File: b2DistanceJoint.cpp

package info (click to toggle)
python-box2d 2.0.2%2Bsvn20100109.244-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd, squeeze, wheezy
  • size: 2,864 kB
  • ctags: 3,280
  • sloc: cpp: 11,679; python: 10,103; xml: 477; makefile: 85; sh: 8
file content (209 lines) | stat: -rw-r--r-- 6,000 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include "b2DistanceJoint.h"
#include "../b2Body.h"
#include "../b2World.h"

// 1-D constrained system
// m (v2 - v1) = lambda
// v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
// x2 = x1 + h * v2

// 1-D mass-damper-spring system
// m (v2 - v1) + h * d * v2 + h * k * 

// C = norm(p2 - p1) - L
// u = (p2 - p1) / norm(p2 - p1)
// Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
// J = [-u -cross(r1, u) u cross(r2, u)]
// K = J * invM * JT
//   = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2

void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2,
									const b2Vec2& anchor1, const b2Vec2& anchor2)
{
	body1 = b1;
	body2 = b2;
	localAnchor1 = body1->GetLocalPoint(anchor1);
	localAnchor2 = body2->GetLocalPoint(anchor2);
	b2Vec2 d = anchor2 - anchor1;
	length = d.Length();
}


b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def)
: b2Joint(def)
{
	m_localAnchor1 = def->localAnchor1;
	m_localAnchor2 = def->localAnchor2;
	m_length = def->length;
	m_frequencyHz = def->frequencyHz;
	m_dampingRatio = def->dampingRatio;
	m_impulse = 0.0f;
	m_gamma = 0.0f;
	m_bias = 0.0f;
}

void b2DistanceJoint::InitVelocityConstraints(const b2TimeStep& step)
{
	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	// Compute the effective mass matrix.
	b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
	b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
	m_u = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;

	// Handle singularity.
	float32 length = m_u.Length();
	if (length > b2_linearSlop)
	{
		m_u *= 1.0f / length;
	}
	else
	{
		m_u.Set(0.0f, 0.0f);
	}

	float32 cr1u = b2Cross(r1, m_u);
	float32 cr2u = b2Cross(r2, m_u);
	float32 invMass = b1->m_invMass + b1->m_invI * cr1u * cr1u + b2->m_invMass + b2->m_invI * cr2u * cr2u;
	b2Assert(invMass > B2_FLT_EPSILON);
	m_mass = 1.0f / invMass;

	if (m_frequencyHz > 0.0f)
	{
		float32 C = length - m_length;

		// Frequency
		float32 omega = 2.0f * b2_pi * m_frequencyHz;

		// Damping coefficient
		float32 d = 2.0f * m_mass * m_dampingRatio * omega;

		// Spring stiffness
		float32 k = m_mass * omega * omega;

		// magic formulas
		m_gamma = 1.0f / (step.dt * (d + step.dt * k));
		m_bias = C * step.dt * k * m_gamma;

		m_mass = 1.0f / (invMass + m_gamma);
	}

	if (step.warmStarting)
	{
		// Scale the impulse to support a variable time step.
		m_impulse *= step.dtRatio;

		b2Vec2 P = m_impulse * m_u;
		b1->m_linearVelocity -= b1->m_invMass * P;
		b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
		b2->m_linearVelocity += b2->m_invMass * P;
		b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
	}
	else
	{
		m_impulse = 0.0f;
	}
}

void b2DistanceJoint::SolveVelocityConstraints(const b2TimeStep& step)
{
	B2_NOT_USED(step);

	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
	b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());

	// Cdot = dot(u, v + cross(w, r))
	b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
	b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
	float32 Cdot = b2Dot(m_u, v2 - v1);

	float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse);
	m_impulse += impulse;

	b2Vec2 P = impulse * m_u;
	b1->m_linearVelocity -= b1->m_invMass * P;
	b1->m_angularVelocity -= b1->m_invI * b2Cross(r1, P);
	b2->m_linearVelocity += b2->m_invMass * P;
	b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P);
}

bool b2DistanceJoint::SolvePositionConstraints(float32 baumgarte)
{
	B2_NOT_USED(baumgarte);

	if (m_frequencyHz > 0.0f)
	{
		// There is no position correction for soft distance constraints.
		return true;
	}

	b2Body* b1 = m_body1;
	b2Body* b2 = m_body2;

	b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
	b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());

	b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;

	float32 length = d.Normalize();
	float32 C = length - m_length;
	C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection);

	float32 impulse = -m_mass * C;
	m_u = d;
	b2Vec2 P = impulse * m_u;

	b1->m_sweep.c -= b1->m_invMass * P;
	b1->m_sweep.a -= b1->m_invI * b2Cross(r1, P);
	b2->m_sweep.c += b2->m_invMass * P;
	b2->m_sweep.a += b2->m_invI * b2Cross(r2, P);

	b1->SynchronizeTransform();
	b2->SynchronizeTransform();

	return b2Abs(C) < b2_linearSlop;
}

b2Vec2 b2DistanceJoint::GetAnchor1() const
{
	return m_body1->GetWorldPoint(m_localAnchor1);
}

b2Vec2 b2DistanceJoint::GetAnchor2() const
{
	return m_body2->GetWorldPoint(m_localAnchor2);
}

b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const
{
	b2Vec2 F = (inv_dt * m_impulse) * m_u;
	return F;
}

float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const
{
	B2_NOT_USED(inv_dt);
	return 0.0f;
}