1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2CircleShape.h"
b2CircleShape::b2CircleShape(const b2ShapeDef* def)
: b2Shape(def)
{
b2Assert(def->type == e_circleShape);
const b2CircleDef* circleDef = (const b2CircleDef*)def;
m_type = e_circleShape;
m_localPosition = circleDef->localPosition;
m_radius = circleDef->radius;
}
void b2CircleShape::UpdateSweepRadius(const b2Vec2& center)
{
// Update the sweep radius (maximum radius) as measured from
// a local center point.
b2Vec2 d = m_localPosition - center;
m_sweepRadius = d.Length() + m_radius - b2_toiSlop;
}
bool b2CircleShape::TestPoint(const b2XForm& transform, const b2Vec2& p) const
{
b2Vec2 center = transform.position + b2Mul(transform.R, m_localPosition);
b2Vec2 d = p - center;
return b2Dot(d, d) <= m_radius * m_radius;
}
// Collision Detection in Interactive 3D Environments by Gino van den Bergen
// From Section 3.1.2
// x = s + a * r
// norm(x) = radius
b2SegmentCollide b2CircleShape::TestSegment(const b2XForm& transform,
float32* lambda,
b2Vec2* normal,
const b2Segment& segment,
float32 maxLambda) const
{
b2Vec2 position = transform.position + b2Mul(transform.R, m_localPosition);
b2Vec2 s = segment.p1 - position;
float32 b = b2Dot(s, s) - m_radius * m_radius;
// Does the segment start inside the circle?
if (b < 0.0f)
{
*lambda = 0;
return e_startsInsideCollide;
}
// Solve quadratic equation.
b2Vec2 r = segment.p2 - segment.p1;
float32 c = b2Dot(s, r);
float32 rr = b2Dot(r, r);
float32 sigma = c * c - rr * b;
// Check for negative discriminant and short segment.
if (sigma < 0.0f || rr < B2_FLT_EPSILON)
{
return e_missCollide;
}
// Find the point of intersection of the line with the circle.
float32 a = -(c + b2Sqrt(sigma));
// Is the intersection point on the segment?
if (0.0f <= a && a <= maxLambda * rr)
{
a /= rr;
*lambda = a;
*normal = s + a * r;
normal->Normalize();
return e_hitCollide;
}
return e_missCollide;
}
void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2XForm& transform) const
{
b2Vec2 p = transform.position + b2Mul(transform.R, m_localPosition);
aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius);
aabb->upperBound.Set(p.x + m_radius, p.y + m_radius);
}
void b2CircleShape::ComputeSweptAABB(b2AABB* aabb, const b2XForm& transform1, const b2XForm& transform2) const
{
b2Vec2 p1 = transform1.position + b2Mul(transform1.R, m_localPosition);
b2Vec2 p2 = transform2.position + b2Mul(transform2.R, m_localPosition);
b2Vec2 lower = b2Min(p1, p2);
b2Vec2 upper = b2Max(p1, p2);
aabb->lowerBound.Set(lower.x - m_radius, lower.y - m_radius);
aabb->upperBound.Set(upper.x + m_radius, upper.y + m_radius);
}
void b2CircleShape::ComputeMass(b2MassData* massData) const
{
massData->mass = m_density * b2_pi * m_radius * m_radius;
massData->center = m_localPosition;
// inertia about the local origin
massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_localPosition, m_localPosition));
}
float32 b2CircleShape::ComputeSubmergedArea( const b2Vec2& normal,
float32 offset,
const b2XForm& xf,
b2Vec2* c) const
{
b2Vec2 p = b2Mul(xf,m_localPosition);
float32 l = -(b2Dot(normal,p) - offset);
if(l<-m_radius+B2_FLT_EPSILON){
//Completely dry
return 0;
}
if(l>m_radius){
//Completely wet
*c = p;
return b2_pi*m_radius*m_radius;
}
//Magic
float32 r2 = m_radius*m_radius;
float32 l2 = l*l;
//TODO: write b2Sqrt to handle fixed point case.
float32 area = r2 * (asin(l/m_radius) + b2_pi/2.0f)+ l * b2Sqrt(r2 - l2);
float32 com = -2.0f/3.0f*pow(r2-l2,1.5f)/area;
c->x = p.x + normal.x * com;
c->y = p.y + normal.y * com;
return area;
}
|