File: b2CollideCircle.cpp

package info (click to toggle)
python-box2d 2.0.2%2Bsvn20100109.244-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 2,864 kB
  • ctags: 3,280
  • sloc: cpp: 11,679; python: 10,103; xml: 477; makefile: 85; sh: 8
file content (168 lines) | stat: -rw-r--r-- 5,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
* Copyright (c) 2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include "b2Collision.h"
#include "Shapes/b2CircleShape.h"
#include "Shapes/b2PolygonShape.h"

void b2CollideCircles(
	b2Manifold* manifold,
	const b2CircleShape* circle1, const b2XForm& xf1,
	const b2CircleShape* circle2, const b2XForm& xf2)
{
	manifold->pointCount = 0;

	b2Vec2 p1 = b2Mul(xf1, circle1->GetLocalPosition());
	b2Vec2 p2 = b2Mul(xf2, circle2->GetLocalPosition());

	b2Vec2 d = p2 - p1;
	float32 distSqr = b2Dot(d, d);
	float32 r1 = circle1->GetRadius();
	float32 r2 = circle2->GetRadius();
	float32 radiusSum = r1 + r2;
	if (distSqr > radiusSum * radiusSum)
	{
		return;
	}

	float32 separation;
	if (distSqr < B2_FLT_EPSILON)
	{
		separation = -radiusSum;
		manifold->normal.Set(0.0f, 1.0f);
	}
	else
	{
		float32 dist = b2Sqrt(distSqr);
		separation = dist - radiusSum;
		float32 a = 1.0f / dist;
		manifold->normal.x = a * d.x;
		manifold->normal.y = a * d.y;
	}

	manifold->pointCount = 1;
	manifold->points[0].id.key = 0;
	manifold->points[0].separation = separation;

	p1 += r1 * manifold->normal;
	p2 -= r2 * manifold->normal;

	b2Vec2 p = 0.5f * (p1 + p2);

	manifold->points[0].localPoint1 = b2MulT(xf1, p);
	manifold->points[0].localPoint2 = b2MulT(xf2, p);
}

void b2CollidePolygonAndCircle(
	b2Manifold* manifold,
	const b2PolygonShape* polygon, const b2XForm& xf1,
	const b2CircleShape* circle, const b2XForm& xf2)
{
	manifold->pointCount = 0;

	// Compute circle position in the frame of the polygon.
	b2Vec2 c = b2Mul(xf2, circle->GetLocalPosition());
	b2Vec2 cLocal = b2MulT(xf1, c);

	// Find the min separating edge.
	int32 normalIndex = 0;
	float32 separation = -B2_FLT_MAX;
	float32 radius = circle->GetRadius();
	int32 vertexCount = polygon->GetVertexCount();
	const b2Vec2* vertices = polygon->GetVertices();
	const b2Vec2* normals = polygon->GetNormals();

	for (int32 i = 0; i < vertexCount; ++i)
	{
		float32 s = b2Dot(normals[i], cLocal - vertices[i]);

		if (s > radius)
		{
			// Early out.
			return;
		}

		if (s > separation)
		{
			separation = s;
			normalIndex = i;
		}
	}

	// If the center is inside the polygon ...
	if (separation < B2_FLT_EPSILON)
	{
		manifold->pointCount = 1;
		manifold->normal = b2Mul(xf1.R, normals[normalIndex]);
		manifold->points[0].id.features.incidentEdge = (uint8)normalIndex;
		manifold->points[0].id.features.incidentVertex = b2_nullFeature;
		manifold->points[0].id.features.referenceEdge = 0;
		manifold->points[0].id.features.flip = 0;
		b2Vec2 position = c - radius * manifold->normal;
		manifold->points[0].localPoint1 = b2MulT(xf1, position);
		manifold->points[0].localPoint2 = b2MulT(xf2, position);
		manifold->points[0].separation = separation - radius;
		return;
	}

	// Project the circle center onto the edge segment.
	int32 vertIndex1 = normalIndex;
	int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
	b2Vec2 e = vertices[vertIndex2] - vertices[vertIndex1];

	float32 length = e.Normalize();
	b2Assert(length > B2_FLT_EPSILON);

	// Project the center onto the edge.
	float32 u = b2Dot(cLocal - vertices[vertIndex1], e);
	b2Vec2 p;
	if (u <= 0.0f)
	{
		p = vertices[vertIndex1];
		manifold->points[0].id.features.incidentEdge = b2_nullFeature;
		manifold->points[0].id.features.incidentVertex = (uint8)vertIndex1;
	}
	else if (u >= length)
	{
		p = vertices[vertIndex2];
		manifold->points[0].id.features.incidentEdge = b2_nullFeature;
		manifold->points[0].id.features.incidentVertex = (uint8)vertIndex2;
	}
	else
	{
		p = vertices[vertIndex1] + u * e;
		manifold->points[0].id.features.incidentEdge = (uint8)normalIndex;
		manifold->points[0].id.features.incidentVertex = b2_nullFeature;
	}

	b2Vec2 d = cLocal - p;
	float32 dist = d.Normalize();
	if (dist > radius)
	{
		return;
	}

	manifold->pointCount = 1;
	manifold->normal = b2Mul(xf1.R, d);
	b2Vec2 position = c - radius * manifold->normal;
	manifold->points[0].localPoint1 = b2MulT(xf1, position);
	manifold->points[0].localPoint2 = b2MulT(xf2, position);
	manifold->points[0].separation = dist - radius;
	manifold->points[0].id.features.referenceEdge = 0;
	manifold->points[0].id.features.flip = 0;
}