1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/*
* Copyright (c) 2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2Collision.h"
#include "Shapes/b2CircleShape.h"
#include "Shapes/b2PolygonShape.h"
#include "Shapes/b2EdgeShape.h"
int32 g_GJK_Iterations = 0;
// GJK using Voronoi regions (Christer Ericson) and region selection
// optimizations (Casey Muratori).
// The origin is either in the region of points[1] or in the edge region. The origin is
// not in region of points[0] because that is the old point.
static int32 ProcessTwo(b2Vec2* x1, b2Vec2* x2, b2Vec2* p1s, b2Vec2* p2s, b2Vec2* points)
{
// If in point[1] region
b2Vec2 r = -points[1];
b2Vec2 d = points[0] - points[1];
float32 length = d.Normalize();
float32 lambda = b2Dot(r, d);
if (lambda <= 0.0f || length < B2_FLT_EPSILON)
{
// The simplex is reduced to a point.
*x1 = p1s[1];
*x2 = p2s[1];
p1s[0] = p1s[1];
p2s[0] = p2s[1];
points[0] = points[1];
return 1;
}
// Else in edge region
lambda /= length;
*x1 = p1s[1] + lambda * (p1s[0] - p1s[1]);
*x2 = p2s[1] + lambda * (p2s[0] - p2s[1]);
return 2;
}
// Possible regions:
// - points[2]
// - edge points[0]-points[2]
// - edge points[1]-points[2]
// - inside the triangle
static int32 ProcessThree(b2Vec2* x1, b2Vec2* x2, b2Vec2* p1s, b2Vec2* p2s, b2Vec2* points)
{
b2Vec2 a = points[0];
b2Vec2 b = points[1];
b2Vec2 c = points[2];
b2Vec2 ab = b - a;
b2Vec2 ac = c - a;
b2Vec2 bc = c - b;
float32 sn = -b2Dot(a, ab), sd = b2Dot(b, ab);
float32 tn = -b2Dot(a, ac), td = b2Dot(c, ac);
float32 un = -b2Dot(b, bc), ud = b2Dot(c, bc);
// In vertex c region?
if (td <= 0.0f && ud <= 0.0f)
{
// Single point
*x1 = p1s[2];
*x2 = p2s[2];
p1s[0] = p1s[2];
p2s[0] = p2s[2];
points[0] = points[2];
return 1;
}
// Should not be in vertex a or b region.
B2_NOT_USED(sd);
B2_NOT_USED(sn);
b2Assert(sn > 0.0f || tn > 0.0f);
b2Assert(sd > 0.0f || un > 0.0f);
float32 n = b2Cross(ab, ac);
#ifdef TARGET_FLOAT32_IS_FIXED
n = (n < 0.0)? -1.0 : ((n > 0.0)? 1.0 : 0.0);
#endif
// Should not be in edge ab region.
float32 vc = n * b2Cross(a, b);
b2Assert(vc > 0.0f || sn > 0.0f || sd > 0.0f);
// In edge bc region?
float32 va = n * b2Cross(b, c);
if (va <= 0.0f && un >= 0.0f && ud >= 0.0f && (un+ud) > 0.0f)
{
b2Assert(un + ud > 0.0f);
float32 lambda = un / (un + ud);
*x1 = p1s[1] + lambda * (p1s[2] - p1s[1]);
*x2 = p2s[1] + lambda * (p2s[2] - p2s[1]);
p1s[0] = p1s[2];
p2s[0] = p2s[2];
points[0] = points[2];
return 2;
}
// In edge ac region?
float32 vb = n * b2Cross(c, a);
if (vb <= 0.0f && tn >= 0.0f && td >= 0.0f && (tn+td) > 0.0f)
{
b2Assert(tn + td > 0.0f);
float32 lambda = tn / (tn + td);
*x1 = p1s[0] + lambda * (p1s[2] - p1s[0]);
*x2 = p2s[0] + lambda * (p2s[2] - p2s[0]);
p1s[1] = p1s[2];
p2s[1] = p2s[2];
points[1] = points[2];
return 2;
}
// Inside the triangle, compute barycentric coordinates
float32 denom = va + vb + vc;
b2Assert(denom > 0.0f);
denom = 1.0f / denom;
#ifdef TARGET_FLOAT32_IS_FIXED
*x1 = denom * (va * p1s[0] + vb * p1s[1] + vc * p1s[2]);
*x2 = denom * (va * p2s[0] + vb * p2s[1] + vc * p2s[2]);
#else
float32 u = va * denom;
float32 v = vb * denom;
float32 w = 1.0f - u - v;
*x1 = u * p1s[0] + v * p1s[1] + w * p1s[2];
*x2 = u * p2s[0] + v * p2s[1] + w * p2s[2];
#endif
return 3;
}
static bool InPoints(const b2Vec2& w, const b2Vec2* points, int32 pointCount)
{
const float32 k_tolerance = 100.0f * B2_FLT_EPSILON;
for (int32 i = 0; i < pointCount; ++i)
{
b2Vec2 d = b2Abs(w - points[i]);
b2Vec2 m = b2Max(b2Abs(w), b2Abs(points[i]));
if (d.x < k_tolerance * (m.x + 1.0f) &&
d.y < k_tolerance * (m.y + 1.0f))
{
return true;
}
}
return false;
}
template <typename T1, typename T2>
float32 DistanceGeneric(b2Vec2* x1, b2Vec2* x2,
const T1* shape1, const b2XForm& xf1,
const T2* shape2, const b2XForm& xf2)
{
b2Vec2 p1s[3], p2s[3];
b2Vec2 points[3];
int32 pointCount = 0;
*x1 = shape1->GetFirstVertex(xf1);
*x2 = shape2->GetFirstVertex(xf2);
float32 vSqr = 0.0f;
const int32 maxIterations = 20;
for (int32 iter = 0; iter < maxIterations; ++iter)
{
b2Vec2 v = *x2 - *x1;
b2Vec2 w1 = shape1->Support(xf1, v);
b2Vec2 w2 = shape2->Support(xf2, -v);
vSqr = b2Dot(v, v);
b2Vec2 w = w2 - w1;
float32 vw = b2Dot(v, w);
if (vSqr - vw <= 0.01f * vSqr || InPoints(w, points, pointCount)) // or w in points
{
if (pointCount == 0)
{
*x1 = w1;
*x2 = w2;
}
g_GJK_Iterations = iter;
return b2Sqrt(vSqr);
}
switch (pointCount)
{
case 0:
p1s[0] = w1;
p2s[0] = w2;
points[0] = w;
*x1 = p1s[0];
*x2 = p2s[0];
++pointCount;
break;
case 1:
p1s[1] = w1;
p2s[1] = w2;
points[1] = w;
pointCount = ProcessTwo(x1, x2, p1s, p2s, points);
break;
case 2:
p1s[2] = w1;
p2s[2] = w2;
points[2] = w;
pointCount = ProcessThree(x1, x2, p1s, p2s, points);
break;
}
// If we have three points, then the origin is in the corresponding triangle.
if (pointCount == 3)
{
g_GJK_Iterations = iter;
return 0.0f;
}
float32 maxSqr = -B2_FLT_MAX;
for (int32 i = 0; i < pointCount; ++i)
{
maxSqr = b2Max(maxSqr, b2Dot(points[i], points[i]));
}
#ifdef TARGET_FLOAT32_IS_FIXED
if (pointCount == 3 || vSqr <= 5.0*B2_FLT_EPSILON * maxSqr)
#else
if (vSqr <= 100.0f * B2_FLT_EPSILON * maxSqr)
#endif
{
g_GJK_Iterations = iter;
v = *x2 - *x1;
vSqr = b2Dot(v, v);
return b2Sqrt(vSqr);
}
}
g_GJK_Iterations = maxIterations;
return b2Sqrt(vSqr);
}
static float32 DistanceCC(
b2Vec2* x1, b2Vec2* x2,
const b2CircleShape* circle1, const b2XForm& xf1,
const b2CircleShape* circle2, const b2XForm& xf2)
{
b2Vec2 p1 = b2Mul(xf1, circle1->GetLocalPosition());
b2Vec2 p2 = b2Mul(xf2, circle2->GetLocalPosition());
b2Vec2 d = p2 - p1;
float32 dSqr = b2Dot(d, d);
float32 r1 = circle1->GetRadius() - b2_toiSlop;
float32 r2 = circle2->GetRadius() - b2_toiSlop;
float32 r = r1 + r2;
if (dSqr > r * r)
{
float32 dLen = d.Normalize();
float32 distance = dLen - r;
*x1 = p1 + r1 * d;
*x2 = p2 - r2 * d;
return distance;
}
else if (dSqr > B2_FLT_EPSILON * B2_FLT_EPSILON)
{
d.Normalize();
*x1 = p1 + r1 * d;
*x2 = *x1;
return 0.0f;
}
*x1 = p1;
*x2 = *x1;
return 0.0f;
}
static float32 DistanceEdgeCircle(
b2Vec2* x1, b2Vec2* x2,
const b2EdgeShape* edge, const b2XForm& xf1,
const b2CircleShape* circle, const b2XForm& xf2)
{
b2Vec2 vWorld;
b2Vec2 d;
float32 dSqr;
float32 dLen;
float32 r = circle->GetRadius() - b2_toiSlop;
b2Vec2 cWorld = b2Mul(xf2, circle->GetLocalPosition());
b2Vec2 cLocal = b2MulT(xf1, cWorld);
float32 dirDist = b2Dot(cLocal - edge->GetCoreVertex1(), edge->GetDirectionVector());
if (dirDist <= 0.0f) {
vWorld = b2Mul(xf1, edge->GetCoreVertex1());
} else if (dirDist >= edge->GetLength()) {
vWorld = b2Mul(xf1, edge->GetCoreVertex2());
} else {
*x1 = b2Mul(xf1, edge->GetCoreVertex1() + dirDist * edge->GetDirectionVector());
dLen = b2Dot(cLocal - edge->GetCoreVertex1(), edge->GetNormalVector());
if (dLen < 0.0f) {
if (dLen < -r) {
*x2 = b2Mul(xf1, cLocal + r * edge->GetNormalVector());
return -dLen - r;
} else {
*x2 = *x1;
return 0.0f;
}
} else {
if (dLen > r) {
*x2 = b2Mul(xf1, cLocal - r * edge->GetNormalVector());
return dLen - r;
} else {
*x2 = *x1;
return 0.0f;
}
}
}
*x1 = vWorld;
d = cWorld - vWorld;
dSqr = b2Dot(d, d);
if (dSqr > r * r) {
dLen = d.Normalize();
*x2 = cWorld - r * d;
return dLen - r;
} else {
*x2 = vWorld;
return 0.0f;
}
}
// This is used for polygon-vs-circle distance.
struct Point
{
b2Vec2 Support(const b2XForm&, const b2Vec2&) const
{
return p;
}
b2Vec2 GetFirstVertex(const b2XForm&) const
{
return p;
}
b2Vec2 p;
};
// GJK is more robust with polygon-vs-point than polygon-vs-circle.
// So we convert polygon-vs-circle to polygon-vs-point.
static float32 DistancePC(
b2Vec2* x1, b2Vec2* x2,
const b2PolygonShape* polygon, const b2XForm& xf1,
const b2CircleShape* circle, const b2XForm& xf2)
{
Point point;
point.p = b2Mul(xf2, circle->GetLocalPosition());
float32 distance = DistanceGeneric(x1, x2, polygon, xf1, &point, b2XForm_identity);
float32 r = circle->GetRadius() - b2_toiSlop;
if (distance > r)
{
distance -= r;
b2Vec2 d = *x2 - *x1;
d.Normalize();
*x2 -= r * d;
}
else
{
distance = 0.0f;
*x2 = *x1;
}
return distance;
}
float32 b2Distance(b2Vec2* x1, b2Vec2* x2,
const b2Shape* shape1, const b2XForm& xf1,
const b2Shape* shape2, const b2XForm& xf2)
{
b2ShapeType type1 = shape1->GetType();
b2ShapeType type2 = shape2->GetType();
if (type1 == e_circleShape && type2 == e_circleShape)
{
return DistanceCC(x1, x2, (b2CircleShape*)shape1, xf1, (b2CircleShape*)shape2, xf2);
}
if (type1 == e_polygonShape && type2 == e_circleShape)
{
return DistancePC(x1, x2, (b2PolygonShape*)shape1, xf1, (b2CircleShape*)shape2, xf2);
}
if (type1 == e_circleShape && type2 == e_polygonShape)
{
return DistancePC(x2, x1, (b2PolygonShape*)shape2, xf2, (b2CircleShape*)shape1, xf1);
}
if (type1 == e_polygonShape && type2 == e_polygonShape)
{
return DistanceGeneric(x1, x2, (b2PolygonShape*)shape1, xf1, (b2PolygonShape*)shape2, xf2);
}
if (type1 == e_edgeShape && type2 == e_circleShape)
{
return DistanceEdgeCircle(x1, x2, (b2EdgeShape*)shape1, xf1, (b2CircleShape*)shape2, xf2);
}
if (type1 == e_circleShape && type2 == e_edgeShape)
{
return DistanceEdgeCircle(x2, x1, (b2EdgeShape*)shape2, xf2, (b2CircleShape*)shape1, xf1);
}
if (type1 == e_polygonShape && type2 == e_edgeShape)
{
return DistanceGeneric(x2, x1, (b2EdgeShape*)shape2, xf2, (b2PolygonShape*)shape1, xf1);
}
if (type1 == e_edgeShape && type2 == e_polygonShape)
{
return DistanceGeneric(x1, x2, (b2EdgeShape*)shape1, xf1, (b2PolygonShape*)shape2, xf2);
}
return 0.0f;
}
|