File: b2CircleShape.cpp

package info (click to toggle)
python-box2d 2.0.2%2Bsvn20100109.244-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 2,864 kB
  • ctags: 3,280
  • sloc: cpp: 11,679; python: 10,103; xml: 477; makefile: 85; sh: 8
file content (151 lines) | stat: -rw-r--r-- 4,740 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include "b2CircleShape.h"

b2CircleShape::b2CircleShape(const b2ShapeDef* def)
: b2Shape(def)
{
	b2Assert(def->type == e_circleShape);
	const b2CircleDef* circleDef = (const b2CircleDef*)def;

	m_type = e_circleShape;
	m_localPosition = circleDef->localPosition;
	m_radius = circleDef->radius;
}

void b2CircleShape::UpdateSweepRadius(const b2Vec2& center)
{
	// Update the sweep radius (maximum radius) as measured from
	// a local center point.
	b2Vec2 d = m_localPosition - center;
	m_sweepRadius = d.Length() + m_radius - b2_toiSlop;
}

bool b2CircleShape::TestPoint(const b2XForm& transform, const b2Vec2& p) const
{
	b2Vec2 center = transform.position + b2Mul(transform.R, m_localPosition);
	b2Vec2 d = p - center;
	return b2Dot(d, d) <= m_radius * m_radius;
}

// Collision Detection in Interactive 3D Environments by Gino van den Bergen
// From Section 3.1.2
// x = s + a * r
// norm(x) = radius
b2SegmentCollide b2CircleShape::TestSegment(const b2XForm& transform,
								float32* lambda,
								b2Vec2* normal,
								const b2Segment& segment,
								float32 maxLambda) const
{
	b2Vec2 position = transform.position + b2Mul(transform.R, m_localPosition);
	b2Vec2 s = segment.p1 - position;
	float32 b = b2Dot(s, s) - m_radius * m_radius;

	// Does the segment start inside the circle?
	if (b < 0.0f)
	{
		*lambda = 0;
		return e_startsInsideCollide;
	}

	// Solve quadratic equation.
	b2Vec2 r = segment.p2 - segment.p1;
	float32 c =  b2Dot(s, r);
	float32 rr = b2Dot(r, r);
	float32 sigma = c * c - rr * b;

	// Check for negative discriminant and short segment.
	if (sigma < 0.0f || rr < B2_FLT_EPSILON)
	{
		return e_missCollide;
	}

	// Find the point of intersection of the line with the circle.
	float32 a = -(c + b2Sqrt(sigma));

	// Is the intersection point on the segment?
	if (0.0f <= a && a <= maxLambda * rr)
	{
		a /= rr;
		*lambda = a;
		*normal = s + a * r;
		normal->Normalize();
		return e_hitCollide;
	}

	return e_missCollide;
}

void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2XForm& transform) const
{
	b2Vec2 p = transform.position + b2Mul(transform.R, m_localPosition);
	aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius);
	aabb->upperBound.Set(p.x + m_radius, p.y + m_radius);
}

void b2CircleShape::ComputeSweptAABB(b2AABB* aabb, const b2XForm& transform1, const b2XForm& transform2) const
{
	b2Vec2 p1 = transform1.position + b2Mul(transform1.R, m_localPosition);
	b2Vec2 p2 = transform2.position + b2Mul(transform2.R, m_localPosition);
	b2Vec2 lower = b2Min(p1, p2);
	b2Vec2 upper = b2Max(p1, p2);

	aabb->lowerBound.Set(lower.x - m_radius, lower.y - m_radius);
	aabb->upperBound.Set(upper.x + m_radius, upper.y + m_radius);
}

void b2CircleShape::ComputeMass(b2MassData* massData) const
{
	massData->mass = m_density * b2_pi * m_radius * m_radius;
	massData->center = m_localPosition;

	// inertia about the local origin
	massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_localPosition, m_localPosition));
}

float32 b2CircleShape::ComputeSubmergedArea(	const b2Vec2& normal,
												float32 offset,
												const b2XForm& xf, 
												b2Vec2* c) const
{
	b2Vec2 p = b2Mul(xf,m_localPosition);
	float32 l = -(b2Dot(normal,p) - offset);
	if(l<-m_radius+B2_FLT_EPSILON){
		//Completely dry
		return 0;
	}
	if(l>m_radius){
		//Completely wet
		*c = p;
		return b2_pi*m_radius*m_radius;
	}
	
	//Magic
	float32 r2 = m_radius*m_radius;
	float32 l2 = l*l;
    //TODO: write b2Sqrt to handle fixed point case.
	float32 area = r2 * (asin(l/m_radius) + b2_pi/2.0f)+ l * b2Sqrt(r2 - l2);
	float32 com = -2.0f/3.0f*pow(r2-l2,1.5f)/area;
	
	c->x = p.x + normal.x * com;
	c->y = p.y + normal.y * com;
	
	return area;
}