File: b2PolyAndEdgeContact.cpp

package info (click to toggle)
python-box2d 2.0.2%2Bsvn20100109.244-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 2,864 kB
  • ctags: 3,280
  • sloc: cpp: 11,679; python: 10,103; xml: 477; makefile: 85; sh: 8
file content (369 lines) | stat: -rw-r--r-- 13,027 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include "b2PolyAndEdgeContact.h"
#include "../b2Body.h"
#include "../b2WorldCallbacks.h"
#include "../../Common/b2BlockAllocator.h"
#include "../../Collision/Shapes/b2EdgeShape.h"
#include "../../Collision/Shapes/b2PolygonShape.h"

#include <new>
#include <cstring>

b2Contact* b2PolyAndEdgeContact::Create(b2Shape* shape1, b2Shape* shape2, b2BlockAllocator* allocator)
{
	void* mem = allocator->Allocate(sizeof(b2PolyAndEdgeContact));
	return new (mem) b2PolyAndEdgeContact(shape1, shape2);
}

void b2PolyAndEdgeContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator)
{
	((b2PolyAndEdgeContact*)contact)->~b2PolyAndEdgeContact();
	allocator->Free(contact, sizeof(b2PolyAndEdgeContact));
}

b2PolyAndEdgeContact::b2PolyAndEdgeContact(b2Shape* s1, b2Shape* s2)
: b2Contact(s1, s2)
{
	b2Assert(m_shape1->GetType() == e_polygonShape);
	b2Assert(m_shape2->GetType() == e_edgeShape);
	m_manifold.pointCount = 0;
}

void b2PolyAndEdgeContact::Evaluate(b2ContactListener* listener)
{
	b2Body* b1 = m_shape1->GetBody();
	b2Body* b2 = m_shape2->GetBody();

	b2Manifold m0;
	memcpy(&m0, &m_manifold, sizeof(b2Manifold));

	b2CollidePolyAndEdge(&m_manifold, (b2PolygonShape*)m_shape1, b1->GetXForm(), (b2EdgeShape*)m_shape2, b2->GetXForm());

	bool persisted[b2_maxManifoldPoints] = {false, false};

	b2ContactPoint cp;
	cp.shape1 = m_shape1;
	cp.shape2 = m_shape2;
	cp.friction = b2MixFriction(m_shape1->GetFriction(), m_shape2->GetFriction());
	cp.restitution = b2MixRestitution(m_shape1->GetRestitution(), m_shape2->GetRestitution());

	// Match contact ids to facilitate warm starting.
	if (m_manifold.pointCount > 0)
	{
		// Match old contact ids to new contact ids and copy the
		// stored impulses to warm start the solver.
		for (int32 i = 0; i < m_manifold.pointCount; ++i)
		{
			b2ManifoldPoint* mp = m_manifold.points + i;
			mp->normalImpulse = 0.0f;
			mp->tangentImpulse = 0.0f;
			bool found = false;
			b2ContactID id = mp->id;

			for (int32 j = 0; j < m0.pointCount; ++j)
			{
				if (persisted[j] == true)
				{
					continue;
				}

				b2ManifoldPoint* mp0 = m0.points + j;

				if (mp0->id.key == id.key)
				{
					persisted[j] = true;
					mp->normalImpulse = mp0->normalImpulse;
					mp->tangentImpulse = mp0->tangentImpulse;

					// A persistent point.
					found = true;

					// Report persistent point.
					if (listener != NULL)
					{
						cp.position = b1->GetWorldPoint(mp->localPoint1);
						b2Vec2 v1 = b1->GetLinearVelocityFromLocalPoint(mp->localPoint1);
						b2Vec2 v2 = b2->GetLinearVelocityFromLocalPoint(mp->localPoint2);
						cp.velocity = v2 - v1;
						cp.normal = m_manifold.normal;
						cp.separation = mp->separation;
						cp.id = id;
						listener->Persist(&cp);
					}
					break;
				}
			}

			// Report added point.
			if (found == false && listener != NULL)
			{
				cp.position = b1->GetWorldPoint(mp->localPoint1);
				b2Vec2 v1 = b1->GetLinearVelocityFromLocalPoint(mp->localPoint1);
				b2Vec2 v2 = b2->GetLinearVelocityFromLocalPoint(mp->localPoint2);
				cp.velocity = v2 - v1;
				cp.normal = m_manifold.normal;
				cp.separation = mp->separation;
				cp.id = id;
				listener->Add(&cp);
			}
		}

		m_manifoldCount = 1;
	}
	else
	{
		m_manifoldCount = 0;
	}

	if (listener == NULL)
	{
		return;
	}

	// Report removed points.
	for (int32 i = 0; i < m0.pointCount; ++i)
	{
		if (persisted[i])
		{
			continue;
		}

		b2ManifoldPoint* mp0 = m0.points + i;
		cp.position = b1->GetWorldPoint(mp0->localPoint1);
		b2Vec2 v1 = b1->GetLinearVelocityFromLocalPoint(mp0->localPoint1);
		b2Vec2 v2 = b2->GetLinearVelocityFromLocalPoint(mp0->localPoint2);
		cp.velocity = v2 - v1;
		cp.normal = m0.normal;
		cp.separation = mp0->separation;
		cp.id = mp0->id;
		listener->Remove(&cp);
	}
}

void b2PolyAndEdgeContact::b2CollidePolyAndEdge(b2Manifold* manifold,
														  const b2PolygonShape* polygon, 
														  const b2XForm& xf1,
														  const b2EdgeShape* edge, 
														  const b2XForm& xf2)
{
	manifold->pointCount = 0;
	b2Vec2 v1 = b2Mul(xf2, edge->GetVertex1());
	b2Vec2 v2 = b2Mul(xf2, edge->GetVertex2());
	b2Vec2 n = b2Mul(xf2.R, edge->GetNormalVector());
	b2Vec2 v1Local = b2MulT(xf1, v1);
	b2Vec2 v2Local = b2MulT(xf1, v2);
	b2Vec2 nLocal = b2MulT(xf1.R, n);
		
	float32 separation1;
	int32 separationIndex1 = -1; // which normal on the poly found the shallowest depth?
	float32 separationMax1 = -B2_FLT_MAX; // the shallowest depth of edge in poly
	float32 separation2;
	int32 separationIndex2 = -1; // which normal on the poly found the shallowest depth?
	float32 separationMax2 = -B2_FLT_MAX; // the shallowest depth of edge in poly
	float32 separationMax = -B2_FLT_MAX; // the shallowest depth of edge in poly
	bool separationV1 = false; // is the shallowest depth from edge's v1 or v2 vertex?
	int32 separationIndex = -1; // which normal on the poly found the shallowest depth?
		
	int32 vertexCount = polygon->GetVertexCount();
	const b2Vec2* vertices = polygon->GetVertices();
	const b2Vec2* normals = polygon->GetNormals();
		
	int32 enterStartIndex = -1; // the last poly vertex above the edge
	int32 enterEndIndex = -1; // the first poly vertex below the edge
	int32 exitStartIndex = -1; // the last poly vertex below the edge
	int32 exitEndIndex = -1; // the first poly vertex above the edge
	//int32 deepestIndex;
	
	// the "N" in the following variables refers to the edge's normal. 
	// these are projections of poly vertices along the edge's normal, 
	// a.k.a. they are the separation of the poly from the edge. 
	float32 prevSepN = 0.0f;
	float32 nextSepN = 0.0f;
	float32 enterSepN = 0.0f; // the depth of enterEndIndex under the edge (stored as a separation, so it's negative)
	float32 exitSepN = 0.0f; // the depth of exitStartIndex under the edge (stored as a separation, so it's negative)
	float32 deepestSepN = B2_FLT_MAX; // the depth of the deepest poly vertex under the end (stored as a separation, so it's negative)
	
	
	// for each poly normal, get the edge's depth into the poly. 
	// for each poly vertex, get the vertex's depth into the edge. 
	// use these calculations to define the remaining variables declared above.
	prevSepN = b2Dot(vertices[vertexCount-1] - v1Local, nLocal);
	for (int32 i = 0; i < vertexCount; i++)
	{
		separation1 = b2Dot(v1Local - vertices[i], normals[i]);
		separation2 = b2Dot(v2Local - vertices[i], normals[i]);
		if (separation2 < separation1) {
			if (separation2 > separationMax) {
				separationMax = separation2;
				separationV1 = false;
				separationIndex = i;
			}
		} else {
			if (separation1 > separationMax) {
				separationMax = separation1;
				separationV1 = true;
				separationIndex = i;
			}
		}
		if (separation1 > separationMax1) {
			separationMax1 = separation1;
			separationIndex1 = i;
		}
		if (separation2 > separationMax2) {
			separationMax2 = separation2;
			separationIndex2 = i;
		}
		
		nextSepN = b2Dot(vertices[i] - v1Local, nLocal);
		if (nextSepN >= 0.0f && prevSepN < 0.0f) {
			exitStartIndex = (i == 0) ? vertexCount-1 : i-1;
			exitEndIndex = i;
			exitSepN = prevSepN;
		} else if (nextSepN < 0.0f && prevSepN >= 0.0f) {
			enterStartIndex = (i == 0) ? vertexCount-1 : i-1;
			enterEndIndex = i;
			enterSepN = nextSepN;
		}
		if (nextSepN < deepestSepN) {
			deepestSepN = nextSepN;
			//deepestIndex = i;
		}
		prevSepN = nextSepN;
	}
	
	if (enterStartIndex == -1) {
		// poly is entirely below or entirely above edge, return with no contact:
		return;
	}
	if (separationMax > 0.0f) {
		// poly is laterally disjoint with edge, return with no contact:
		return;
	}
	
	// if the poly is near a convex corner on the edge
	if ((separationV1 && edge->Corner1IsConvex()) || (!separationV1 && edge->Corner2IsConvex())) {
		// if shallowest depth was from edge into poly, 
		// use the edge's vertex as the contact point:
		if (separationMax > deepestSepN + b2_linearSlop) {
			// if -normal angle is closer to adjacent edge than this edge, 
			// let the adjacent edge handle it and return with no contact:
			if (separationV1) {
				if (b2Dot(normals[separationIndex1], b2MulT(xf1.R, b2Mul(xf2.R, edge->GetCorner1Vector()))) >= 0.0f) {
					return;
				}
			} else {
				if (b2Dot(normals[separationIndex2], b2MulT(xf1.R, b2Mul(xf2.R, edge->GetCorner2Vector()))) <= 0.0f) {
					return;
				}
			}
			
			manifold->pointCount = 1;
			manifold->normal = b2Mul(xf1.R, normals[separationIndex]);
			manifold->points[0].separation = separationMax;
			manifold->points[0].id.features.incidentEdge = (uint8)separationIndex;
			manifold->points[0].id.features.incidentVertex = b2_nullFeature;
			manifold->points[0].id.features.referenceEdge = 0;
			manifold->points[0].id.features.flip = 0;
			if (separationV1) {
				manifold->points[0].localPoint1 = v1Local;
				manifold->points[0].localPoint2 = edge->GetVertex1();
			} else {
				manifold->points[0].localPoint1 = v2Local;
				manifold->points[0].localPoint2 = edge->GetVertex2();
			}
			return;
		}
	}
	
	// We're going to use the edge's normal now.
	manifold->normal = (-1.0f) * n;
	
	// Check whether we only need one contact point.
	if (enterEndIndex == exitStartIndex) {
		manifold->pointCount = 1;
		manifold->points[0].id.features.incidentEdge = (uint8)enterEndIndex;
		manifold->points[0].id.features.incidentVertex = b2_nullFeature;
		manifold->points[0].id.features.referenceEdge = 0;
		manifold->points[0].id.features.flip = 0;
		manifold->points[0].localPoint1 = vertices[enterEndIndex];
		manifold->points[0].localPoint2 = b2MulT(xf2, b2Mul(xf1, vertices[enterEndIndex]));
		manifold->points[0].separation = enterSepN;
		return;
	}
		
	manifold->pointCount = 2;
	
	// dirLocal should be the edge's direction vector, but in the frame of the polygon.
	b2Vec2 dirLocal = b2Cross(nLocal, -1.0f); // TODO: figure out why this optimization didn't work
	//b2Vec2 dirLocal = b2MulT(xf1.R, b2Mul(xf2.R, edge->GetDirectionVector()));
	
	float32 dirProj1 = b2Dot(dirLocal, vertices[enterEndIndex] - v1Local);
	float32 dirProj2;
	
	// The contact resolution is more robust if the two manifold points are 
	// adjacent to each other on the polygon. So pick the first two poly
	// vertices that are under the edge:
	exitEndIndex = (enterEndIndex == vertexCount - 1) ? 0 : enterEndIndex + 1;
	if (exitEndIndex != exitStartIndex) {
		exitStartIndex = exitEndIndex;
		exitSepN = b2Dot(nLocal, vertices[exitStartIndex] - v1Local);
	}
	dirProj2 = b2Dot(dirLocal, vertices[exitStartIndex] - v1Local);
	
	manifold->points[0].id.features.incidentEdge = (uint8)enterEndIndex;
	manifold->points[0].id.features.incidentVertex = b2_nullFeature;
	manifold->points[0].id.features.referenceEdge = 0;
	manifold->points[0].id.features.flip = 0;
	
	if (dirProj1 > edge->GetLength()) {
		manifold->points[0].localPoint1 = v2Local;
		manifold->points[0].localPoint2 = edge->GetVertex2();
		float32 ratio = (edge->GetLength() - dirProj2) / (dirProj1 - dirProj2);
		if (ratio > 100.0f * B2_FLT_EPSILON && ratio < 1.0f) {
			manifold->points[0].separation = exitSepN * (1.0f - ratio) + enterSepN * ratio;
		} else {
			manifold->points[0].separation = enterSepN;
		}
	} else {
		manifold->points[0].localPoint1 = vertices[enterEndIndex];
		manifold->points[0].localPoint2 = b2MulT(xf2, b2Mul(xf1, vertices[enterEndIndex]));
		manifold->points[0].separation = enterSepN;
	}
		
	manifold->points[1].id.features.incidentEdge = (uint8)exitStartIndex;
	manifold->points[1].id.features.incidentVertex = b2_nullFeature;
	manifold->points[1].id.features.referenceEdge = 0;
	manifold->points[1].id.features.flip = 0;
		
	if (dirProj2 < 0.0f) {
		manifold->points[1].localPoint1 = v1Local;
		manifold->points[1].localPoint2 = edge->GetVertex1();
		float32 ratio = (-dirProj1) / (dirProj2 - dirProj1);
		if (ratio > 100.0f * B2_FLT_EPSILON && ratio < 1.0f) {
			manifold->points[1].separation = enterSepN * (1.0f - ratio) + exitSepN * ratio;
		} else {
			manifold->points[1].separation = exitSepN;
		}
	} else {
		manifold->points[1].localPoint1 = vertices[exitStartIndex];
		manifold->points[1].localPoint2 = b2MulT(xf2, b2Mul(xf1, vertices[exitStartIndex]));
		manifold->points[1].separation = exitSepN;
	}
}