1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2PolyAndEdgeContact.h"
#include "../b2Body.h"
#include "../b2WorldCallbacks.h"
#include "../../Common/b2BlockAllocator.h"
#include "../../Collision/Shapes/b2EdgeShape.h"
#include "../../Collision/Shapes/b2PolygonShape.h"
#include <new>
#include <cstring>
b2Contact* b2PolyAndEdgeContact::Create(b2Shape* shape1, b2Shape* shape2, b2BlockAllocator* allocator)
{
void* mem = allocator->Allocate(sizeof(b2PolyAndEdgeContact));
return new (mem) b2PolyAndEdgeContact(shape1, shape2);
}
void b2PolyAndEdgeContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator)
{
((b2PolyAndEdgeContact*)contact)->~b2PolyAndEdgeContact();
allocator->Free(contact, sizeof(b2PolyAndEdgeContact));
}
b2PolyAndEdgeContact::b2PolyAndEdgeContact(b2Shape* s1, b2Shape* s2)
: b2Contact(s1, s2)
{
b2Assert(m_shape1->GetType() == e_polygonShape);
b2Assert(m_shape2->GetType() == e_edgeShape);
m_manifold.pointCount = 0;
}
void b2PolyAndEdgeContact::Evaluate(b2ContactListener* listener)
{
b2Body* b1 = m_shape1->GetBody();
b2Body* b2 = m_shape2->GetBody();
b2Manifold m0;
memcpy(&m0, &m_manifold, sizeof(b2Manifold));
b2CollidePolyAndEdge(&m_manifold, (b2PolygonShape*)m_shape1, b1->GetXForm(), (b2EdgeShape*)m_shape2, b2->GetXForm());
bool persisted[b2_maxManifoldPoints] = {false, false};
b2ContactPoint cp;
cp.shape1 = m_shape1;
cp.shape2 = m_shape2;
cp.friction = b2MixFriction(m_shape1->GetFriction(), m_shape2->GetFriction());
cp.restitution = b2MixRestitution(m_shape1->GetRestitution(), m_shape2->GetRestitution());
// Match contact ids to facilitate warm starting.
if (m_manifold.pointCount > 0)
{
// Match old contact ids to new contact ids and copy the
// stored impulses to warm start the solver.
for (int32 i = 0; i < m_manifold.pointCount; ++i)
{
b2ManifoldPoint* mp = m_manifold.points + i;
mp->normalImpulse = 0.0f;
mp->tangentImpulse = 0.0f;
bool found = false;
b2ContactID id = mp->id;
for (int32 j = 0; j < m0.pointCount; ++j)
{
if (persisted[j] == true)
{
continue;
}
b2ManifoldPoint* mp0 = m0.points + j;
if (mp0->id.key == id.key)
{
persisted[j] = true;
mp->normalImpulse = mp0->normalImpulse;
mp->tangentImpulse = mp0->tangentImpulse;
// A persistent point.
found = true;
// Report persistent point.
if (listener != NULL)
{
cp.position = b1->GetWorldPoint(mp->localPoint1);
b2Vec2 v1 = b1->GetLinearVelocityFromLocalPoint(mp->localPoint1);
b2Vec2 v2 = b2->GetLinearVelocityFromLocalPoint(mp->localPoint2);
cp.velocity = v2 - v1;
cp.normal = m_manifold.normal;
cp.separation = mp->separation;
cp.id = id;
listener->Persist(&cp);
}
break;
}
}
// Report added point.
if (found == false && listener != NULL)
{
cp.position = b1->GetWorldPoint(mp->localPoint1);
b2Vec2 v1 = b1->GetLinearVelocityFromLocalPoint(mp->localPoint1);
b2Vec2 v2 = b2->GetLinearVelocityFromLocalPoint(mp->localPoint2);
cp.velocity = v2 - v1;
cp.normal = m_manifold.normal;
cp.separation = mp->separation;
cp.id = id;
listener->Add(&cp);
}
}
m_manifoldCount = 1;
}
else
{
m_manifoldCount = 0;
}
if (listener == NULL)
{
return;
}
// Report removed points.
for (int32 i = 0; i < m0.pointCount; ++i)
{
if (persisted[i])
{
continue;
}
b2ManifoldPoint* mp0 = m0.points + i;
cp.position = b1->GetWorldPoint(mp0->localPoint1);
b2Vec2 v1 = b1->GetLinearVelocityFromLocalPoint(mp0->localPoint1);
b2Vec2 v2 = b2->GetLinearVelocityFromLocalPoint(mp0->localPoint2);
cp.velocity = v2 - v1;
cp.normal = m0.normal;
cp.separation = mp0->separation;
cp.id = mp0->id;
listener->Remove(&cp);
}
}
void b2PolyAndEdgeContact::b2CollidePolyAndEdge(b2Manifold* manifold,
const b2PolygonShape* polygon,
const b2XForm& xf1,
const b2EdgeShape* edge,
const b2XForm& xf2)
{
manifold->pointCount = 0;
b2Vec2 v1 = b2Mul(xf2, edge->GetVertex1());
b2Vec2 v2 = b2Mul(xf2, edge->GetVertex2());
b2Vec2 n = b2Mul(xf2.R, edge->GetNormalVector());
b2Vec2 v1Local = b2MulT(xf1, v1);
b2Vec2 v2Local = b2MulT(xf1, v2);
b2Vec2 nLocal = b2MulT(xf1.R, n);
float32 separation1;
int32 separationIndex1 = -1; // which normal on the poly found the shallowest depth?
float32 separationMax1 = -B2_FLT_MAX; // the shallowest depth of edge in poly
float32 separation2;
int32 separationIndex2 = -1; // which normal on the poly found the shallowest depth?
float32 separationMax2 = -B2_FLT_MAX; // the shallowest depth of edge in poly
float32 separationMax = -B2_FLT_MAX; // the shallowest depth of edge in poly
bool separationV1 = false; // is the shallowest depth from edge's v1 or v2 vertex?
int32 separationIndex = -1; // which normal on the poly found the shallowest depth?
int32 vertexCount = polygon->GetVertexCount();
const b2Vec2* vertices = polygon->GetVertices();
const b2Vec2* normals = polygon->GetNormals();
int32 enterStartIndex = -1; // the last poly vertex above the edge
int32 enterEndIndex = -1; // the first poly vertex below the edge
int32 exitStartIndex = -1; // the last poly vertex below the edge
int32 exitEndIndex = -1; // the first poly vertex above the edge
//int32 deepestIndex;
// the "N" in the following variables refers to the edge's normal.
// these are projections of poly vertices along the edge's normal,
// a.k.a. they are the separation of the poly from the edge.
float32 prevSepN = 0.0f;
float32 nextSepN = 0.0f;
float32 enterSepN = 0.0f; // the depth of enterEndIndex under the edge (stored as a separation, so it's negative)
float32 exitSepN = 0.0f; // the depth of exitStartIndex under the edge (stored as a separation, so it's negative)
float32 deepestSepN = B2_FLT_MAX; // the depth of the deepest poly vertex under the end (stored as a separation, so it's negative)
// for each poly normal, get the edge's depth into the poly.
// for each poly vertex, get the vertex's depth into the edge.
// use these calculations to define the remaining variables declared above.
prevSepN = b2Dot(vertices[vertexCount-1] - v1Local, nLocal);
for (int32 i = 0; i < vertexCount; i++)
{
separation1 = b2Dot(v1Local - vertices[i], normals[i]);
separation2 = b2Dot(v2Local - vertices[i], normals[i]);
if (separation2 < separation1) {
if (separation2 > separationMax) {
separationMax = separation2;
separationV1 = false;
separationIndex = i;
}
} else {
if (separation1 > separationMax) {
separationMax = separation1;
separationV1 = true;
separationIndex = i;
}
}
if (separation1 > separationMax1) {
separationMax1 = separation1;
separationIndex1 = i;
}
if (separation2 > separationMax2) {
separationMax2 = separation2;
separationIndex2 = i;
}
nextSepN = b2Dot(vertices[i] - v1Local, nLocal);
if (nextSepN >= 0.0f && prevSepN < 0.0f) {
exitStartIndex = (i == 0) ? vertexCount-1 : i-1;
exitEndIndex = i;
exitSepN = prevSepN;
} else if (nextSepN < 0.0f && prevSepN >= 0.0f) {
enterStartIndex = (i == 0) ? vertexCount-1 : i-1;
enterEndIndex = i;
enterSepN = nextSepN;
}
if (nextSepN < deepestSepN) {
deepestSepN = nextSepN;
//deepestIndex = i;
}
prevSepN = nextSepN;
}
if (enterStartIndex == -1) {
// poly is entirely below or entirely above edge, return with no contact:
return;
}
if (separationMax > 0.0f) {
// poly is laterally disjoint with edge, return with no contact:
return;
}
// if the poly is near a convex corner on the edge
if ((separationV1 && edge->Corner1IsConvex()) || (!separationV1 && edge->Corner2IsConvex())) {
// if shallowest depth was from edge into poly,
// use the edge's vertex as the contact point:
if (separationMax > deepestSepN + b2_linearSlop) {
// if -normal angle is closer to adjacent edge than this edge,
// let the adjacent edge handle it and return with no contact:
if (separationV1) {
if (b2Dot(normals[separationIndex1], b2MulT(xf1.R, b2Mul(xf2.R, edge->GetCorner1Vector()))) >= 0.0f) {
return;
}
} else {
if (b2Dot(normals[separationIndex2], b2MulT(xf1.R, b2Mul(xf2.R, edge->GetCorner2Vector()))) <= 0.0f) {
return;
}
}
manifold->pointCount = 1;
manifold->normal = b2Mul(xf1.R, normals[separationIndex]);
manifold->points[0].separation = separationMax;
manifold->points[0].id.features.incidentEdge = (uint8)separationIndex;
manifold->points[0].id.features.incidentVertex = b2_nullFeature;
manifold->points[0].id.features.referenceEdge = 0;
manifold->points[0].id.features.flip = 0;
if (separationV1) {
manifold->points[0].localPoint1 = v1Local;
manifold->points[0].localPoint2 = edge->GetVertex1();
} else {
manifold->points[0].localPoint1 = v2Local;
manifold->points[0].localPoint2 = edge->GetVertex2();
}
return;
}
}
// We're going to use the edge's normal now.
manifold->normal = (-1.0f) * n;
// Check whether we only need one contact point.
if (enterEndIndex == exitStartIndex) {
manifold->pointCount = 1;
manifold->points[0].id.features.incidentEdge = (uint8)enterEndIndex;
manifold->points[0].id.features.incidentVertex = b2_nullFeature;
manifold->points[0].id.features.referenceEdge = 0;
manifold->points[0].id.features.flip = 0;
manifold->points[0].localPoint1 = vertices[enterEndIndex];
manifold->points[0].localPoint2 = b2MulT(xf2, b2Mul(xf1, vertices[enterEndIndex]));
manifold->points[0].separation = enterSepN;
return;
}
manifold->pointCount = 2;
// dirLocal should be the edge's direction vector, but in the frame of the polygon.
b2Vec2 dirLocal = b2Cross(nLocal, -1.0f); // TODO: figure out why this optimization didn't work
//b2Vec2 dirLocal = b2MulT(xf1.R, b2Mul(xf2.R, edge->GetDirectionVector()));
float32 dirProj1 = b2Dot(dirLocal, vertices[enterEndIndex] - v1Local);
float32 dirProj2;
// The contact resolution is more robust if the two manifold points are
// adjacent to each other on the polygon. So pick the first two poly
// vertices that are under the edge:
exitEndIndex = (enterEndIndex == vertexCount - 1) ? 0 : enterEndIndex + 1;
if (exitEndIndex != exitStartIndex) {
exitStartIndex = exitEndIndex;
exitSepN = b2Dot(nLocal, vertices[exitStartIndex] - v1Local);
}
dirProj2 = b2Dot(dirLocal, vertices[exitStartIndex] - v1Local);
manifold->points[0].id.features.incidentEdge = (uint8)enterEndIndex;
manifold->points[0].id.features.incidentVertex = b2_nullFeature;
manifold->points[0].id.features.referenceEdge = 0;
manifold->points[0].id.features.flip = 0;
if (dirProj1 > edge->GetLength()) {
manifold->points[0].localPoint1 = v2Local;
manifold->points[0].localPoint2 = edge->GetVertex2();
float32 ratio = (edge->GetLength() - dirProj2) / (dirProj1 - dirProj2);
if (ratio > 100.0f * B2_FLT_EPSILON && ratio < 1.0f) {
manifold->points[0].separation = exitSepN * (1.0f - ratio) + enterSepN * ratio;
} else {
manifold->points[0].separation = enterSepN;
}
} else {
manifold->points[0].localPoint1 = vertices[enterEndIndex];
manifold->points[0].localPoint2 = b2MulT(xf2, b2Mul(xf1, vertices[enterEndIndex]));
manifold->points[0].separation = enterSepN;
}
manifold->points[1].id.features.incidentEdge = (uint8)exitStartIndex;
manifold->points[1].id.features.incidentVertex = b2_nullFeature;
manifold->points[1].id.features.referenceEdge = 0;
manifold->points[1].id.features.flip = 0;
if (dirProj2 < 0.0f) {
manifold->points[1].localPoint1 = v1Local;
manifold->points[1].localPoint2 = edge->GetVertex1();
float32 ratio = (-dirProj1) / (dirProj2 - dirProj1);
if (ratio > 100.0f * B2_FLT_EPSILON && ratio < 1.0f) {
manifold->points[1].separation = enterSepN * (1.0f - ratio) + exitSepN * ratio;
} else {
manifold->points[1].separation = exitSepN;
}
} else {
manifold->points[1].localPoint1 = vertices[exitStartIndex];
manifold->points[1].localPoint2 = b2MulT(xf2, b2Mul(xf1, vertices[exitStartIndex]));
manifold->points[1].separation = exitSepN;
}
}
|