1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2ContactSolver.h"
#include "b2Contact.h"
#include "../b2Body.h"
#include "../b2World.h"
#include "../../Common/b2StackAllocator.h"
#define B2_DEBUG_SOLVER 0
b2ContactSolver::b2ContactSolver(const b2TimeStep& step, b2Contact** contacts, int32 contactCount, b2StackAllocator* allocator)
{
m_step = step;
m_allocator = allocator;
m_constraintCount = 0;
for (int32 i = 0; i < contactCount; ++i)
{
b2Assert(contacts[i]->IsSolid());
m_constraintCount += contacts[i]->GetManifoldCount();
}
m_constraints = (b2ContactConstraint*)m_allocator->Allocate(m_constraintCount * sizeof(b2ContactConstraint));
int32 count = 0;
for (int32 i = 0; i < contactCount; ++i)
{
b2Contact* contact = contacts[i];
b2Shape* shape1 = contact->m_shape1;
b2Shape* shape2 = contact->m_shape2;
b2Body* b1 = shape1->GetBody();
b2Body* b2 = shape2->GetBody();
int32 manifoldCount = contact->GetManifoldCount();
b2Manifold* manifolds = contact->GetManifolds();
float32 friction = b2MixFriction(shape1->GetFriction(), shape2->GetFriction());
float32 restitution = b2MixRestitution(shape1->GetRestitution(), shape2->GetRestitution());
b2Vec2 v1 = b1->m_linearVelocity;
b2Vec2 v2 = b2->m_linearVelocity;
float32 w1 = b1->m_angularVelocity;
float32 w2 = b2->m_angularVelocity;
for (int32 j = 0; j < manifoldCount; ++j)
{
b2Manifold* manifold = manifolds + j;
b2Assert(manifold->pointCount > 0);
const b2Vec2 normal = manifold->normal;
b2Assert(count < m_constraintCount);
b2ContactConstraint* cc = m_constraints + count;
cc->body1 = b1;
cc->body2 = b2;
cc->manifold = manifold;
cc->normal = normal;
cc->pointCount = manifold->pointCount;
cc->friction = friction;
cc->restitution = restitution;
for (int32 k = 0; k < cc->pointCount; ++k)
{
b2ManifoldPoint* cp = manifold->points + k;
b2ContactConstraintPoint* ccp = cc->points + k;
ccp->normalImpulse = cp->normalImpulse;
ccp->tangentImpulse = cp->tangentImpulse;
ccp->separation = cp->separation;
ccp->localAnchor1 = cp->localPoint1;
ccp->localAnchor2 = cp->localPoint2;
ccp->r1 = b2Mul(b1->GetXForm().R, cp->localPoint1 - b1->GetLocalCenter());
ccp->r2 = b2Mul(b2->GetXForm().R, cp->localPoint2 - b2->GetLocalCenter());
float32 rn1 = b2Cross(ccp->r1, normal);
float32 rn2 = b2Cross(ccp->r2, normal);
rn1 *= rn1;
rn2 *= rn2;
float32 kNormal = b1->m_invMass + b2->m_invMass + b1->m_invI * rn1 + b2->m_invI * rn2;
b2Assert(kNormal > B2_FLT_EPSILON);
ccp->normalMass = 1.0f / kNormal;
float32 kEqualized = b1->m_mass * b1->m_invMass + b2->m_mass * b2->m_invMass;
kEqualized += b1->m_mass * b1->m_invI * rn1 + b2->m_mass * b2->m_invI * rn2;
b2Assert(kEqualized > B2_FLT_EPSILON);
ccp->equalizedMass = 1.0f / kEqualized;
b2Vec2 tangent = b2Cross(normal, 1.0f);
float32 rt1 = b2Cross(ccp->r1, tangent);
float32 rt2 = b2Cross(ccp->r2, tangent);
rt1 *= rt1;
rt2 *= rt2;
float32 kTangent = b1->m_invMass + b2->m_invMass + b1->m_invI * rt1 + b2->m_invI * rt2;
b2Assert(kTangent > B2_FLT_EPSILON);
ccp->tangentMass = 1.0f / kTangent;
// Setup a velocity bias for restitution.
ccp->velocityBias = 0.0f;
if (ccp->separation > 0.0f)
{
ccp->velocityBias = -step.inv_dt * ccp->separation; // TODO_ERIN b2TimeStep
}
else
{
float32 vRel = b2Dot(cc->normal, v2 + b2Cross(w2, ccp->r2) - v1 - b2Cross(w1, ccp->r1));
if (vRel < -b2_velocityThreshold)
{
ccp->velocityBias = -cc->restitution * vRel;
}
}
}
// If we have two points, then prepare the block solver.
if (cc->pointCount == 2)
{
b2ContactConstraintPoint* ccp1 = cc->points + 0;
b2ContactConstraintPoint* ccp2 = cc->points + 1;
float32 invMass1 = b1->m_invMass;
float32 invI1 = b1->m_invI;
float32 invMass2 = b2->m_invMass;
float32 invI2 = b2->m_invI;
float32 rn11 = b2Cross(ccp1->r1, normal);
float32 rn12 = b2Cross(ccp1->r2, normal);
float32 rn21 = b2Cross(ccp2->r1, normal);
float32 rn22 = b2Cross(ccp2->r2, normal);
float32 k11 = invMass1 + invMass2 + invI1 * rn11 * rn11 + invI2 * rn12 * rn12;
float32 k22 = invMass1 + invMass2 + invI1 * rn21 * rn21 + invI2 * rn22 * rn22;
float32 k12 = invMass1 + invMass2 + invI1 * rn11 * rn21 + invI2 * rn12 * rn22;
// Ensure a reasonable condition number.
const float32 k_maxConditionNumber = 100.0f;
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
{
// K is safe to invert.
cc->K.col1.Set(k11, k12);
cc->K.col2.Set(k12, k22);
cc->normalMass = cc->K.GetInverse();
}
else
{
// The constraints are redundant, just use one.
// TODO_ERIN use deepest?
cc->pointCount = 1;
}
}
++count;
}
}
b2Assert(count == m_constraintCount);
}
b2ContactSolver::~b2ContactSolver()
{
m_allocator->Free(m_constraints);
}
void b2ContactSolver::InitVelocityConstraints(const b2TimeStep& step)
{
// Warm start.
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* b1 = c->body1;
b2Body* b2 = c->body2;
float32 invMass1 = b1->m_invMass;
float32 invI1 = b1->m_invI;
float32 invMass2 = b2->m_invMass;
float32 invI2 = b2->m_invI;
b2Vec2 normal = c->normal;
b2Vec2 tangent = b2Cross(normal, 1.0f);
if (step.warmStarting)
{
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
ccp->normalImpulse *= step.dtRatio;
ccp->tangentImpulse *= step.dtRatio;
b2Vec2 P = ccp->normalImpulse * normal + ccp->tangentImpulse * tangent;
b1->m_angularVelocity -= invI1 * b2Cross(ccp->r1, P);
b1->m_linearVelocity -= invMass1 * P;
b2->m_angularVelocity += invI2 * b2Cross(ccp->r2, P);
b2->m_linearVelocity += invMass2 * P;
}
}
else
{
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
ccp->normalImpulse = 0.0f;
ccp->tangentImpulse = 0.0f;
}
}
}
}
void b2ContactSolver::SolveVelocityConstraints()
{
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* b1 = c->body1;
b2Body* b2 = c->body2;
float32 w1 = b1->m_angularVelocity;
float32 w2 = b2->m_angularVelocity;
b2Vec2 v1 = b1->m_linearVelocity;
b2Vec2 v2 = b2->m_linearVelocity;
float32 invMass1 = b1->m_invMass;
float32 invI1 = b1->m_invI;
float32 invMass2 = b2->m_invMass;
float32 invI2 = b2->m_invI;
b2Vec2 normal = c->normal;
b2Vec2 tangent = b2Cross(normal, 1.0f);
float32 friction = c->friction;
b2Assert(c->pointCount == 1 || c->pointCount == 2);
// Solve normal constraints
if (c->pointCount == 1)
{
b2ContactConstraintPoint* ccp = c->points + 0;
// Relative velocity at contact
b2Vec2 dv = v2 + b2Cross(w2, ccp->r2) - v1 - b2Cross(w1, ccp->r1);
// Compute normal impulse
float32 vn = b2Dot(dv, normal);
float32 lambda = -ccp->normalMass * (vn - ccp->velocityBias);
// b2Clamp the accumulated impulse
float32 newImpulse = b2Max(ccp->normalImpulse + lambda, 0.0f);
lambda = newImpulse - ccp->normalImpulse;
// Apply contact impulse
b2Vec2 P = lambda * normal;
v1 -= invMass1 * P;
w1 -= invI1 * b2Cross(ccp->r1, P);
v2 += invMass2 * P;
w2 += invI2 * b2Cross(ccp->r2, P);
ccp->normalImpulse = newImpulse;
}
else
{
// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
// Build the mini LCP for this contact patch
//
// vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
//
// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
// b = vn_0 - velocityBias
//
// The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
// solution that satisfies the problem is chosen.
//
// In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
// that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
//
// Substitute:
//
// x = x' - a
//
// Plug into above equation:
//
// vn = A * x + b
// = A * (x' - a) + b
// = A * x' + b - A * a
// = A * x' + b'
// b' = b - A * a;
b2ContactConstraintPoint* cp1 = c->points + 0;
b2ContactConstraintPoint* cp2 = c->points + 1;
b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse);
b2Assert(a.x >= 0.0f && a.y >= 0.0f);
// Relative velocity at contact
b2Vec2 dv1 = v2 + b2Cross(w2, cp1->r2) - v1 - b2Cross(w1, cp1->r1);
b2Vec2 dv2 = v2 + b2Cross(w2, cp2->r2) - v1 - b2Cross(w1, cp2->r1);
// Compute normal velocity
float32 vn1 = b2Dot(dv1, normal);
float32 vn2 = b2Dot(dv2, normal);
b2Vec2 b;
b.x = vn1 - cp1->velocityBias;
b.y = vn2 - cp2->velocityBias;
b -= b2Mul(c->K, a);
const float32 k_errorTol = 1e-3f;
B2_NOT_USED(k_errorTol);
for (;;)
{
//
// Case 1: vn = 0
//
// 0 = A * x' + b'
//
// Solve for x':
//
// x' = - inv(A) * b'
//
b2Vec2 x = - b2Mul(c->normalMass, b);
if (x.x >= 0.0f && x.y >= 0.0f)
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
v1 -= invMass1 * (P1 + P2);
w1 -= invI1 * (b2Cross(cp1->r1, P1) + b2Cross(cp2->r1, P2));
v2 += invMass2 * (P1 + P2);
w2 += invI2 * (b2Cross(cp1->r2, P1) + b2Cross(cp2->r2, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
#if B2_DEBUG_SOLVER == 1
// Postconditions
dv1 = v2 + b2Cross(w2, cp1->r2) - v1 - b2Cross(w1, cp1->r1);
dv2 = v2 + b2Cross(w2, cp2->r2) - v1 - b2Cross(w1, cp2->r1);
// Compute normal velocity
vn1 = b2Dot(dv1, normal);
vn2 = b2Dot(dv2, normal);
b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
#endif
break;
}
//
// Case 2: vn1 = 0 and x2 = 0
//
// 0 = a11 * x1' + a12 * 0 + b1'
// vn2 = a21 * x1' + a22 * 0 + b2'
//
x.x = - cp1->normalMass * b.x;
x.y = 0.0f;
vn1 = 0.0f;
vn2 = c->K.col1.y * x.x + b.y;
if (x.x >= 0.0f && vn2 >= 0.0f)
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
v1 -= invMass1 * (P1 + P2);
w1 -= invI1 * (b2Cross(cp1->r1, P1) + b2Cross(cp2->r1, P2));
v2 += invMass2 * (P1 + P2);
w2 += invI2 * (b2Cross(cp1->r2, P1) + b2Cross(cp2->r2, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
#if B2_DEBUG_SOLVER == 1
// Postconditions
dv1 = v2 + b2Cross(w2, cp1->r2) - v1 - b2Cross(w1, cp1->r1);
// Compute normal velocity
vn1 = b2Dot(dv1, normal);
b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
#endif
break;
}
//
// Case 3: w2 = 0 and x1 = 0
//
// vn1 = a11 * 0 + a12 * x2' + b1'
// 0 = a21 * 0 + a22 * x2' + b2'
//
x.x = 0.0f;
x.y = - cp2->normalMass * b.y;
vn1 = c->K.col2.x * x.y + b.x;
vn2 = 0.0f;
if (x.y >= 0.0f && vn1 >= 0.0f)
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
v1 -= invMass1 * (P1 + P2);
w1 -= invI1 * (b2Cross(cp1->r1, P1) + b2Cross(cp2->r1, P2));
v2 += invMass2 * (P1 + P2);
w2 += invI2 * (b2Cross(cp1->r2, P1) + b2Cross(cp2->r2, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
#if B2_DEBUG_SOLVER == 1
// Postconditions
dv2 = v2 + b2Cross(w2, cp2->r2) - v1 - b2Cross(w1, cp2->r1);
// Compute normal velocity
vn2 = b2Dot(dv2, normal);
b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
#endif
break;
}
//
// Case 4: x1 = 0 and x2 = 0
//
// vn1 = b1
// vn2 = b2;
x.x = 0.0f;
x.y = 0.0f;
vn1 = b.x;
vn2 = b.y;
if (vn1 >= 0.0f && vn2 >= 0.0f )
{
// Resubstitute for the incremental impulse
b2Vec2 d = x - a;
// Apply incremental impulse
b2Vec2 P1 = d.x * normal;
b2Vec2 P2 = d.y * normal;
v1 -= invMass1 * (P1 + P2);
w1 -= invI1 * (b2Cross(cp1->r1, P1) + b2Cross(cp2->r1, P2));
v2 += invMass2 * (P1 + P2);
w2 += invI2 * (b2Cross(cp1->r2, P1) + b2Cross(cp2->r2, P2));
// Accumulate
cp1->normalImpulse = x.x;
cp2->normalImpulse = x.y;
break;
}
// No solution, give up. This is hit sometimes, but it doesn't seem to matter.
break;
}
}
// Solve tangent constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
// Relative velocity at contact
b2Vec2 dv = v2 + b2Cross(w2, ccp->r2) - v1 - b2Cross(w1, ccp->r1);
// Compute tangent force
float32 vt = b2Dot(dv, tangent);
float32 lambda = ccp->tangentMass * (-vt);
// b2Clamp the accumulated force
float32 maxFriction = friction * ccp->normalImpulse;
float32 newImpulse = b2Clamp(ccp->tangentImpulse + lambda, -maxFriction, maxFriction);
lambda = newImpulse - ccp->tangentImpulse;
// Apply contact impulse
b2Vec2 P = lambda * tangent;
v1 -= invMass1 * P;
w1 -= invI1 * b2Cross(ccp->r1, P);
v2 += invMass2 * P;
w2 += invI2 * b2Cross(ccp->r2, P);
ccp->tangentImpulse = newImpulse;
}
b1->m_linearVelocity = v1;
b1->m_angularVelocity = w1;
b2->m_linearVelocity = v2;
b2->m_angularVelocity = w2;
}
}
void b2ContactSolver::FinalizeVelocityConstraints()
{
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Manifold* m = c->manifold;
for (int32 j = 0; j < c->pointCount; ++j)
{
m->points[j].normalImpulse = c->points[j].normalImpulse;
m->points[j].tangentImpulse = c->points[j].tangentImpulse;
}
}
}
#if 1
// Sequential solver.
bool b2ContactSolver::SolvePositionConstraints(float32 baumgarte)
{
float32 minSeparation = 0.0f;
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* b1 = c->body1;
b2Body* b2 = c->body2;
float32 invMass1 = b1->m_mass * b1->m_invMass;
float32 invI1 = b1->m_mass * b1->m_invI;
float32 invMass2 = b2->m_mass * b2->m_invMass;
float32 invI2 = b2->m_mass * b2->m_invI;
b2Vec2 normal = c->normal;
// Solver normal constraints
for (int32 j = 0; j < c->pointCount; ++j)
{
b2ContactConstraintPoint* ccp = c->points + j;
b2Vec2 r1 = b2Mul(b1->GetXForm().R, ccp->localAnchor1 - b1->GetLocalCenter());
b2Vec2 r2 = b2Mul(b2->GetXForm().R, ccp->localAnchor2 - b2->GetLocalCenter());
b2Vec2 p1 = b1->m_sweep.c + r1;
b2Vec2 p2 = b2->m_sweep.c + r2;
b2Vec2 dp = p2 - p1;
// Approximate the current separation.
float32 separation = b2Dot(dp, normal) + ccp->separation;
// Track max constraint error.
minSeparation = b2Min(minSeparation, separation);
// Prevent large corrections and allow slop.
float32 C = baumgarte * b2Clamp(separation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
// Compute normal impulse
float32 impulse = -ccp->equalizedMass * C;
b2Vec2 P = impulse * normal;
b1->m_sweep.c -= invMass1 * P;
b1->m_sweep.a -= invI1 * b2Cross(r1, P);
b1->SynchronizeTransform();
b2->m_sweep.c += invMass2 * P;
b2->m_sweep.a += invI2 * b2Cross(r2, P);
b2->SynchronizeTransform();
}
}
// We can't expect minSpeparation >= -b2_linearSlop because we don't
// push the separation above -b2_linearSlop.
return minSeparation >= -1.5f * b2_linearSlop;
}
#else
// Block solver. Doesn't seem that great.
void b2ContactSolver::SolvePositionConstraints(float32 baumgarte)
{
for (int32 i = 0; i < m_constraintCount; ++i)
{
b2ContactConstraint* c = m_constraints + i;
b2Body* b1 = c->body1;
b2Body* b2 = c->body2;
float32 invMass1 = b1->m_mass * b1->m_invMass;
float32 invI1 = b1->m_mass * b1->m_invI;
float32 invMass2 = b2->m_mass * b2->m_invMass;
float32 invI2 = b2->m_mass * b2->m_invI;
b2Vec2 normal = c->normal;
bool singlePoint = c->pointCount == 1;
if (c->pointCount == 2)
{
b2ContactConstraintPoint* ccp1 = c->points + 0;
b2ContactConstraintPoint* ccp2 = c->points + 1;
b2Vec2 r11 = b2Mul(b1->GetXForm().R, ccp1->localAnchor1 - b1->GetLocalCenter());
b2Vec2 r12 = b2Mul(b2->GetXForm().R, ccp1->localAnchor2 - b2->GetLocalCenter());
b2Vec2 r21 = b2Mul(b1->GetXForm().R, ccp2->localAnchor1 - b1->GetLocalCenter());
b2Vec2 r22 = b2Mul(b2->GetXForm().R, ccp2->localAnchor2 - b2->GetLocalCenter());
b2Vec2 p11 = b1->m_sweep.c + r11;
b2Vec2 p12 = b2->m_sweep.c + r12;
b2Vec2 dp1 = p12 - p11;
b2Vec2 p21 = b1->m_sweep.c + r21;
b2Vec2 p22 = b2->m_sweep.c + r22;
b2Vec2 dp2 = p22 - p21;
float32 rn11 = b2Cross(r11, normal);
float32 rn12 = b2Cross(r12, normal);
float32 rn21 = b2Cross(r21, normal);
float32 rn22 = b2Cross(r22, normal);
float32 k11 = invMass1 + invMass2 + invI1 * rn11 * rn11 + invI2 * rn12 * rn12;
float32 k22 = invMass1 + invMass2 + invI1 * rn21 * rn21 + invI2 * rn22 * rn22;
float32 k12 = invMass1 + invMass2 + invI1 * rn11 * rn21 + invI2 * rn12 * rn22;
// Ensure a reasonable condition number.
const float32 k_maxConditionNumber = 100.0f;
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
{
b2Mat22 K;
K.col1.Set(k11, k12);
K.col2.Set(k12, k22);
float32 separation1 = b2Dot(dp1, normal) + ccp1->separation;
float32 separation2 = b2Dot(dp2, normal) + ccp2->separation;
b2Vec2 C;
C.x = baumgarte * (separation1 + b2_linearSlop);
C.y = baumgarte * (separation2 + b2_linearSlop);
b2Vec2 f = K.Solve(-C);
if (f.x < 0.0f && f.y < 0.0f)
{
f.SetZero();
}
else if (f.x < 0.0f)
{
f.x = 0.0f;
f.y = -C.y / k22;
}
else if (f.y < 0.0f)
{
f.x = -C.x / k11;
f.y = 0.0f;
}
b2Vec2 P1 = f.x * normal;
b2Vec2 P2 = f.y * normal;
b1->m_sweep.c -= invMass1 * (P1 + P2);
b1->m_sweep.a -= invI1 * (b2Cross(r11, P1) + b2Cross(r21, P2));
b1->SynchronizeTransform();
b2->m_sweep.c += invMass2 * (P1 + P2);
b2->m_sweep.a += invI2 * (b2Cross(r12, P1) + b2Cross(r22, P2));
b2->SynchronizeTransform();
}
else
{
// The constraints are linearly dependent, so just use the first one.
// This my cause a problem if the deepest one is ignored.
singlePoint = true;
}
}
if (singlePoint)
{
b2ContactConstraintPoint* ccp = c->points + 0;
b2Vec2 r1 = b2Mul(b1->GetXForm().R, ccp->localAnchor1 - b1->GetLocalCenter());
b2Vec2 r2 = b2Mul(b2->GetXForm().R, ccp->localAnchor2 - b2->GetLocalCenter());
b2Vec2 p1 = b1->m_sweep.c + r1;
b2Vec2 p2 = b2->m_sweep.c + r2;
b2Vec2 dp = p2 - p1;
// Approximate the current separation.
float32 separation = b2Dot(dp, normal) + ccp->separation;
// Prevent large corrections and allow slop.
float32 C = baumgarte * b2Clamp(separation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
// Compute normal impulse
float32 impulse = -ccp->equalizedMass * C;
b2Vec2 P = impulse * normal;
b1->m_sweep.c -= invMass1 * P;
b1->m_sweep.a -= invI1 * b2Cross(r1, P);
b1->SynchronizeTransform();
b2->m_sweep.c += invMass2 * P;
b2->m_sweep.a += invI2 * b2Cross(r2, P);
b2->SynchronizeTransform();
}
}
}
#endif
|