1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/*
* Copyright (c) 2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2Collision.h"
#include "Shapes/b2CircleShape.h"
#include "Shapes/b2PolygonShape.h"
void b2CollideCircles(
b2Manifold* manifold,
const b2CircleShape* circle1, const b2XForm& xf1,
const b2CircleShape* circle2, const b2XForm& xf2)
{
manifold->pointCount = 0;
b2Vec2 p1 = b2Mul(xf1, circle1->GetLocalPosition());
b2Vec2 p2 = b2Mul(xf2, circle2->GetLocalPosition());
b2Vec2 d = p2 - p1;
float32 distSqr = b2Dot(d, d);
float32 r1 = circle1->GetRadius();
float32 r2 = circle2->GetRadius();
float32 radiusSum = r1 + r2;
if (distSqr > radiusSum * radiusSum)
{
return;
}
float32 separation;
if (distSqr < B2_FLT_EPSILON)
{
separation = -radiusSum;
manifold->normal.Set(0.0f, 1.0f);
}
else
{
float32 dist = b2Sqrt(distSqr);
separation = dist - radiusSum;
float32 a = 1.0f / dist;
manifold->normal.x = a * d.x;
manifold->normal.y = a * d.y;
}
manifold->pointCount = 1;
manifold->points[0].id.key = 0;
manifold->points[0].separation = separation;
p1 += r1 * manifold->normal;
p2 -= r2 * manifold->normal;
b2Vec2 p = 0.5f * (p1 + p2);
manifold->points[0].localPoint1 = b2MulT(xf1, p);
manifold->points[0].localPoint2 = b2MulT(xf2, p);
}
void b2CollidePolygonAndCircle(
b2Manifold* manifold,
const b2PolygonShape* polygon, const b2XForm& xf1,
const b2CircleShape* circle, const b2XForm& xf2)
{
manifold->pointCount = 0;
// Compute circle position in the frame of the polygon.
b2Vec2 c = b2Mul(xf2, circle->GetLocalPosition());
b2Vec2 cLocal = b2MulT(xf1, c);
// Find the min separating edge.
int32 normalIndex = 0;
float32 separation = -B2_FLT_MAX;
float32 radius = circle->GetRadius();
int32 vertexCount = polygon->GetVertexCount();
const b2Vec2* vertices = polygon->GetVertices();
const b2Vec2* normals = polygon->GetNormals();
for (int32 i = 0; i < vertexCount; ++i)
{
float32 s = b2Dot(normals[i], cLocal - vertices[i]);
if (s > radius)
{
// Early out.
return;
}
if (s > separation)
{
separation = s;
normalIndex = i;
}
}
// If the center is inside the polygon ...
if (separation < B2_FLT_EPSILON)
{
manifold->pointCount = 1;
manifold->normal = b2Mul(xf1.R, normals[normalIndex]);
manifold->points[0].id.features.incidentEdge = (uint8)normalIndex;
manifold->points[0].id.features.incidentVertex = b2_nullFeature;
manifold->points[0].id.features.referenceEdge = 0;
manifold->points[0].id.features.flip = 0;
b2Vec2 position = c - radius * manifold->normal;
manifold->points[0].localPoint1 = b2MulT(xf1, position);
manifold->points[0].localPoint2 = b2MulT(xf2, position);
manifold->points[0].separation = separation - radius;
return;
}
// Project the circle center onto the edge segment.
int32 vertIndex1 = normalIndex;
int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
b2Vec2 e = vertices[vertIndex2] - vertices[vertIndex1];
float32 length = e.Normalize();
b2Assert(length > B2_FLT_EPSILON);
// Project the center onto the edge.
float32 u = b2Dot(cLocal - vertices[vertIndex1], e);
b2Vec2 p;
if (u <= 0.0f)
{
p = vertices[vertIndex1];
manifold->points[0].id.features.incidentEdge = b2_nullFeature;
manifold->points[0].id.features.incidentVertex = (uint8)vertIndex1;
}
else if (u >= length)
{
p = vertices[vertIndex2];
manifold->points[0].id.features.incidentEdge = b2_nullFeature;
manifold->points[0].id.features.incidentVertex = (uint8)vertIndex2;
}
else
{
p = vertices[vertIndex1] + u * e;
manifold->points[0].id.features.incidentEdge = (uint8)normalIndex;
manifold->points[0].id.features.incidentVertex = b2_nullFeature;
}
b2Vec2 d = cLocal - p;
float32 dist = d.Normalize();
if (dist > radius)
{
return;
}
manifold->pointCount = 1;
manifold->normal = b2Mul(xf1.R, d);
b2Vec2 position = c - radius * manifold->normal;
manifold->points[0].localPoint1 = b2MulT(xf1, position);
manifold->points[0].localPoint2 = b2MulT(xf2, position);
manifold->points[0].separation = dist - radius;
manifold->points[0].id.features.referenceEdge = 0;
manifold->points[0].id.features.flip = 0;
}
|