.2%2Bsvn20100109.244-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 2,864 kB
  • ctags: 3,280
  • sloc: cpp: 11,679; python: 10,103; xml: 477; makefile: 85; sh: 8
file content (222 lines) | stat: -rw-r--r-- 8,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/*
* Python SWIG interface file for Box2D (www.box2d.org)
*
* Copyright (c) 2008 kne / sirkne at gmail dot com
* 
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

%feature("docstring") collideCircleParticle "For liquid simulation. Checks if a particle
would collide with the specified circle.
";

%feature("docstring") b2CollidePolyParticle "For liquid simulation. Checks if a particle
would collide with the specified polygon.
";

%inline %{
    PyObject* collideCircleParticle(b2CircleShape* circle, const b2Vec2& ppos) {
        //out bCollides, b2Vec2 penetration, b2Vec2 penetrationNormal
        //Ported to C from Blaze (D)
        PyObject* ret=PyTuple_New(3);
        PyTuple_SetItem(ret, 0, SWIG_From_bool(false));
        PyTuple_SetItem(ret, 1, SWIG_From_bool(false));
        PyTuple_SetItem(ret, 2, SWIG_From_bool(false));

        b2XForm xf1 = circle->GetBody()->GetXForm();

        b2Vec2 p1 = b2Mul(xf1, circle->GetLocalPosition());
        b2Vec2 p2 = ppos;

        b2Vec2 d = p2 - p1;
        float32 distSqr = b2Dot(d, d);
        float32 r1 = circle->GetRadius();
        float32 r2 = 0.0f;
        float32 radiusSum = r1 + r2;
        if (distSqr > radiusSum * radiusSum) {
            return ret; // false
        }

        b2Vec2* normal=new b2Vec2();
        float32 separation;
        if (distSqr < B2_FLT_EPSILON) {
            separation = -radiusSum;
            normal->Set(0.0f, 1.0f);
        } else {
            float32 dist = sqrt(distSqr);
            separation = dist - radiusSum;
            float32 a = 1.0f / dist;
            normal->x = a * d.x;
            normal->y = a * d.y;
        }

        b2Vec2* penetration=new b2Vec2();
        penetration->x = normal->x * separation;
        penetration->y = normal->y * separation;
        PyTuple_SetItem(ret, 0, SWIG_From_bool(true));
        PyTuple_SetItem(ret, 1, SWIG_NewPointerObj(SWIG_as_voidptr(penetration), SWIGTYPE_p_b2Vec2, 0) );
        PyTuple_SetItem(ret, 2, SWIG_NewPointerObj(SWIG_as_voidptr(normal), SWIGTYPE_p_b2Vec2, 0) );
        return ret;
    }

    PyObject* b2CollidePolyParticle(b2PolygonShape* polygon, const b2Vec2& ppos, float32 pradius) {
        //out bCollides, b2Vec2 penetration, b2Vec2 penetrationNormal
        //Ported to C from Blaze (D)
        PyObject* ret=PyTuple_New(3);
        PyTuple_SetItem(ret, 0, SWIG_From_bool(false));
        PyTuple_SetItem(ret, 1, SWIG_From_bool(false));
        PyTuple_SetItem(ret, 2, SWIG_From_bool(false));

        const b2XForm xf1 = polygon->GetBody()->GetXForm();
        b2XForm xf2;
        xf2.position = ppos;

        // Compute circle position in the frame of the polygon.
        b2Vec2 c = b2Mul(xf2, b2Vec2_zero);
        b2Vec2 cLocal = b2MulT(xf1, c);

        // Find the min separating edge.
        int normalIndex = 0;
        float32 separation = -B2_FLT_MAX;
        float32 radius = pradius;
        b2Vec2* penetration=new b2Vec2();

        int vertexCount = polygon->GetVertexCount();
        const b2Vec2* vertices = polygon->GetVertices();
        const b2Vec2* normals = polygon->GetNormals();

        for (int i = 0; i < vertexCount; ++i) {
            float32 s = b2Dot(normals[i], cLocal - vertices[i]);

            if (s > radius) {
                // Early out.
                return ret; // false
            }

            if (s > separation) {
                separation = s;
                normalIndex = i;
            }
        }

        // If the center is inside the polygon ...
        if (separation < B2_FLT_MAX) {
            b2Vec2 temp = b2Mul(xf1.R, normals[normalIndex]);
            b2Vec2* penetrationNormal=new b2Vec2(temp);
            separation = separation - radius;
            penetration->x = separation * penetrationNormal->x;
            penetration->y = separation * penetrationNormal->y;
            PyTuple_SetItem(ret, 0, SWIG_From_bool(true));
            PyTuple_SetItem(ret, 1, SWIG_NewPointerObj(SWIG_as_voidptr(penetration), SWIGTYPE_p_b2Vec2, 0) );
            PyTuple_SetItem(ret, 2, SWIG_NewPointerObj(SWIG_as_voidptr(penetrationNormal), SWIGTYPE_p_b2Vec2, 0) );
            return ret;
        }

        // Project the circle center onto the edge segment.
        int vertIndex1 = normalIndex;
        int vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
        b2Vec2 e = vertices[vertIndex2] - vertices[vertIndex1];

        float32 length = e.Normalize();
        //assert(length > float.epsilon);

        // Project the center onto the edge.
        float32 u = b2Dot(cLocal - vertices[vertIndex1], e);
        b2Vec2 p;
        if (u <= 0.0f) {
            p = vertices[vertIndex1];
        } else if (u >= length) {
            p = vertices[vertIndex2];
        } else {
            p = vertices[vertIndex1] + u * e;
        }

        b2Vec2 d = cLocal - p;
        float32 dist = d.Normalize();
        if (dist > radius) {
            return ret; //false
        }

        b2Vec2 temp = b2Mul(xf1.R, d);
        b2Vec2* penetrationNormal=new b2Vec2(temp);
        separation = dist - radius;
        penetration->x = separation * penetrationNormal->x;
        penetration->y = separation * penetrationNormal->y;
        PyTuple_SetItem(ret, 0, SWIG_From_bool(true));
        PyTuple_SetItem(ret, 1, SWIG_NewPointerObj(SWIG_as_voidptr(penetration), SWIGTYPE_p_b2Vec2, 0) );
        PyTuple_SetItem(ret, 2, SWIG_NewPointerObj(SWIG_as_voidptr(penetrationNormal), SWIGTYPE_p_b2Vec2, 0) );
        return ret;
    }

%}

%pythoncode %{

    def b2PythonCheckPolygonDef(pd):
        """
            Checks the Polygon definition to see if upon creation it will cause an assertion.
            Raises ValueError if an assertion would be raised.

            Ported from the Box2D C++ code for CreateShape(). The C++ version is now
            included as it's more accurate, please use b2CheckPolygonDef instead.
        """

        if pd.vertexCount < 3 or pd.vertexCount >= b2_maxPolygonVertices:
            raise ValueError("Invalid vertexCount")

        threshold = FLT_EPSILON * FLT_EPSILON
        verts = pd.getVertices_b2Vec2()
        normals = []
        v0 = verts[0]
        for i in range(pd.vertexCount):
            if i == pd.vertexCount-1:
                v1 = verts[0]
            else: v1 = verts[i+1]
            edge=v1 - v0
            if edge.LengthSquared() < threshold:
                raise ValueError("edge.LengthSquared < FLT_EPSILON**2" )
            normals.append( b2Cross(edge, 1.0) )
            normals[-1].Normalize()
            v0=v1

        centroid = b2PythonComputeCentroid(pd)

        d=b2Vec2()
        for i in range(pd.vertexCount):
            i1 = i - 1 
            if i1 < 0: i1 = pd.vertexCount - 1
            i2 = i
            n1 = normals[i1]
            n2 = normals[i2]
            v = verts[i] - centroid

            d.x = b2Dot(n1, v) - b2_toiSlop
            d.y = b2Dot(n2, v) - b2_toiSlop

            # Shifting the edge inward by b2_toiSlop should
            # not cause the plane to pass the centroid.

            # Your shape has a radius/extent less than b2_toiSlop.
            if d.x < 0.0 or d.y <= 0.0: 
                raise ValueError("Your shape has a radius/extent less than b2_toiSlop.")

            A = b2Mat22()
            A.col1.x = n1.x; A.col2.x = n1.y
            A.col1.y = n2.x; A.col2.y = n2.y
            #coreVertices[i] = A.Solve(d) + m_centroid

        return True

%}