1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
/*
* Copyright (c) 2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2Collision.h"
// Collision Detection in Interactive 3D Environments by Gino van den Bergen
// From Section 3.4.1
// x = mu1 * p1 + mu2 * p2
// mu1 + mu2 = 1 && mu1 >= 0 && mu2 >= 0
// mu1 = 1 - mu2;
// x = (1 - mu2) * p1 + mu2 * p2
// = p1 + mu2 * (p2 - p1)
// x = s + a * r (s := start, r := end - start)
// s + a * r = p1 + mu2 * d (d := p2 - p1)
// -a * r + mu2 * d = b (b := s - p1)
// [-r d] * [a; mu2] = b
// Cramer's rule:
// denom = det[-r d]
// a = det[b d] / denom
// mu2 = det[-r b] / denom
bool b2Segment::TestSegment(float32* lambda, b2Vec2* normal, const b2Segment& segment, float32 maxLambda) const
{
b2Vec2 s = segment.p1;
b2Vec2 r = segment.p2 - s;
b2Vec2 d = p2 - p1;
b2Vec2 n = b2Cross(d, 1.0f);
const float32 k_slop = 100.0f * B2_FLT_EPSILON;
float32 denom = -b2Dot(r, n);
// Cull back facing collision and ignore parallel segments.
if (denom > k_slop)
{
// Does the segment intersect the infinite line associated with this segment?
b2Vec2 b = s - p1;
float32 a = b2Dot(b, n);
if (0.0f <= a && a <= maxLambda * denom)
{
float32 mu2 = -r.x * b.y + r.y * b.x;
// Does the segment intersect this segment?
if (-k_slop * denom <= mu2 && mu2 <= denom * (1.0f + k_slop))
{
a /= denom;
n.Normalize();
*lambda = a;
*normal = n;
return true;
}
}
}
return false;
}
|