1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef JOINT_H
#define JOINT_H
#include "../../Common/b2Math.h"
class b2Body;
class b2Joint;
struct b2TimeStep;
class b2BlockAllocator;
enum b2JointType
{
e_unknownJoint,
e_revoluteJoint,
e_prismaticJoint,
e_distanceJoint,
e_pulleyJoint,
e_mouseJoint,
e_gearJoint,
e_lineJoint
};
enum b2LimitState
{
e_inactiveLimit,
e_atLowerLimit,
e_atUpperLimit,
e_equalLimits
};
struct b2Jacobian
{
b2Vec2 linear1;
float32 angular1;
b2Vec2 linear2;
float32 angular2;
void SetZero();
void Set(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2);
float32 Compute(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2);
};
/// A joint edge is used to connect bodies and joints together
/// in a joint graph where each body is a node and each joint
/// is an edge. A joint edge belongs to a doubly linked list
/// maintained in each attached body. Each joint has two joint
/// nodes, one for each attached body.
struct b2JointEdge
{
b2Body* other; ///< provides quick access to the other body attached.
b2Joint* joint; ///< the joint
b2JointEdge* prev; ///< the previous joint edge in the body's joint list
b2JointEdge* next; ///< the next joint edge in the body's joint list
};
/// Joint definitions are used to construct joints.
struct b2JointDef
{
b2JointDef()
{
type = e_unknownJoint;
userData = NULL;
body1 = NULL;
body2 = NULL;
collideConnected = false;
}
/// The joint type is set automatically for concrete joint types.
b2JointType type;
/// Use this to attach application specific data to your joints.
void* userData;
/// The first attached body.
b2Body* body1;
/// The second attached body.
b2Body* body2;
/// Set this flag to true if the attached bodies should collide.
bool collideConnected;
};
/// The base joint class. Joints are used to constraint two bodies together in
/// various fashions. Some joints also feature limits and motors.
class b2Joint
{
public:
/// Get the type of the concrete joint.
b2JointType GetType() const;
/// Get the first body attached to this joint.
b2Body* GetBody1();
/// Get the second body attached to this joint.
b2Body* GetBody2();
/// Get the anchor point on body1 in world coordinates.
virtual b2Vec2 GetAnchor1() const = 0;
/// Get the anchor point on body2 in world coordinates.
virtual b2Vec2 GetAnchor2() const = 0;
/// Get the reaction force on body2 at the joint anchor.
virtual b2Vec2 GetReactionForce(float32 inv_dt) const = 0;
/// Get the reaction torque on body2.
virtual float32 GetReactionTorque(float32 inv_dt) const = 0;
/// Get the next joint the world joint list.
b2Joint* GetNext();
/// Get the user data pointer.
void* GetUserData();
/// Set the user data pointer.
void SetUserData(void* data);
/// Get whether or not joint bodies can collide
bool GetCollideConnected();
//--------------- Internals Below -------------------
protected:
friend class b2World;
friend class b2Body;
friend class b2Island;
static b2Joint* Create(const b2JointDef* def, b2BlockAllocator* allocator);
static void Destroy(b2Joint* joint, b2BlockAllocator* allocator);
b2Joint(const b2JointDef* def);
virtual ~b2Joint() {}
virtual void InitVelocityConstraints(const b2TimeStep& step) = 0;
virtual void SolveVelocityConstraints(const b2TimeStep& step) = 0;
// This returns true if the position errors are within tolerance.
virtual bool SolvePositionConstraints(float32 baumgarte) = 0;
void ComputeXForm(b2XForm* xf, const b2Vec2& center, const b2Vec2& localCenter, float32 angle) const;
b2JointType m_type;
b2Joint* m_prev;
b2Joint* m_next;
b2JointEdge m_node1;
b2JointEdge m_node2;
b2Body* m_body1;
b2Body* m_body2;
bool m_islandFlag;
bool m_collideConnected;
void* m_userData;
// Cache here per time step to reduce cache misses.
b2Vec2 m_localCenter1, m_localCenter2;
float32 m_invMass1, m_invI1;
float32 m_invMass2, m_invI2;
};
inline void b2Jacobian::SetZero()
{
linear1.SetZero(); angular1 = 0.0f;
linear2.SetZero(); angular2 = 0.0f;
}
inline void b2Jacobian::Set(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2)
{
linear1 = x1; angular1 = a1;
linear2 = x2; angular2 = a2;
}
inline float32 b2Jacobian::Compute(const b2Vec2& x1, float32 a1, const b2Vec2& x2, float32 a2)
{
return b2Dot(linear1, x1) + angular1 * a1 + b2Dot(linear2, x2) + angular2 * a2;
}
inline b2JointType b2Joint::GetType() const
{
return m_type;
}
inline b2Body* b2Joint::GetBody1()
{
return m_body1;
}
inline b2Body* b2Joint::GetBody2()
{
return m_body2;
}
inline b2Joint* b2Joint::GetNext()
{
return m_next;
}
inline void* b2Joint::GetUserData()
{
return m_userData;
}
inline void b2Joint::SetUserData(void* data)
{
m_userData = data;
}
inline bool b2Joint::GetCollideConnected()
{
return m_collideConnected;
}
inline void b2Joint::ComputeXForm(b2XForm* xf, const b2Vec2& center, const b2Vec2& localCenter, float32 angle) const
{
xf->R.Set(angle);
xf->position = center - b2Mul(xf->R, localCenter);
}
#endif
|