1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
/*
* Copyright (c) 2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2Collision.h"
#include "Shapes/b2Shape.h"
// This algorithm uses conservative advancement to compute the time of
// impact (TOI) of two shapes.
// Refs: Bullet, Young Kim
float32 b2TimeOfImpact(const b2Shape* shape1, const b2Sweep& sweep1,
const b2Shape* shape2, const b2Sweep& sweep2)
{
float32 r1 = shape1->GetSweepRadius();
float32 r2 = shape2->GetSweepRadius();
b2Assert(sweep1.t0 == sweep2.t0);
b2Assert(1.0f - sweep1.t0 > B2_FLT_EPSILON);
float32 t0 = sweep1.t0;
b2Vec2 v1 = sweep1.c - sweep1.c0;
b2Vec2 v2 = sweep2.c - sweep2.c0;
float32 omega1 = sweep1.a - sweep1.a0;
float32 omega2 = sweep2.a - sweep2.a0;
float32 alpha = 0.0f;
b2Vec2 p1, p2;
const int32 k_maxIterations = 20; // TODO_ERIN b2Settings
int32 iter = 0;
b2Vec2 normal = b2Vec2_zero;
float32 distance = 0.0f;
float32 targetDistance = 0.0f;
for(;;)
{
float32 t = (1.0f - alpha) * t0 + alpha;
b2XForm xf1, xf2;
sweep1.GetXForm(&xf1, t);
sweep2.GetXForm(&xf2, t);
// Get the distance between shapes.
distance = b2Distance(&p1, &p2, shape1, xf1, shape2, xf2);
if (iter == 0)
{
// Compute a reasonable target distance to give some breathing room
// for conservative advancement.
if (distance > 2.0f * b2_toiSlop)
{
targetDistance = 1.5f * b2_toiSlop;
}
else
{
targetDistance = b2Max(0.05f * b2_toiSlop, distance - 0.5f * b2_toiSlop);
}
}
if (distance - targetDistance < 0.05f * b2_toiSlop || iter == k_maxIterations)
{
break;
}
normal = p2 - p1;
normal.Normalize();
// Compute upper bound on remaining movement.
float32 approachVelocityBound = b2Dot(normal, v1 - v2) + b2Abs(omega1) * r1 + b2Abs(omega2) * r2;
if (b2Abs(approachVelocityBound) < B2_FLT_EPSILON)
{
alpha = 1.0f;
break;
}
// Get the conservative time increment. Don't advance all the way.
float32 dAlpha = (distance - targetDistance) / approachVelocityBound;
//float32 dt = (distance - 0.5f * b2_linearSlop) / approachVelocityBound;
float32 newAlpha = alpha + dAlpha;
// The shapes may be moving apart or a safe distance apart.
if (newAlpha < 0.0f || 1.0f < newAlpha)
{
alpha = 1.0f;
break;
}
// Ensure significant advancement.
if (newAlpha < (1.0f + 100.0f * B2_FLT_EPSILON) * alpha)
{
break;
}
alpha = newAlpha;
++iter;
}
return alpha;
}
|