File: b2EdgeShape.cpp

package info (click to toggle)
python-box2d 2.0.2%2Bsvn20100109.244-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 2,864 kB
  • ctags: 3,280
  • sloc: cpp: 11,679; python: 10,103; xml: 477; makefile: 85; sh: 8
file content (202 lines) | stat: -rw-r--r-- 5,292 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include "b2EdgeShape.h"

b2EdgeShape::b2EdgeShape(const b2Vec2& v1, const b2Vec2& v2, const b2ShapeDef* def)
: b2Shape(def)
{
	b2Assert(def->type == e_edgeShape);

	m_type = e_edgeShape;
	
	m_prevEdge = NULL;
	m_nextEdge = NULL;
	
	m_v1 = v1;
	m_v2 = v2;
	
	m_direction = m_v2 - m_v1;
	m_length = m_direction.Normalize();
	m_normal.Set(m_direction.y, -m_direction.x);
	
	m_coreV1 = -b2_toiSlop * (m_normal - m_direction) + m_v1;
	m_coreV2 = -b2_toiSlop * (m_normal + m_direction) + m_v2;
	
	m_cornerDir1 = m_normal;
	m_cornerDir2 = -1.0f * m_normal;
}

void b2EdgeShape::UpdateSweepRadius(const b2Vec2& center)
{
	// Update the sweep radius (maximum radius) as measured from
	// a local center point.
	b2Vec2 d = m_coreV1 - center;
	float32 d1 = b2Dot(d,d);
	d = m_coreV2 - center;
	float32 d2 = b2Dot(d,d);
	m_sweepRadius = b2Sqrt(d1 > d2 ? d1 : d2);
}

bool b2EdgeShape::TestPoint(const b2XForm& transform, const b2Vec2& p) const
{
	B2_NOT_USED(transform);
	B2_NOT_USED(p);
	return false;
}

b2SegmentCollide b2EdgeShape::TestSegment(const b2XForm& transform,
								float32* lambda,
								b2Vec2* normal,
								const b2Segment& segment,
								float32 maxLambda) const
{
	b2Vec2 r = segment.p2 - segment.p1;
	b2Vec2 v1 = b2Mul(transform, m_v1);
	b2Vec2 d = b2Mul(transform, m_v2) - v1;
	b2Vec2 n = b2Cross(d, 1.0f);

	const float32 k_slop = 100.0f * B2_FLT_EPSILON;
	float32 denom = -b2Dot(r, n);

	// Cull back facing collision and ignore parallel segments.
	if (denom > k_slop)
	{
		// Does the segment intersect the infinite line associated with this segment?
		b2Vec2 b = segment.p1 - v1;
		float32 a = b2Dot(b, n);

		if (0.0f <= a && a <= maxLambda * denom)
		{
			float32 mu2 = -r.x * b.y + r.y * b.x;

			// Does the segment intersect this segment?
			if (-k_slop * denom <= mu2 && mu2 <= denom * (1.0f + k_slop))
			{
				a /= denom;
				n.Normalize();
				*lambda = a;
				*normal = n;
				return e_hitCollide;
			}
		}
	}

	return e_missCollide;
}

void b2EdgeShape::ComputeAABB(b2AABB* aabb, const b2XForm& transform) const
{
	b2Vec2 v1 = b2Mul(transform, m_v1);
	b2Vec2 v2 = b2Mul(transform, m_v2);
	aabb->lowerBound = b2Min(v1, v2);
	aabb->upperBound = b2Max(v1, v2);
}

void b2EdgeShape::ComputeSweptAABB(b2AABB* aabb, const b2XForm& transform1, const b2XForm& transform2) const
{
	b2Vec2 v1 = b2Mul(transform1, m_v1);
	b2Vec2 v2 = b2Mul(transform1, m_v2);
	b2Vec2 v3 = b2Mul(transform2, m_v1);
	b2Vec2 v4 = b2Mul(transform2, m_v2);
	aabb->lowerBound = b2Min(b2Min(b2Min(v1, v2), v3), v4);
	aabb->upperBound = b2Max(b2Max(b2Max(v1, v2), v3), v4);
}

void b2EdgeShape::ComputeMass(b2MassData* massData) const
{
	massData->mass = 0;
	massData->center = m_v1;

	// inertia about the local origin
	massData->I = 0;
}

b2Vec2 b2EdgeShape::Support(const b2XForm& xf, const b2Vec2& d) const
{
	b2Vec2 v1 = b2Mul(xf, m_coreV1);
	b2Vec2 v2 = b2Mul(xf, m_coreV2);
	return b2Dot(v1, d) > b2Dot(v2, d) ? v1 : v2;
}

void b2EdgeShape::SetPrevEdge(b2EdgeShape* edge, const b2Vec2& core, const b2Vec2& cornerDir, bool convex)
{
	m_prevEdge = edge;
	m_coreV1 = core;
	m_cornerDir1 = cornerDir;
	m_cornerConvex1 = convex;
}

void b2EdgeShape::SetNextEdge(b2EdgeShape* edge, const b2Vec2& core, const b2Vec2& cornerDir, bool convex)
{
	m_nextEdge = edge;
	m_coreV2 = core;
	m_cornerDir2 = cornerDir;
	m_cornerConvex2 = convex;
}

float32 b2EdgeShape::ComputeSubmergedArea(	const b2Vec2& normal,
												float32 offset,
												const b2XForm& xf, 
												b2Vec2* c) const
{
	//Note that v0 is independant of any details of the specific edge
	//We are relying on v0 being consistent between multiple edges of the same body
	b2Vec2 v0 = offset * normal;
	//b2Vec2 v0 = xf.position + (offset - b2Dot(normal, xf.position)) * normal;

	b2Vec2 v1 = b2Mul(xf, m_v1);
	b2Vec2 v2 = b2Mul(xf, m_v2);

	float32 d1 = b2Dot(normal, v1) - offset;
	float32 d2 = b2Dot(normal, v2) - offset;

	if(d1>0)
	{
		if(d2>0)
		{
			return 0;
		}
		else
		{
			v1 = -d2 / (d1 - d2) * v1 + d1 / (d1 - d2) * v2;
		}
	}
	else
	{
		if(d2>0)
		{
			v2 = -d2 / (d1 - d2) * v1 + d1 / (d1 - d2) * v2;
		}
		else
		{
			//Nothing
		}
	}

	// v0,v1,v2 represents a fully submerged triangle
	float32 k_inv3 = 1.0f / 3.0f;

	// Area weighted centroid
	*c = k_inv3 * (v0 + v1 + v2);

	b2Vec2 e1 = v1 - v0;
	b2Vec2 e2 = v2 - v0;

	return 0.5f * b2Cross(e1, e2);
}